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Chapter 1 

The Scope of the Research 
 
 
 
In this dissertation we focus on the question: How different methods, especially 
combined intelligent methods can be used in solving practical problems, to which exact 
mathematical solutions can awkwardly be tailored, or do not exist at all. The term 
intelligence has many interpretations in the literature. Most of the definitions treat 
intelligence as some model of human being’s information processing capability, but 
from different aspect. Throughout the dissertation we use the term “intelligent” to 
describe all artificial or natural creatures that are able to make decisions based on their  
own knowledge. The decision process from this respect is not a pure mechanical task, 
but a consideration of different choices. 
In Figure 1.1 three areas within the artificial intelligence science to which this 
dissertation joins are shown. 
 
 

 
 

Figure 1.1 
The scope of the dissertation 

 
Reinforcement learning algorithms model the decision maker as an automata-

like goal-driven agent with the aim of reaching some goal states in the problem 
representation state space. For example an automated robot vehicle in a room can have 
the goal to reach a certain position; a resource broker agent can have the goal to reach a 
certain resource configuration, etc. The agent accomplishes different choices among its 
numerous possibilities, but each choice can make different sense in the environment. 
Each decision has some immediate or future effects which are expressed in the form of 
numeric honor or dishonor, say, of a reward value. The agent utilizes the feedback in 
order to try to recognize which actions are appreciated by the environment and which 
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actions are not. The agent then tries to govern its decision sequence into the direction 
that maximizes the “environment’s satisfaction”. 

The concept of simulated annealing is based on the analogy of how liquids 
freeze or recrystalize. In an annealing process an initially high temperature and 
disordered melt is slowly cooled down and reaches thermal equilibrium. As the cooling 
proceeds, the system becomes more ordered and approaches a so-called “frozen” state. 
The process can be thought as an adiabatic approach to the lowest energy state. 
Simulated annealing is analogous to the real annealing process: the state of the thermal 
system corresponds to the current solution of the model analogy; the thermal 
equilibrium corresponds to the global optimum; the annealing schedule corresponds to 
the objective function. The greatest advantage of the method is that it avoids running 
into local minima. 

Chapter 2 gives an overview on the reinforcement learning concept, and surveys 
several reinforcement learning techniques ranging from dynamic programming to 
temporal difference learning. All methods have something in common: all algorithms 
converge to a so-called optimal decision sequence, or optimal policy which guarantees 
the maximization of the total reward given by the environment on the long run. The 
chapter concludes with the question: It is good, that all reinforcement learning methods 
are convergent, but what about the speed of the convergence? Is there any decision 
policy that can be used to boost the convergence? This is the point where combined 
simulated annealing and reinforcement learning methods come to the focus. 

Chapter 3 reveals a new simulated annealing technique that is tailored to the 
goal driven agents. The method is called Boltzmann annealing schedule, and utilizes the 
control properties of the Boltzmann distribution computed over the action selection 
preference values. As in the case of general simulated annealing algorithms the 
annealing temperature value is characteristic to the action selection probability 
distribution, in the sense that it influences the way the agent makes its decision. We 
show in a theorem that there are two extremes of the distribution that are useful in 
practice: 1. when the agent treats all choices equally probable  and let itself try actions 
that have never been selected before, in the hope of larger reward afterwards, or 2. when 
the agent always selects an action that it thinks to be the best. The former is referred to 
as exploration, while the latter is called exploitation. 

Though the two extremes are reached only in the limit, it is still an interesting 
question if there are finite and nonzero temperature values for which the two extremes 
can be approached with a sufficiently small error. We show that if the preference values 
are bounded, such finite temperature bounds do exist, defining a temperature parameter 
domain in which any decision control has effect. Outside this domain there is no 
improvement, since exploration or exploitation is already performed accurately enough. 

Temperature bounds have several benefits. Firstly they can be computed on- line. 
Secondly they can be used to define an exploration-exploitation balancing annealing 
schedule if the length of the intended exploration time is given. Thus the agent 
approaches to the original decision problem in an inverted sense: “I have certain 
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amount of time to look for solutions, and after some elapsed time, I would like to have a 
feasible solution. It does not matter if it is not the optimal one (it is good if it is the 
optimal solution), but it should be one that is practically usable. I would like to avoid 
the really bad cases.” This is referred to quasi-optimality, when not the best decision 
sequence is sought, but the one which is good enough in practice. 

We describe an annealing model which guarantees sufficient exploration at the 
beginning of the decision making process, and the range  of decision gradually shrinks 
around the best decision sequence found as the agent’s experience increases. A general 
annealing framework is shown first then special annealing functions are derived from 
the general model, which are simplistic enough for practical purposes. At the end of 
Chapter 3, computation validation of the temperature bounds as well as Boltzmann 
distribution based annealing schedules are shown. 

Chapter 4 and Chapter 5 detail two application examples. Chapter 4 concentrates 
on Internet Protocol packet routing problems, and introduces a Boltzmann annealing 
based Q-routing algorithm. It is shown that our new routing method prevents the router 
agents from the classical problems of dynamic routing protocols, and eliminates two 
problems of the basic Q-routing algorithm: loop detection and path recovery. Loop 
detection in Q-routing refers to detecting and punishing the looping parts of a data 
delivery path, while retaining and rewarding those parts that do not contribute to the 
loop. Path recovery is the method of diverting the traffic back to the regular (and 
optimal) data delivery path from a backup route when the failure of the regular path is 
over. Ordinary Q-routing algorithms are not capable of doing this. A distributed 
simulator is also developed in Java which emulates the setup and the operation of a real 
network. 

Chapter 5 illustrates Boltzmann annealing based flow-shop scheduling method 
within the framework of virtual manufacturing concept. Given a real manufacturing 
system, a virtual service is worked out which maps the real system to computational 
objects and utilizes the property that the speed of evaluation of real processes in the 
virtual model can be thousand times quicker than executing it in the real environment. 
An on-line virtual scheduler service is proposed which works in the virtual 
manufacturing space and which uses reinforcement learning principles in implementing 
domain-specific heuristics to solve the flow-shop scheduling problem. However there is 
a large difference between routing and scheduling: The latter problem is non-
Markovian.  We illustrate that the new on- line scheduling concept provides better results 
than heuristic approaches and on- line re-scheduling capability in spite of the non-
Markovian environment. 

Chapter 6 summarizes the main contributions to the interdisciplinary field of 
reinforcement learning, simulated annealing, internet routing and on- line flow-shop 
scheduling presented in this document. 
 
 



 14 

 

Chapter 2 

Fundamentals of Reinforcement Learning 
 
 
 
In this chapter a general “learning from zero-prior-experience” method, called 
reinforcement learning (RL) will be surveyed. RL has its roots in automata theory as 
well as in dynamic programming where large computational problems are split into 
small sub-problems by setting decision points and using evaluation functions to build 
globally optimal solutions on the basis of sub-optimal solutions. 

Reinforcement learning adds iterative environment sampling capability to the 
original dynamic programming model, thus making it capable of adapting to changes in 
the external environment. 
 

2.1 Machine learning1 
 
The definition of machine learning used to be ambitious, aimed at giving an artificial 
replacement of human beings’ information processing and knowledge synthesizing 
method. Recently the definition has focused around the goal to produce algorithms that 
are limited models of human beings’ learning capability but are practically usable in 
many real- life applications. According to Kohavi and Provost “machine learning is the 
field of scientific study that concentrates on induction algorithms and on other 
algorithms that can be said to learn” [R18]. 

The common point of all artificial learning systems is that all use some internal 
data structure consisting of different parameters that may affect the behavior of the 
whole system. The artificial learner modifies its internal structures and/or parameters in 
order to give improved performance, i.e., improved expected system output for the same 
input as time goes on [R26]. The natural learning procedure can also be studied from 
this perspective, although it is more complex than its artificial counterpart. 

Kaelbling classifies machine learning algorithms in [R16] using different 
criteria. One criterion that examines the role of the system’s environment, distinguishes 
three groups of algorithms: supervised learning, unsupervised learning and 
reinforcement learning. 

Supervised learning algorithms have the strongest environment dependency 
since these algorithms use an external (and often stationary) reference, called teacher, 

                                                 
1 The terms “artificial learning” and “machine learning” are used as the synonyms of each other 
throughout the document. 
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that can tell the expected input-output mapping all the time, and can directly instruct the 
learning system which parameter and how to modify. This type of learning is also 
regarded as instructive learning, since the environment directly intervenes into the 
internal structure of the learning system [R16]. Commonly used neural network learning 
algorithms, such as back-propagation, or classification algorithms fall into the category 
of supervised learning. 

Unlike supervised learning methods, unsupervised learning methods do not 
require any external resource to tell the right output all the time, but have some internal 
metric that is applied to build internal multi-dimensional mappings of the parameter 
space [R19]. The learning system then either generalizes or specializes on different 
sections of these maps in order to introduce new classification rules, or remove old rules 
as learning advances. Algorithms of self-organizing maps and Kohonen-networks are 
typical examples for unsupervised learning. 

The third group of learning algorithms is called reinforcement learning (RL) 
algorithms that have both supervised and unsupervised features [R16]. RL algorithms 
use the autonomous learning system model, familiar from unsupervised learning, which 
means that the system cannot be instructed by any external reference. However, it keeps 
interactive relationship with the environment and tries to get some information in order 
to build up its knowledge base. The feedback is either utilized to update the knowledge 
or simply ignored depending on the learner’s own decision. In fact, the responsibility of 
gaining feedback is also on the learner, so this type of learning is also called explorative 
learning [R16]. RL methods are capable of learning from zero prior knowledge 
provided that the number of learning examples is sufficiently large. 
 

2.2 The reinforcement learning problem 
 
Sutton and Barto in [R46] defines the reinforcement learning problem as the problem of 
a goal driven agent which is in contact with its external environment and which 
performs interactive actions, gets feedback and gathers experience in order to reach a 
specified goal state. RL algorithms are not considered to be a separate group of methods 
but all kinds of algorithms that give possible solutions to the defined problem. 

The agent can be described by discrete states that are the only parameters that 
uniquely define the agent’s behavior. States are either simple data elements or 
compound data structures. State information is furthermore discrete in time, which 
means that in each time step the agent can be described by a single state. State 
representation can either be the result of internal implicit rules, the behavior of the 
agent, or the result of the mapping of external perceptions [R46]. 

When the goal state has not been reached yet, each state is considered as a 
decision point, where something must be done in order to get into a new state. Thus, in 
each time step, the agent selects an action out of a set of actions, which influences the 
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environment and makes the agent get into a new state2. The mechanism is shown in 
Figure 2.1. 
 
 

 
 

Figure 2.1 
Schematic representation of the reinforcement learning model 

 
The representation of actions can be quite different. In the simplest case actions are 
stored in look-up tables, but they can be the result of a complex search algorithm or 
more complex functions as well [R16]. The agent’s “doing nothing” between time steps, 
is also treated as an “identity” action selection. 

State changes may be stochastic, which means that selecting the same action 
from the same state yields different resulting state. It is expedient to describe the 
system’s dynamics using state-action-state probability distribution [R16][R46]. 

Apart from state change, a reinforcement signal that indicates the environment’s 
evaluation is fed back to the agent in every time step. A large positive scalar, for 
example, may show that the environment appreciated the selected action honoring it 
with a large reward, and a large negative number may be provided if the action selected 
is improper in that situation and should be avoided in the future. The agent evaluates the 
scalar reward/punishment signal to adjust its knowledge base, which makes possible to 
select some better action next time. The goal of the agent is thus, to maximize the sum 
of rewards gained in a learning period, called an episode, on the long run. Rewards are 
always considered to be external to the agent [R46]. 

The environment is not supposed to be stationary, but is supposed to be 
consistent in rewards, since confusing rewards/punishments in a short period may spoil 
the agent’s state-action assignments3. However, rewards are permitted to change on the 
long-run. It is also an interesting question where the boundary between the agent and its 
environment is. Sutton and Barto gives the answer that “everything that falls outside of 

                                                 
2 In fact state change may occur not only due to the influence of the environment, but to the agent’s 
internal mechanisms as well. 
3 If the agent has some inertia, the fluctuating variances can be handled. 
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the agent’s control is treated as part of the environment”. This means  that natural 
physical boundaries (e.g. learning robot vehicle in a room) cannot always coincide with 
the agent-environment boundaries. 

Throughout learning, the agent’s task is to find the optimal decision sequence, 
which guarantees the maximal sum of rewards in the long run. The way how the agent 
makes a decision is called policy [R46] which is defined as a state-action mapping. Let 

{ }nsssS ,...,, 21=  define the set of states (where n indicates the number of states) and 

{ }
)(21

,...,,)(
imiiii aaasA =  the set of actions available in state si (where )(im  denotes the 

number of available actions). Equation 2.1 defines the stochastic policy over the set of 
actions, i.e., assigns a probability value to each state-action pair. 
 

ijii pas
j

=),(π , ni ,...,2,1= , mj ,...,2,1=  (2.1) 

 
Policies represent part of the agent’s knowledge, since it is crucial information 

which action may lead to better results. In order to let the agent discriminate between 
different states and different actions, preference values (or simply values) are used. 
There are two kinds of values: state values, and action-state values. State values show 
how valuable for the agent it is to be in a certain state. The precise definition of a state 
value is given by Sutton and Barto in [R16] as “the sum of expected discounted rewards 
from the current state to the goal state”. Although it is important to differentiate states 
since their utility can be quite different, state values do not take forthcoming state 
changes into account. It is the point where action-state values come into the focus: by 
definition, action-state values approximate “the sum of expected discounted rewards 
from the current state to the goal state selecting a particular action”. Note that policies 
which are probability distributions over the set of actions and action-state values are 
different, but are in strong relationship with each other. Traditionally, state values are 
denoted by V, action-state values are denoted by Q. 
 

2.3 Time-horizon models, Markov property, Bellman optimality equation 
 
Throughout an episode, the agent can receive lots of rewards that, due to the time 
locality of the decision, should  be taken into account differently. The way, how an agent 
treats temporal rewards is regarded as a time-horizon (TH) model. There are three 
fundamental TH models: finite horizon, infinite horizon and average reward models. 

In the case of the finite horizon model the agent takes a finite time window and 
works to obtain maximal sum of rewards within this time period. This method is useful 
when the learning process can be divided into episodes and each episode ends up in a 
terminal state in finite time steps. 

Suppose that the agent looks T steps ahead, let RT denote the sum of rewards on 
the given time-horizon from t to T+t: 
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∑
=

++++ =++++=
T

i
itTttttT rrrrrR

0
21 ...  

 
(2.2) 

 
There are two ways the above equation can be used: 

1 at time step 1+t  the agent looks 1−T  steps ahead, at 2+t , looks 2−T  steps 
ahead, and looks only one step ahead in 1−+ Tt , or 

2 the agent always takes the optimal action looking 1−T  steps ahead. 
Finite horizon models can only be applied to episodic processes (processes that 

can be naturally divided into finite decision sequences), since in the case of continuing 
processes (i.e. non-episodic processes), T goes to infinity, and so does RT. 

The infinite horizon model introduces a mathematical trick to keep RT in a finite 
range even if ∞→T . The discount method weights rewards situated closer to the 
decision point with larger values than rewards situated in the farther future. The 
discount rate determines the present value of the future reward: reward r received in 
time step k is equivalent with reward rk 1−γ  received immediately. The discount formula 

is as follows: 
 

∑
=

+
−=

T

i
it

i
T rR

0

1γ , 10 ≤≤ γ . 
 
(2.3) 

 
If T is finite and 1=γ  then equation 2.3 is identical to equation 2.2. When 0=γ  then 

the agent has one-step look-ahead, or follows greedy policy. If ∞→T  and 1<γ  then 

the learning task is continuing and the reward is finite. 
Average reward models take the average of rewards as shown by equation 2.4. 

This method hides differences between the policies that are performing well at the 
beginning and worse afterwards, and the policies that are performing better in the final 
phase; only the average reward matters. 
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Let { }aassssP ttt
a

ss ==== + ,|'Pr 1'  denote state transition probabilities, that is 

the probability of getting into state 's  provided that the current state is s and the chosen 
action is a. If state transition probabilities are dependent only on s, a, and 's , the 
decision process has the Markov property and is referred to as Markov Decision Process 
(MDP). A MDP does not maintain any history, i.e. a sequence of states traversed so far 

or a set of actions that have been selected. Let { }',,| 1' ssaassrER ttt
a
ss ==== +  denote 

the expected value of the reward of state transition from s to 's  when choosing action a. 
a

ssP '  and a
ssR '  are referred to as the  environment dynamics of a Markovian process and 
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these are the only necessary input data that describe the process [R46]. However the 
environment dynamics are rarely known, but are estimated from trial and error 
experience. 

In the previous section the verbal definition of state and action-state values were 
given. The formal definitions are as follows for the infinite horizon model: 
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where π  denotes the policy followed by the agent. 

As it is indicated in equations 2.5 and 2.6, values are dependent on policies. 
Different policies may result in different values. Also,  “value functions define partial 
ordering among policies” [R46]. It is established by Bellman in [R4] that if a decision 
process is a MDP and the environment dynamics exist (not necessarily known), there 

exists a unique policy denoted by *π  called the optimal policy for which 

)()(
*

sVsV ππ ≥  for all Ss ∈  where π  is an arbitrary policy. It is also established that 

the existence of the optimal policy determines the optimal state and action-state values 
as: 
 

)(max)(* sVsV π

π
=  (2.7) 

 
and 
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π
=  (2.8) 

 
Bellman also shows that the unique optimal values can be obtained by solving the 
nonlinear Bellman optimality equations (BOE) shown in equations 2.9 and 2.10 
[R4][R46]. 
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(2.10) 

 
Both equations establish a relationship between the value of the current state and the 
values of successor states. Szepesvári and Lorincz shows that the unique solution of the 
BOE can be found by using fix-point theorem [R49][R50]. 

The goal of any reinforcement learning algorithm is to find or approximate the 
optimal values and the optimal policy by either solving equations 2.9 and 2.10 if the 
environment dynamics are known or by estimating them using on- line estimation. 
 

2.4 Solutions to the RL problem 
 
In this section several methods that solve the RL problem will be shown. Solutions can 
be of two types: the ones that require exact knowledge of the environment dynamics 
( )(,',, '' i

a
ss

a
ss sAaSsRP ∈∀∈∀ ), and  build the exact model determining the optimal 

policy, and the others that estimate the dynamics and also the value functions trough 
trial and error probes. The first type of methods is also referred to as dynamic 
programming methods, while the second type as temporal difference algorithms. 
 

2.4.1 Dynamic programming 

 
Dynamic programming (DP) refers to a collection of algorithms that are used to 
compute values, as well as optimal policies if the perfect model of the environment is 
given. DP algorithms are fairly important since they give theoretical background to all 
other RL algorithms. As a general law, all DP methods aim at breaking Bellman 
optimality equation (formulas 2.9 and 2.10) into successive iterative steps; the iterated 
value approaches to the unique solution of the Bellman optimality equation. 

The very first step to determine the optimal policy is to compute values to an 
arbitrary policy. This method is known as policy evaluation. The key idea of policy 
evaluation is to let the policy be fixed. Then equation 2.9 is re-written as: 
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(2.11) 

 
Note that the policy is not the optimal one, thus the maximization operator cannot be 
used. Instead, summation over the state values as well as the known rewards weighed by 
the action selection probabilities of each available successor state choosing a particular 
action is applied. The summation is done for all possible actions. Also note that the 
value function is not the optimal one either. The policy evaluation algorithm is shown in 
Figure 2.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 
The policy evaluation algorithm 

 
In the algorithm, environment dynamics ( a

ss
a

ss RP '' , ) are denoted slightly 

differently and all sets are treated as arrays 4. If the number of iterations goes to infinity, 
iterative values of V converge to Vπ. This procedure is also referred to as full-backup 
method since it takes all possible successor states in a given state into account rather 
then a single sample state. The computational complexity of iterative policy evaluation 
algorithm is of order )( 2mznO  where n is the number of states, m is the number of 

actions, and z is the number of iteration steps. 
The purpose of policy evaluation is to determine better policies. Suppose that the 

value πV  of policy π  is determined by policy evaluation. Suppose further that in the 

                                                 
4 There is no sequence relationship between elements of sets, but there is between the elements of arrays, 
at least from the storage point of view. From theoretical aspect this difference does not make sense, and 
arrays are used as computational representation of any sets. 

input: π policy to be evaluated, θ small error value 
input: n number of states, m number of actions 
output: V(s) 
initialize V(s) for all s∈S 
function policy_evaluation(π,θ) 
begin 
  while ∆>θ do 
    ∆:=0; 
    for i:=1 to n do 
      v:=V(s[i]); 
      for j:=1 to n do 
        for k=1 to m do 
          V(s[i]):=V(s[i])+π(s[i],a[j])P(s[i],a[j],s[k]) 
                                  (r(s[i],a[j],s[k])+γV(s[k])); 
        end 
      end 
    end 
    ∆:=max(∆,|v-V(s[i])|); 
  end 
end 
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current state s there is an action 'a  which is different than the one that would be chosen 

by policy π . Note that action 'a  may yield better reward, than action a . Select action 
'a , for which )('')( sas ππ =≠ , where policy )(' sπ  sets different action selection rules 

than )(sπ  at the first step, but they are identical for the remaining steps. It comes from 

equation 2.10 that for the modified policy 'π  
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(2.12) 

 
It is proven in [R46] tha t if )())(',(' sVssQ ππ π ≥ , then )()(' sVsV ππ ≥  is also true. The 

key question is how to modify the original policy to give improved values. It is also 
shown in [R46] that defining a one-step greedy policy, that takes the best action 
immediately, meets the conditions of equation 2.12 thus: 
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(2.13) 

 
The argmax operator means selecting the action that maximizes the sum. The method of 
refining the policy from the values of another policy is called policy improvement. 

Given policy evaluation and policy improvement, it is reasonable to join these 
algorithms together: values can be computed by policies, and policies can be improved 
by new values. It is shown by Sutton and Barto in [R46] that 

**210 ...
10

VVV EIEIEIE →→→→→→→ ππππ ππ , where →E  

denotes policy evaluation and →I  denotes policy improvement. The whole process 
that outputs the optimal policy as well as the optimal values is called policy iteration. 

In most of the practical cases policy iteration converges to the optimal value too 
slowly since the set of states has to be traversed many times and policy iteration 
consumes considerable amount of time. An algorithm that combines policy 
improvement with one-step policy evaluation is called value iteration. Value iteration 
uses the best action’s value (see equation 2.14) instead of doing a full backup on all 
possible successor states. The simplification speeds up the convergence: 
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Similarly for action-state values: 
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The value iteration algorithm is shown in Figure 2.3. 
DP methods can be applied to RL problems when the number of states is large; 

for smaller states-spaces linear programming as well as direct search algorithms can 
also be used to solve equations derived from the Bellman optimality equations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3 
The value iteration algorithm 

 

2.4.2 Temporal-difference learning 

 
Dynamic programming methods take the assumption that environment dynamics 
( a

ss
a

ss RP '' , ) are known, which is rarely the case for most practical applications. The 

environment dynamics can be estimated from experience if the agent can make a large 
number of iteration samples [R46]. Estimated values as well as a

ssP '  and a
ssR '  are backed 

up at each time step with respect to the previous samples, which explains the general 
name of these type of algorithms as temporal difference (TD) learning methods [R16]. 

Kaelbling classifies TD methods into model-based and model- free types [R16]. 
Model-based TD algorithms first build up the environment, then compute state and 
action-state values by one of the DP methods. This type of learning often breaks into 
two distinguishable temporal phases: environment estimation and computing optimal 
policy. On the other hand, model- free methods estimate optimal values and optimal 
policy without the explicit knowledge of the environment. 

input: θ small error value 
input: n number of states, m(i) number of actions in state i 
output: V(s) the optimal policy 
initialize V(s) for all s∈S 
function value_iteration(θ) 
begin 
  while ∆>θ do 
    ∆:=0; 
    for i:=1 to n do 
      v:=V(s[i]); 
      for j:=1 to m(i) do 
        Vtemp:=0; 
        for k=1 to m(i) do 
          Vtemp:=Vtemp+P(s[i],a[j],s[k])(r(s[i],a[j],s[k])+γV(s[k]); 
        end 
        if Vtemp>=Vmax then 
          V[s[i]):=Vtemp; 
        end 
      end 
    end 
    ∆:=max(∆,|v-V(s[i])|); 
  end 
end 
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The Dyna algorithm of Sutton [R47] is one of the most well-known model-based 
algorithms. Dyna operates in a loop of interaction steps. The “experience” samples in 

each time step are described by a quintuple of ',',,, asras , the elements denoting state, 

action, reward, next-state, and action after the next state, respectively. Due to the nature 
of the experience, the agent knows its next state in each time step, so there is no need to 
make a full backup on each possible successor state. Using the experience quintuple 

{ }a
ssPE '  and { }a

ssRE '  (i.e. the estimated va lues of the environment dynamics) are updated 

by simple averaging technique. Equation 2.15 can be rewritten as 
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(2.16) 

 
During the interaction cycles, n updates are performed using random exploration 
strategy, i.e. the agent should visit all possible states and select all possible actions in 
order to get real convergence. 

Although Dyna converges to the optimal action-state values, it is 
computationally inefficient because of the random exploration. An extension of Dyna 
called Queue-Dyna introduced by Moore at al. in [R28] focuses on only the “interesting 
parts” of the state space: the algorithm maintains a list of predecessor states for each 
state. In addition, states in the list have priority values. The agent selects actions having 
nonzero state transition probability and follows not random exploration, but exploration 
that is based on the accumulated priority values. Priorities are initialized to zero at the 
beginning and then updated to be proportional to the value improvement since the last 
improvement of that state. 

Queue-Dyna improves Dyna significantly, in terms of the number of 
computational steps needed to learn the optimal policy. 

The most general model- free temporal difference learning method is called 
TD(λ), or SARSA. A two-layered hierarchical extension is called adaptive heuristic 
critic algorithm, i.e. an adaptive version of policy iteration. TD(0), later generalized to 
TD(λ), was introduced by Sutton [R48], while SARSA was developed by Rummery and 
Niranjan [R41]. 

Let ',',,, asras  denote the experience in an iteration step (the name SARSA 

refers to the quintuple). The crucial thing for the learner is whether the new state has 
made the values better or worse. This quantity is expressed as a temporal difference: 
 

)()'( sVsVr −+= γδ . (2.17) 
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If 0>δ , then action a increases the value )(sV , otherwise it decreases it. Equation 2.17 

can then be used for writing update rule5 to the state values as well as to the action-state 
values [R46], such as 
 

βδ+=+ )()(1 sVsV kk , (2.18) 

 
or  
 

αδ+=+ ),(),(1 asQasQ kk . (2.19) 

 
where α and β  are the controllable step-size parameters called learning rates and k 
denotes the time step [R44]. Equations 2.18 and 2.19 are equivalent to the backup rule 
of value iteration (equations 2.14 and 2.15) with the only difference that the sample is 
drawn from on- line sampling of the real world rather than by preliminary sampling and 
simulation of a known model [R16]. Any algorithm that uses update rules 2.18 and 2.19 
is referred to as TD(0) algorithm and it is guaranteed to converge to the optimal value 
function, which was established by Sutton [R48]. 

TD(0) algorithms are special cases of a more general temporal difference 
algorithm class called TD(n). While TD(0) algorithms take only the immediate reward 
and the value of the next state into account, TD(n) algorithms use n-step look-ahead to 
determine the value of the current state. Thus all TD(n) algorithms define δ as 
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A more general view of temporal difference methods is provided by TD(λ) 

algorithms that use weighed sums of k-step look-ahead rewards, where k takes values 
from 1 to n. This means that the rewards expected in the near future or rewards obtained 
in the near past weigh more significantly than those farther in the future or past, the 
update rule uses the following weighted average: 
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(2.21) 

 
TD(λ) algorithms can be considered as forward view or backward view algorithms. 
Equation 2.21 combined with 2.18 or 2.19 defines forward view TD(λ) which is also 
called: the theoretical approach. A much more practical model can be gained by using 
the backward view: through a memory variable referred to as the eligibility trace. 
Eligibility traces are concerned with all states visited so far: 

                                                 
5 The update rule specifies how the agent uses the experience. 
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The eligibility of a state is the degree of how frequently it has been visited in the recent 
past. Whenever a state is reached, the trace concerning that state is amplified, and 
similarly the trace smoothly becomes less influential if the corresponding state is not 
visited. The temporal difference of the backward view TD(λ) is defined as: 
 

[ ] )()()'( sesVsVr t−+= γδ . (2.23) 
 
Update of eligibility traces can either be online, when backups are performed in each 
time step, or off- line, when a summary backup is carried out at the end of the episode6. 
Any backward view TD(λ) method is easy to implement; in Figure 2.4 the on- line 
version is shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4 
The on- line, backward view TD(λ) algorithm 

 
It is proved in [R46] that backward view and forward view TD(λ) algorithms implement 
the same weight- layout, and thus are equivalents of each other. 

The actor-critic methods separate policy and value structures, thus introducing 
an implicit hierarchy in the system. The policy is bound to the actor of the process, and 
the value to the critic. The actor follows policy π  and whatever this policy is, the critic 
evaluates it and makes changes. The concept is shown in Figure 2.5. Control signal c 
has similar functionality to the reward signal, but inside the learning agent. 
                                                 
6 In case of episodic processes. 

input: n number of states, T number of steps 
output: V(s) the optimal value function 
initialize V(s) for all s∈S 
function TDλ(n,T) 
begin 
  for j:=1 to T do 
    choose action a in state s; 
    take s’ and r; 
    δ:=r+γV(s’)-V(s); 
    e(s):=e(s)+1; 
    for i:=1 to n do 
      V(s):=V(s)+αδe(s); 
      E(s):=γλe(s); 
    end 
    s:=s’; 
  end 
end 
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Figure 2.5 
The actor-critic agent architecture 

 

2.5 Q-learning 
 
Although Q-learning implements a kind of TD learning, due to its practical relevance it 
is discussed in a separate section. The algorithm of Q-learning was introduced by 
Watkins and Dayan in [R60], where the complete proof of the  convergence to optimal 
action-state values as well as optimal policy is given. The key idea of the proof is to 
replace the agent’s “real process” to an equivalent abstract MDP, a “biased coin 
flipping” task. 

It is common in TD-learning and in Q-learning that a sample experience 
sequence is given, i.e. the agent senses current state, selected action, given reward, next  
state and next action quintuples, and whatever would follow next, the agent considers 
optimal action choice then. Experience quintuples are denoted in the usual way by 

',',,, asras  and are supposed to be random samples of a given probability distribution. 

Having selected an action that provides the best action-state value, the optimal 

state value turns out to be ),(max)( ** asQsV
a

= . 

Writing a backup rule to Q-learning can be done similarly to writing a backup 
rule to the general model (equation 2.15): 
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(2.24) 

 
Note that there is no stochastic action selection, since both the next action and the next 
state are known. Also note that the policy is implicit, i.e. the best action is as follows: 

),(maxarg)( ** asQs
a

=π . 

If the update rule is given as 
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[ ])'(),()1(),( 1111 sVrasQasQ kkkkkk γαα ++−= ++++ , (2.25) 

 
then it is true that the sequence of Q-values approach Q*, provided that kα  is a decaying 

sequence of the step-size parameter α , and the number of trials sufficiently cover all 
state-action pairs as the number of trials goes to infinity. The α  parameter is also 
referred to as learning rate, because it controls at what rate the learner allows to modify 
the values. 

Theoretical guarantee for convergence can only be given if the Q values are 
stored in look-up tables (see section 2.6). A possible Q-learning algorithm is shown in 
Figure 2.6. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6 
The Q-learning algorithm 

 
Q-learning is said to be model- free since there are no explicitly expressed 

environment dynamics in the model. It is also true that *Q  values are approached 

sufficiently even by following greedy policy (i.e. selecting the best action in all states). 
No matter what policy the agent follows, Q-learning will surely converge. This property 
is called policy independency or exploration insensitivity and discussed in detail in 
[R16]. However, the speed of convergence, which has serious feasibility impact to real-
life applications, strongly depends on the exploration vs. exploitation issue (see in 
section 2.7). In [R49] there is theoretically grounded estimation on the speed of 
convergence depending on the learning time provided that the discount factor is 
bounded and the state-action pairs are sampled from a fixed probability distribution. 

The convergence of Q-learning can be boosted up by rearrangement and 
simplification of the update rule as it is shown in [R60]. The result ing algorithm is 
based on the observation that the step-size parameter can be dependent on the number of 
times the current quintuple occurred in the past. If for example a quintuple  has occurred 
many times, the corresponding step-size parameter may be increased. However, there is 

input: n number of states, T number of experience tuples 
input: γ discount parameter, α learning rate 
output: Q(s,a) the optimal action-state values 
initialize Q(s,a) for all states and actions 
function Q_learning(n,T) 
begin 
  for i:=1 to T do 
    choose action a in state s that maximizes Q(s,a); 
    take s’,r; 
    Q(s,a)=(1-α)Q(s,a)+ α(r+γmaxQ(s’,a’)); 
    s:=s’; 
  end 
end 
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a price for the speedup: the agent must store the quintuple-history centrally, which may 
exclude any distributed applications. 

A generalized convergence model to Q-learning can be found in [R50] where a 
generalized MDP process is used. All operations (summation, maximization, etc.) are 
expressed as generalized operators on update rules and values. If the operators are non-
expansions, learning rates are decaying and the discount rate is definitely smaller than 1, 
the optimal Q-values are the unique solution (fix-point) of the following equation: 
 

[ ] ),(),( asQasQ =Θ , (2.26) 
 
where operator Θ  is the dynamic programming operator, defined in equation 2.27. 
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It is also presented in [R50] that operator Θ  can be approximated by successive values, 
without hurting the convergence. 
 

2.6 Maintenance of state information 
 
All the algorithms mentioned so far assume that values are stored in a look-up table. 
However look-up tables may raise memory requirements to the limit of infeasibility 
especially for large or continuous state-spaces. There are several techniques that allow 
storing values in a more compact form than lookup-tables. These techniques, which 
allow compact storage of learned information and transfer knowledge between similar 
states and actions, are called generalization methods [R16]. 

If both the number of states and the number of actions are relatively large, 
storing values in a neural network is a reasonable choice. Consider a multi- layer back-
propagation neural network for which the input is the state and action information (in 
any representation), and the output is the action-state value. In each update step training 
takes place until the expected output of the network approaches its calculated value at 
sufficiently small error level. Neural network learning rules and RL update rules can be 
combined in a single equation such as: 
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(2.28) 

 
where w denotes the weight vector (parameter vector) of the neural network, 'Q  the Q-

value estimated by the network, and w∇  denotes the partial derivatives of the Q-value 

with respect to each individual weight parameter [R10]. This solution saves memory 
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and space at the price of extra processor cycles needed to train the network in each 
update step. 

Another possible solution is to use decision trees instead of function 
approximation for basically doing the same job: mapping the description of each state-
action combination to values. Decision trees can be applied in discrete Boolean 
environments [R8]. At the beginning of the learning process the agent learns Q-values 
supposing that the whole state space consists of a single state. In parallel there is another 
process that examines if there is any attribute in the state description that may influence 
Q-values. If such attribute is found, it is used to split the state space into two parts, into 
two states. 

If the number of actions is relatively large, but the number of states remains 
reasonably small, the method of Gullapalli can be used: actions are represented as 
probability variables sampled from a normal probability distribution with specified 
mean and standard deviation [R12]. Actions are selected randomly with respect to the 
defined probability distribution. Those actions that perform better than others make the 
mean parameter to shift toward the selected action, while narrowing the standard 
deviation. On the other hand, if all actions perform poorly the standard deviation is 
adjusted to be large allowing a large scale of actions to be selected. 
 

2.7 Policies, exploration vs. exploitation 
 
Policy, as defined in section 2.1, is a mapping from states to actions in case of 
deterministic policies, and state-action pairs to probabilities in case of stochastic 
policies. The policy of the agent is not the same all the time; it is allowed to change as 
time goes on, as it should converge to the optimal policy. Policy is the unique factor that 
determines the behavior of the agent (i.e. “the way how it selects actions”). The policy is 
said to be greedy if the agent chooses the best action, i.e. the action with the largest 
value with respect to its actual knowledge. 

In each time-step the agent has a dilemma: either to explore or to exploit. There 
are actions that are well-discovered by the agent, and it can tell at a great level of 
confidence whether selecting those particular actions is expected to be honored or 
dishonored by the environment. When the agent selects sure actions, or follows greedy 
policy, its behavior is regarded as exp loitation. On the other hand, there may be actions 
that are not well discovered, or not discovered at all. These actions, however, may be 
rewarded worse than well-known actions, but may lead to promising large rewards few 
steps later. So, if the agent has more time to discover, it can select a non-greedy, 
discovery action, i.e. it explores the environment. Since the agent knows nothing about 
the environment at the beginning, it can start up with exploration only, which may 
gradually turn into exploitation as learning goes on. The crucial question that can be 
addressed is: How can the two extremes, i.e. exploration and exploitation be balanced? 
Solutions to this problem can fall into two fundamental categories: decaying exploration 
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and persistent exploration [R44]. In the case of decaying exploration the explorative 
behavior gradually turns to exploration, and having exceeded a time threshold, the agent 
never goes back to exploration without external intervention. The advantage of decaying 
exploration is that the selected actions converge to the optimal actions, at the price of 
being insensitive to changes in the environment, when the exploration cycle is over. On 
the other hand, persistent exploration learning policies keep their exploration capability 
forever, but at the price of slow convergence7 [R44]. 

Greedy policy is a singular persistent exploration learning policy. The problem 
with pure greedy exploration is that the agent can easily run into local extreme, and it  
cannot exploit all possibilities provided by the environment. However, if the agent has 
firm knowledge on not only the immediate rewards, but future rewards as well, this 
policy should be used. 

Greedy policy can be naturally extended when exploration-exploitation has a 
certain time or probability window, i.e. the agent makes exploration at certain time 
window, and makes exploitation throughout the remaining time. This policy is called ε-
greedy, and it can be illustrated as follows: at each time step a ε-biased coin is flipped, 
and if the output turns out to be heads the agent makes exploration or else it makes 
exploitation. ε-greedy policies are typical examples of persistent learning. 

It is possible to implement decaying exploration using Boltzmann formula. In 
this case a control parameter called temperature is used to determine whether 
exploitation or exploration step follows. Boltzmann distribution based exploration will 
be discussed in detail in Chapter 3. 

There is a general policy class called restricted rank-based randomized (RRR) 
policies that involve all previously mentioned learning policies. RRR uses rank vector 
to indicate the relevance of each available action. Though ranks are assigned on the 
basis of action-state values, the decision itself is done on the basis of ranks, not on the 
basis of values. 

Many of these techniques focus on the convergence in a certain regime. It is 
appropriate when the environment is not allowed to change. In most of the practical 
applications the environment is not stationary, thus repeated exploration cycles should  
be executed. 
 

2.8 Discussion 
 
In this chapter the reinforcement learning concept and the two major classes of 
reinforcement learning algorithms have been surveyed. Dynamic programming 
algorithms give theoretical grounds to RL methods, but suffer from the lack of 
information about environment dynamics. A much more practical approach is to use 
temporal difference learning that builds up the estimate of the environment by taking 

                                                 
7 The system will not converge in the classical terms of convergence. 
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experience samples. Convergence of temporal difference learning algorithms is 
theoretically grounded, but the speed of convergence is still a key issue. Exploration-
exploitation balancing methods are used for speeding up convergence, as well as giving 
exploration schedules. 
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Chapter 3 

Annealing Schedules Using the Boltzmann 
Distribution 
 
 
 
In this chapter an exploration and exploitation balancing method using the Boltzmann 
distribution will be introduced. First we examine the convergence behavior and other 
relevant properties of the Boltzmann formula then we derive temperature bounds which 
mark a feasible annealing domain. 

In each learning period the agent determines what proportion of the episode is 
spent on exploration and how much time it intends to exploit its actual knowledge to 
maximize the sum of expected rewards. Given the temperature bounds, and the length 
of exploration time we propose an annealing schedule technique  based on function 
interpolation, which gradually turns the agent’s decision making behavior from 
exploration to exploitation. 

The annealing model is computationally validated on a general test-bed called 
“n-armed bandit problem” that is also used in automata theory. The results of the 
chapter are based on our paper [P3]. 
 

3.1 Introduction 
 
In Chapter 2 an overview of general reinforcement learning solutions has been given. 
We discussed the model of the goal-driven, reward-maximizing learning agent, and 
possible solutions to the defined RL problem. We concluded that the agent can make its 
decision in two different ways: either it makes exploration, i.e. selects non-profitable 
actions in order to find better states afterwards, or it makes exploitation, i.e. it uses its 
actual knowledge to select the best action to get large immediate reward. Two important 
quantities were also introduced: state values and action-state values which indicate the 
utility of each state and each state-action pair, respectively. These quantities express 
action choice preferences. The key questions are, how the agent should turn its behavior 
from exploration to exploitation, or when it should turn back into exploration again. 

Balancing between exploration and explo itation is, however, a difficult task. 
Sandholm and Crites suggests problem dependent heuristic solutions to exploration 
exploitation balancing [R32][R42]. Sutton et al. in [R46] also discuss that the heuristic 
solutions “make strong assumptions about stationary and prior knowledge that are 
either violated or impossible to verify in applications”. 
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In this chapter we propose an exploration-exploitation balancing method based 
on simulated annealing, which is both theoretically grounded and problem-independent. 

The decision making problem can be defined as follows: Suppose that the agent 
has n action choices denoted by naaa ,...,, 21  at time step t. For each action a finite 

preference value 8 is assigned (or accumulated), which represents the “utility” of the 
particular choice. Preferences corresponding to actions are denoted by nQQQ ,...,, 21  

which are integers and nQQQ ≤≤≤ ...21 . Suppose that the agent defines a probability 

distribution over the preference values and selects an action randomly. The control 
parameters that influence how the actions are selected are the parameters of the 
probability distribution. A special way of assigning probabilities to values is the 
Boltzmann distribution proposed by Sutton in [R46], defined as 
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The Boltzmann-distribution has a single non-negative real-valued control parameter T 
called the temperature that governs  the action selection policy. (Note the analogy with 

statistical mechanics where the exponential is 
kT
Ei− where Ei is the potential energy, and 

k is Boltzmann's constant.) 
There are several appealing properties of the Boltzmann formula (equation 3.1). 

Two of the most important properties are the invariance property and the scaling 
property. Both are introduced by Mahnig et al. in [R22] in relation to Boltzmann-
selection scheduled genetic algorithms. 
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Property 3.2: Let ii cQQ =ˆ  denote “scaled” preference values, where ni ,...,2,1= , and 

c is an arbitrary constant value. Let p̂  denote Boltzmann probability distribution over 

Q̂  using cTT =ˆ  as temperature value, then ii pp =ˆ , ni ,...,2,1= . 

                                                 
8 Throughout the chapter terms “preferences”, “action preferences” and “action state values” are used 
interchangeably covering the same meaning. 
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Property 3.2 means, that if (for some reason) preference values are re-scaled, in order to 
have the same distribution, temperature values should also be modified. The property is  
of great importance in practical applications where preferences may grow without 
converging to a specified value due to the changes in the environment and are needed to 
be re-scaled periodically. 
 

3.2 The convergence property of the Boltzmann formula 
 
Theorem 3.1 summarizes the behavior of the Boltzmann distribution with respect to the 
convergence of the temperature values to zero or to infinity. 
 
Theorem 3.1: If temperature T approaches infinity, the action selection probability of 
all the actions approaches the uniform distribution; if T goes to zero the probability of 
selecting the strictly highest Q-valued action goes to 1, while the selection probability of 
others’ goes to 0. If there are k maximal equally preferred actions, the probability of 

making selections from among these actions goes to 
k
1

 as T goes to zero. 

 
Note that T may never reach 0. Also note that if T goes to 0, the action selection 
becomes more deterministic. Proof to theorem 3.1 can be found in Appendix A. 
 

3.3 The accuracy of the approach 
 
It is proven that the Boltzmann distribution converges to uniform distribution as T goes 
to infinity and to the greedy distribution9 as T goes to 0. It is also an interesting question 
to what degree the formula approaches the extremities when parameter T changes, if the 
Q-values are kept constant. The question can be reformulated: Can a maximal 
temperature be found so that the probabilities pi approach the uniform distribution with 
any small error, say ε , and also, can a minimal temperature be determined when 
approaching the greedy distribution is also guaranteed with a sufficiently small error. 
The answer to both questions is summarized in the following theorem: 
 
Theorem 3.2: Consider 0>ε , as a small positive number, and an upper and a lower 
bound on Q-values, Qmax and Qmin. The following inequalities are held under these 
circumstances: 
 

                                                 
9 Greedy distribution is used as a synonym for a distribution in which the probability of selecting a single 
action is 1 and those of the others are 0. 
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Note that κ  is the minimal difference between the largest and second largest Q-value, 
and due to the integer nature of the preferences, the difference is minimally 1. Also note 
that the maximal Q-value is unique. 

The minimal T for which the inequality (a) is satisfied will be referred to as Tmax 
(or exploration temperature) and the maximal T for which inequality (b) is satisfied will 
be referred to as Tmin  (or exploitation temperature) throughout the rest of the chapter. 
The proof of the theorem can be found in Appendix A. 
 
Property 3.3: In Theorem 3.2 (a) the denominator’s independent variables are 
restricted and cannot take any real value. If 1>εn , then the argument of the logarithm 
function is negative, so temperature values exist only on the set of complex numbers. 
 
However, if 
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is true, then the denominator of the inequality in Theorem 3.2 (a) becomes 
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, if 10 <≤ εn . εn≤0 is trivial, since neither the number of 

actions, nor an interval radius can be negative, 1<εn  is equivalent to 3.3. 
 

A key question is: given the conditions above, is there any T value satisfying the 
inequality of Theorem 3.2 (a), as well as minimizing ),( εnT . Constraint 3.3 can be 

rewritten as 1=+νεn , where ν  is a small positive redundancy variable, thus 
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Similarly, the  extreme value of the temperature expressed in Theorem 3.2 (b) 
can also be determined, thus the inequality of Theorem 3.2 (b) can be rewritten as: 
 

.
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(3.6) 

 
Note that using this simplification implies 2>n . 
 
Property 3.4: The computational cost of determining temperature bounds is )(nO  

where n is the number of alternatives in the unsorted preference-values case and )1(O  

in the sorted case. 
 

3.4 The continuous case 
 
Suppose that preferences and probabilities are not discrete values but functions of some 
other quantity. Thus, ]1,0[],[: →bap  and ],[],[: cbbaQ → , i.e. map real intervals to 

real intervals. Both functions are bounded, continuous10, and R⊆],[],,[ dcba . In this 

case the formula 
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also convergent (where ],[ bax ∈ ), as T goes to zero or infinity, and the temperature 

bounds are as fo llows: 
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Notice that )()(min yQxQ
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κ , and in the case of continuous functions 
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10 In the case of using Lebesque-integral instead of Riemann-integral, this restriction is even unnecessary, 
which also yields that ? is nonzero. 
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3.5 Illustration of the temperature bounds theorem 
 
Preference values of a 7-way example decision problem can be represented by a vector 
of preference values as follows 
 

{ }100,25,50,140,128,101,10=q .  
 
Temperature bounds for this problem are calculated by using equations (3.5) and (3.6), 
as 201max =T  and 5min =T . Figure 3.1 shows the probability distribution of this 

decision problem at temperature levels maxT  and minT . It is easy to observe that the 

probability distribution is almost deterministic around minT  and follows uniform 

distribution around maxT . Note that the example uses the simplified equations which do 

not require any error level. 
 
 

 
 

Figure 3.1 
Probability distribution of a 7-way decision problem 

 

3.6 Annealing schedules 
 
While the theorems in sections 3.3 and 3.4 establish temperature bounds, this section 
deals with the question how interpolation methods can be used for determining an 
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appropriate annealing schedule between these bounds on a given time horizon. A 
method based on differential equations will be introduced that transforms a 
parameterized temperature-time function to a recursive annealing schedule function 
which can be successively applied by the learning agent. Formula 3.10 shows the 
general iterative function 
 

[ ])()( 1 kk tTftT =+ , (3.10) 
 
where )(tT  denotes the time dependency of the temperature. Iterative application of 

3.10 is applied to descent temperature from maxT  to minT . 

First we show the general method, then, four special annealing functions will be 
derived: linear, exponential, quadratic and inversely quadratic annealing. 

3.6.1 General annealing method 

 
Given a parameterized function of temperature in the following form 
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where constants ic  are the parameters being sought, and )(tf i  functions are arbitrary 

continuous functions. 
The derivative of equation 3.11 is expressed as 
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In order to determine all parameters, preconditions must be set, such as 
 

jj TttT == )( , 1,...,1,0 −= nj  (3.13) 

 
where jT  is an arbitrary temperature value. Note that all jT  values are recommended to 

fall between maxT  and minT .  However, this is not vital, but as a direct consequence of 

Theorem 3.2 there is no reason to set any temperature value outside the bounds. 
For simplicity,  vector abbreviations are used. Let vector { }110 ,...,, −= nTTTt  denote all 

the temperature values set by boundary conditions in 3.13. Let { }110 ,...,, −= ncccc  denote 

the parameter vector, and let { })( ji tf=F  be the matrix of function values at 

110 ,...,, −nttt . 

Parameters can be determined by solving the following linear equation system: 
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Fct =  (3.14) 

 
thus if F can be inverted and F-1 denotes the inverse 
 

tFc 1−= . (3.15) 
 
Equation 3.12 is to be used to get an iterative annealing function: 
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Equation system 3.16 gives the general annealing schedule model. Simple methods such 
as linear or quadratic schedules are treated as special cases of the formula above. 
 

3.6.2 Linear annealing 

 
Equation 3.16 determines the general form of recursive annealing schedule. In practical 
applications polynomial functions are used. The simplest polynomial is the linear 
function interpolated between the points determined by startt , endt , maxT  and minT . 

The linear annealing function is given in the following form: 
 

01)( ctctT += , (3.17) 
 
where startt  denote the beginning of the annealing process, endt  denotes the end, 0c  and 

1c  are constants. The derivative equation with respect to variable t is as follows: 

 

1c
dt
dT

= . 
(3.18) 

 
The boundary conditions in this case are defined as follows: 
 

max)( TttT start == , (3.19) 

min)( TttT end == . (3.20) 
 

Substituting 3.19 and 3.20 into 3.17 yields 
startend tt

TT
c

−
−

= maxmin
1 . Equation 3.18 can also be 

rewritten as dtcdT 1= , that is the differential form of tcT ∆=∆ 1 . The later difference 

equation is used for writing the recursive form as follows: 
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3.6.3 Quadratic, inversely quadratic and exponential schedules 

 
Following similar reasoning as in the case of linear annealing, higher order polynomials, 
such as 
 

0)( ctctT n
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take the following recursive form: 
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Figure 3.2 shows different annealing schedules where 0
4

4)( ctctT += , 0
2

2)( ctctT += , 

01)( ctctT += , and 01)( ctctT += − when 1000max =T , 100min =T , 0=startt , 

150=endt . 

 

3.7 Variable preferences 
 
The annealing models we have shown so far assume that all preference values are 
constant. In real- life applications, however, this is not true, since preference values are 
allowed to change in time, as a result of learning. Varying preferences may also yield 
varying temperature bounds if the maximal, the second largest or the minimal values 
change. Since both maxT  and minT  are bounds, it is possible that the Boltzmann-

distribution defined by equation 3.1 may approach the greedy distribution at larger 
temperatures than minT  and uniform distribution at temperatures smaller than maxT  with 

error level of ε . If the temperature bounds are allowed to change in a hysteresis- like 
manner, the system is much more fault-tolerant, in terms of following the theoretical 
bounds much more accurately. 
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Figure 3.2 
Polynomial annealing schedules (equation 3.25) satisfying boundary conditions for 

different values of n 
 

In many cases temperature bounds may change significantly especially when 
extra large rewards or penalties occur. The fundamental rule of thumb in this case is that 
bounds must be changed in a discrete-valued manner, i.e. two versions of bounds are 
maintained: the original version and an actually computed version. Let the actual value 

of the upper bound be denoted by '
maxT  and the original value by maxT , and similarly for 

the lower bound: '
minT  and minT . The annealing schedule is always defined for the 

original temperature values, maxT  and minT . 

If the actually computed maximal temperature value '
maxT  grows beyond a 

certain limit, say, maxcT  where c is a constant, the new value of maxT  is set to '
maxT  and 

an annealing sub-period takes place. (The constant is referred to as re-scale factor.) The 
similar is true for minT . An annealing sub-period means  a new annealing process from 

the points determined by the new, varied temperature values and the current time, as a 
start point of the sub-period, and the original end-point. The re-annealing principle can 
only fail if one of the preference values grows significantly beyond that of the others at 
a larger pace than annealing could decrease the temperature. The rule of thumb for this 
case, which is in harmony with the way how the re-scaling automatically works 
anyway, is that if the preference of one action grows to a large value, the agent is 
convinced of selecting this action later in the exploitation phase, since it is significantly 
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better than the others. In this situation the decision-making agent  would not need 
annealing at all. 

In Figure 3.3 a linear annealing re-schedule is shown. maxT  is computed as 10 at 

the beginning, temperature re-scale factor on the maximum bound is set to 1.5, minT  is 

computed as 0.3, exploration time is set to 2/3 of the whole episode time. It can be seen 
that the temperature decreases linearly from time step 0 until time step 50. At this point 
preferences are modified significantly, which influences temperature bounds that are re-
scaled, i.e. increased over 1.5 times of the old value. Maximal temperature is set to 15 at 
this point and a new and quicker scheduling sub-period continues as the temperature 
reaches minT  at time step 66. 

 

 
 

Figure 3.3 
Linear re-annealing process 

 

3.8 Computational validation of the annealing model 
 
Although the annealing schedule model has theoretical roots, it is necessary to validate 
it. There is a famous test-bed in automata theory known as the “n-armed bandit 
problem” [R46]. 

Consider the following learning task: An agent faces to a decision problem in 
which there are n choices. Selecting one of the options results in a reward taken from a 
stationary probability distribution. The value of each choice is consistent, i.e. repetitive 
samples are taken from the same probability distribution, thus each decision result is 
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treated as a probability variable which is unknown to the agent. What the agent can do 
is to make estimates on these variables through trial and error. 

The bandit problem has practical interpretations as well: the n-armed bandit is 
the n-dimensional extension of the one-armed bandit slot machine. The agent selects an 
arm, makes a pull, then either he wins or he looses, in numerical terms, it receives 
reward of 1 or 0 (i.e. he makes a play). The goal is to find a “winner strategy” in which 
the agent maximizes the amount of rewards obtained through series of plays, episodes. 

The agent can basically do two things: if it has lots of pull opportunities, it is 
better to explore which options (arms) are better, and which arms are worse than the 
other ones. When he has not too many pulls remained, it is better to select the action 
that he thinks to be the best, it is better to exploit the knowledge. 

As a validation, a program written in C has been used for studying different 
action selection strategies and annealing schedules. Parameter setting of the test-bed is 
shown in Table 3.1. 
 
 

Parameter Value 
Number of actions 10 
Number of plays in an episode 100 
Number of episodes 10000 
Annealing method linear, polynomial annealing, 

variable temperature bounds 
 

Table 3.1 
Properties of the n-armed bandit test-bed 

 
The number of episodes is set to a large value in order to average individual differences 
and concentrate on the average behavior. All the results presented in the rest of the 
section are averages on successive episodes. Exploration/exploitation balancing works 
well if the number of plays is relatively large to the number of choices, in this case the 
pull number 100 is sufficiently larger than the number of choices 10. (Note that plays in 
this case function as time steps.) 

In Figure 3.4, comparison of different annealing schedules is shown. The 
continuous line denotes ε-greedy action selection schedule when ε is set to 0.1; the x-
axis denotes the number of plays and the y-axis denotes the development of reward 
obtained during the play. The line entitled by “boltzmann-t1-lin-fix” indicates 
Boltzmann distribution based action selection using fixed temperature bounds, linear 
annealing schedule and the whole episode was dedicated to exploration (i.e. the end of 
annealing schedule is coincident of the end of the episode). As another strategy “t1/10” 
indicates that only 10 percent of the episode is spent on exploration, and the rest of the 
time was spent on greedy action selection. Similar comparisons of different strategies 
can also be found in [R46]. 
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Figure 3.4 
Comparison of different annealing strategies, 0.1-greedy vs. Boltzmann action selection 

with different annealing schedule length 
 
It is easy to see that the reward development as well as the final sum of rewards is 
dependent mostly on the percent of time spent on exploration. 0.1-greedy strategy 
shows slightly better performance than random behavior on ave rage since the 
exploration was continuous (i.e. with percent of 0.1 the agent explore) and the gain was 
distributed linearly along the development of the reward. Increasing ε to 1 turns the 
system to totally random; decreasing ε to 0.05 gives better performance again. Note that 
pure greedy method is missing from the comparison since it is not considered be a “self-
initializing” method; the agent has zero initial estimates on the expected reward11 so 
“greediness” is desirable only at a later stage. 

Boltzmann distribution action-selection, that spends the whole time on 
exploration, gives better results than 0.1-greedy method, but only from the middle of the 
episode. The reason why is that it explores too much of its time, and the agent starts to 
use its knowledge only at the end of the period. 

Boltzmann selection having half-time exploration slightly diverges from the 0.1-
greedy reference approximately from the middle of the episode. At this point the 
behavior of the agent gradually turns from exploration to exp loitation, and while it gives 

                                                 
11 If greedy algorithm is used with zero initial values, the average behaviour turns to be random, since 
further selections are dependent on the first one. 
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similar results to random behavior in the first half, the agent uses its knowledge to 
perform better and give better final reward in the second half. 

The curve entitled by “boltzmann-t1/10- lin-fix” shows that asymptotically the 
same amount of reward development can be gained, but only at an earlier stage when 
exploration finishes at 12-15 percent of the whole time. This also results in a better final 
reward, since exploration stops at an earlier stage and the agent chooses the best action 
more times. There is an important remark here: Within a certain time-interval the 
resulting reward is not significantly influenced by the length of the exploration period 
(Figure 3.5), but there exists an exploration time at which the resulting reward is 
maximal and this point is around 10 percent of the episode time in this example, that is 
the proportion of episode plays to the number of choices. 
 
 

 
 

Figure 3.5 
Maximal reward vs. exploration time diagram. The maximal reward can be obtained 

when exploration time is around 10 percent of the whole episode time 
 

In Figure 3.6 the same annealing schedules are shown as in Figure 3.4, but using 
variable temperature bounds. The temperature re-scale factor is set to 1.5 for maxT  and 

0.75 for minT , i.e. T is re-adjusted when it grows above max5.1 T  or drops below min75.0 T . 

It can be seen that the resulting rewards are better for longer exploration periods as well, 
than those of fixed temperature bounds. In the case of full- time annealing (exploration 
during the whole episode) with fixed temperature bounds, the test produces final reward 
of 52, while using the same schedule, but variable temperature bounds it produces 
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around 56. And similarly halftime-exploration annealing schedule (denoted by “t1/2”) 
that uses fixed bounds produces sum of reward of 65, while that uses variable bounds 
produces results above 67. A reasonable explanation for the phenomenon is that the re-
annealing “shakes-up” the system. 
 
 

 
 

Figure 3.6 
Annealing schedules us ing variable temperature bounds 

 

3.9 The use of Boltzmann distribution in other fields 
 
Using Boltzmann distribution in machine learning algorithms has been popular in the 
late 1990s. Apart from reinforcement learning, there are two other fields where 
Boltzmann distribution is used: genetic algorithms (GA) and ant colony systems (ACS). 

In [R22] a novel genetic algorithm is proposed which operates on closed 
population and aims at finding the global extremes of the fitness function of population 
elements. A probability value is assigned to each population member, which forms 
Boltzmann distribution over the whole population set. An annealing schedule is used for 
replacing the existing probability distribution to a new one, which is also a Boltzmann 
distribution. The new distribution increases the average fitness, thus giving better and 
better population. 

Decision problems also appear in ant colony systems, where an agent (in this 
case it is called ant) faces to either follow a known trail reinforced by other ants, or to 
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choose a different path in every time step. Each available path, from node i to node j, a 
probability value is assigned to a trail as follows 
 

∑
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(3.26) 

 

where ijτ  is the strength of the trail on the path, ijη  is the visibility factor and a, ß are 

control parameters. As an alternative to equation 3.26 a two-dimensional Boltzmann 
distribution can also be used: 
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In equations 3.26 and 3.27 a and ß are referred to as “inverse temperature” parameters. 
 

3.10 Discussion 
 

In this chapter a simulated annealing concept tailored to reinforcement learning 
was shown. The agent’s decisions are performed as a result of a random action selection 
based on a Boltzmann distribution. The nature of the decision is determined by a single 
control parameter called the temperature. It was shown that there are two characteristic 
distribution types exist with respect to the value of the control parameter, greedy and 
uniform distributions. We have shown that both can be approached with a sufficiently 
small error using finite temperature values; theoretically grounded estimations of these 
bounds were given. 

The agent’s decision making policy can be modified by varying the value of the 
control parameter in the determined temperature range marked by temperature bounds, 
either manually or in a dynamic way, by applying annealing schedules determined by 
temperature bounds and an annealing/exploration time period. The general annealing 
framework and the derivation of simple schedules have also been shown. The whole 
model was validated on the popular “n-armed bandit problem” and was found to 
perform better than any other schedules. 
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Chapter 4 

Internet Protocol Packet Routing Algorithms 
 
 
 
This chapter gives an overview on dynamic IP routing protocols such as border gateway 
protocol, routing information protocol, or open shortest-path first protocol. Some 
features, advantages as well as shortcomings will be outlined, and then a different 
routing concept, which is called agent-based routing, or Q-routing, will be introduced. 
We show a combined Q-learning and simulated annealing algorithm which uses 
temperature bounds to Internet Protocol (IP) packet routing to remedy two problems of 
the original Q-routing: patch recovery and loop detection. 

There are three papers on which the results of this chapter are based on: [P4], 
[P5] and [P8]. 
 

4.1 Introduction 
 
Internet Protocol (IP) Packet Routing, or just simply routing, which is a crucial part of 
Internet data transfer processing aims at providing transparent packet delivering service 
to applications. The term routing can be defined following Tannenbaum [51] as the task 
of delivering data packets from one computer host to another one through one or more 
intermediate nodes in finite time steps. If there are no intermediate nodes the data 
delivery task is simply called switching or bridging. The host that initiates delivery is 
called source node, the host that receives data is called sink or destination node. 
Network nodes are identified by unique addresses, in case of IP version 4 network, by 
32-bit IP-numbers. 

Routing is a compound task and it consists of three basic building blocks: 
shortest path determination, routing table maintenance, and IP packet forwarding at 
network level. Figure 4.1 shows the place of the routing process in the operating system 
(OS) architecture. 

IP routing is based on IP packet forwarding, which refers to the process of 
placing data packets from one network interface connection (NIC) to another one, is 
basically carried out by the communication protocol stack of the OS kernel. In the 
figure arrows indicate this process. IP-forwarding is carried out with respect to well-
defined routing rules which are summarized in kernel- level data structures, so-called 
routing tables. Routing tables which hold information about the known network 
topology can either be manipulated by hand or by user level applications (indicated by 
BGP, OSPF or RIP blocks in Figure 4.1). Entries in the table implement simple rules: 
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they assign an outgoing interface to each possible destination entities. Basically there 
are two kinds of entries: network entry and host entry. A network entry is identified by 
the IP address-range in network-address/subnet-mask form, a host entry is a unique IP-
number without any subnet-masks. Figure 4.2 shows typical routing table entries in 
UNIX operating systems. (A more detailed routing table example of a Cisco router can 
be found in Appendix B.) The example routing table joins two networks, 192.111.1.0/24 
and 192.111.2.0/24, together. The first two entries tell the kernel to send packets that 
have destination address of 192.111.1.x to the Ethernet device named eth0 and send 
packets belonging to 192.111.2.x to device eth1, to the other side of the router. There is 
also a “default” line that gives default direction to those packets that belong to neither of 
the previously specified networks. 
 
 

 
 

Figure 4.1 
Routing processes in the operating system 

 
 
 
 
 
 
 
 

Figure 4.2 
Routing table entries in UNIX operating system 

 
If the default line is missing or the packet does not match any of the rules, it is simply 
dropped. IP-forwarding is just a mechanical task that does not require any knowledge on 
the real network topology; it is just a sequence of simple matching and switching 
operations. 

Those routing algorithms, for which routing table entries always remain the 
same, are referred to as static routing or non-adaptive routing algorithms. Static routing 

Destination   Netmask        Gateway         Flag  Interface 
-----------   -------        -------         ----  --------- 
192.111.1.0   255.255.255.0  192.111.1.254   G     eth0 
192.111.2.0   255.255.255.0  192.111.2.254   G     eth1 
default                      192.111.3.1     G     eth2 
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can be applied whenever the network topology remains stationary or changes may occur 
only under full administrative control. 

On the other hand, there is another class of algorithms named dynamic routing 
algorithms, which let the routers exchange link or address information with each other 
on the application level. These algorithms are allowed to make modifications in the 
routing table with respect to the routing information received, thus allowing adapting to 
changes in network topology. Information exchange is performed through specified 
routing protocols that describe exactly what information the neighboring routers 
exchange. The exchange communication is usually performed over the network layer by 
user level background processes. The routing table is a shared resource in the sense that 
multiple routing algorithms may operate on the same table at the same time: most of the 
routing daemons tag rules they last inserted or modified. Specific network appliances 
allow the usage of multiple routing tables in order to create isolated private networks. 

Dynamic routing algorithms store routing information in a separate, user- level 
database on which they carry out computations. No intermediate rules are permitted to 
enter the routing table; only secure rules are registered. 
 

4.2 Principles of dynamic routing algorithms 
 

4.2.1 Classification and metrics 

 
Tannenbaum in [R51] classifies dynamic routing algorithms by using various criteria. 

Single-path algorithms determine a single path to the destination node, while 
multiple-path algorithms use multiple routes to the same destination, thus letting 
multiplexing of IP-packets. 

Flat algorithms use a single level of hierarchy, each router knows about each 
other. Hierarchical routers define special network areas, or autonomous systems (AS) 
that belong to the same administrative domain. Routers, which are responsible for 
exchanging packets between autonomous systems, are referred to as backbone routers or 
edge routers. Edge routers may build up a backbone topology for backbone information 
in separate routing data structures as if the backbone topology was a separate network. 
Outgoing packets coming from non-backbone routers are directed to the backbone 
router where it leaves the AS. Intra-domain routers are allowed to recognize routers 
within the same AS only. 

Routing algorithms may use many distance metrics when calculating the best 
route, which are as follows: path length, reliability, routing delay, bandwidth, and load 
[R40]. 

• One of the simplest metric is the cost va lue assigned by network administrators 
to each link. The sum of costs along a route traversed is used as path length. A 
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special case is when unit costs are assigned to each traverse through a router: 
hop counts indicate how many network devices the packet has passed through. 

• Reliability can also appear as a metric. Some network links may be down more 
often than others. Similarly, after a failure some links are repaired faster than 
others. The reliability of each network device can be measured numerically by 
an error ratio. 

• Routing delay refers to the total length of time needed to transport a package 
from the source to the destination. Delay actually is a compound metric since it 
may be influenced by many other factors, such as bandwidth, congestion rate, or 
physical distance. It is a common and useful metric in practice. 

• Bandwidth refers to the maximal available traffic capacity of a network link. 
Larger bandwidth does not necessarily mean larger transport speed. If, for 
example links with large capacity are busy it is reasonable to choose a link that 
has lower bandwidth, but is less busy. 

• Load metric measures how busy the neighbor router is in terms of CPU-load, 
memory- load or packet- load. 

 

4.2.2 Design goals 

 
There are several design goals that a routing algorithm must fulfill. During years of 
operation the network topology may change, links can go up and down hardware or 
software errors may occur, but the whole network must operate robustly, without any 
single point of failure12 [R51]. The properties are as follows: simplicity, robustness, 
convergence, flexibility and optimality. 

Optimality in the definition of Pierre et al. in [R34] refers to the capability of 
finding the best route from the source node to the destination with respect to a specified 
metric. Optimality may also be defined as reaching the maximal throughput [R40]. 

Simplicity matters in two ways: firstly the algorithm must utilize as little  
software resources as possible to be efficient. Routing decisions are made for every 
packets or group of packets13, so there is no place for any software or hardware 
overhead. Secondly the larger the algorithm, the greater the probability of having bugs 
inside. 

Robustness refers to the capability of the algorithm to behave in the expected 
way even under unexpected or unforeseen circumstances, such as hardware failures, 
large load conditions. Routers have central role in a network, so if they fail, the whole 
AS may break down. 

                                                 
12 The term single point of failure is used to refer a single critical point in the system: if the single point 
damages, the whole system breaks down. 
13 When routing or switching decision is made for a sequence of packets with common source and 
destination it is called flow-based switching. 
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Convergence refers to the agreement among different routers on the best routes. 
The speed of convergence is also a crucial issue. If, for example, a link goes down, all 
other routers must be informed as soon as possible, to keep their routing tables in 
consistent state. Corrupt routing tables may cause loops, or improper delivery. 

Routing algorithms should also be flexible that means to quickly adapt changes 
in the environment. In case of link failure the algorithm must quickly divert the traffic to 
the second best route. 
 

4.2.3 Distance-vector algorithms 

 
Distance-vector algorithms were one of the first algorithms used in the early ARPANET 
and Novell IPX systems. They are also called Bellman-Ford or Ford-Fulkerson 
algorithms for the honor of its developers Bellman, Ford and Fulkerson. 

Distance-vector algorithms are based on the following principle: each router 
maintains a table, or more precisely a vector indexed with each possible destination 
routers and stores known distance values as well as neighbor identifiers that provide 
route to them. Each router knows only which neighbor will take the packet closer to the 
destination. The distance from the immediate neighbors is measured directly by special 
“hello” packets. After receiving routing table information update from the neighbors, all 
entries are checked, and if a neighbor provides better route to the destination, than the 
one which is already known, the routing table entry is updated. Operation of the 
algorithm is illustrated in Figure 4.3. 
 
 

 
 

Figure 4.3 
Network example of distance-vector routing. Numbers on edges indicate distance, in 

terms of some metric weights, e.g. packet delays 
 

In the example, routing information is exchanged in neighbordistancendestinatio ,,  

triples, which carry the distance information to the destination via a certain neighbor. 
For example the full routing table of node A at the beginning can be written as 
 

{ }∞−∞−= ,F,,,,C,,AT EE,1,,DD,1,BB,1,,??,0,)(   
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where A knows the distance to its direct neighbors, and knows no route to nodes C or F. 
It is a trivial assumption that it knows a route to itself. (The router and all immediate 
neighbors are highlighted by bold letters.) Similarly tables for nodes B and E are as 
follows: 
 

{ }∞−∞= ,F,,D,-,BT EE,1,,,CC,2,,BB,0,,??,1,)( ,  

{ }FF,1,,EE,0,,DD,1,,CC,1,,BB,1,,??,1,=)(ET .  

 
Suppose that router B sends table update to router A. Router A adds the 

measured distance value to B (which is 1) to all distances sent by router B, and 
compares the new values to the old ones, if they provide smaller distances. There is no 
improvement for entries A and B, but B knows a route to C with distance value of 2. So, 
router A registers router B to be the next hop toward router C and the estimated distance 
is 3. Note that B still does not know anything about router F, so the corresponding entry 
remains untouched. Also note that router A still has not sent its routing table to router B 
so B’s entries also remain untouched. Router A’s resulting table is thus: 
 

{ }∞= F,-,,,BC,3,,AT EE,1,,DD,1,BB,1,,??,0,)( .  

 
Suppose that router E also sends its routing table update to router A. Router A 

checks the table received in the same way as before and finds that a better route exist to 
router C via node E rather than via node B. It also finds a route to node F, thus entries 
for nodes C and E in the routing table of node A are updated resulting: 
 

{ }EF,2,,,EC,2,,AT EE,1,,DD,1,BB,1,,??,0,=)( .  

 
Although the distance-vector algorithms function well in theory, they have a 

serious practical drawback: they converge to the correct routes, but they do it slowly. 
Good news, i.e. a link is up, spread over the network at the speed of 1 hop/exchange, but 
bad news, such as some routers or links have been damaged spread over much slowly. 
Tannenbaum refers to this problem as counting- to-infinity [R51]. Since all routers must 
rely on the information received from its neighbors, and this is the only source of 
information from indirect nodes, it is possible when a router goes down, one of its 
neighbors may receive information exchange packets from those routers that are not 
directly connected to the damaged routers (say, from an indirect router) establishing 
routes to the damaged router via its direct neighbor. The neighbor router does not take 
into account that the route, which may be proposed by the indirect router, is actually a 
route that traverses via itself, and adjusts its routing table to have a longer route to the 
damaged router via the indirect router. This yields loops in the delivery as well as 
causes improper transmit rules. Several solutions exist to solve counting-to- infinity 
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problem. The most popular one, though it also fails in some situations, is the split 
horizon model. The essence of split horizon is to send infinitive distance from router A 
on those outgoing lines which are used for reaching router A thus preventing the farther 
router from giving misleading information. The indirect neighbor, in this case, naturally 
says infinitive path length to the direct neighbor about the damaged router, so the router 
can be recognized as unreachable. 
 

4.2.4 Link-state algorithms 

 
Link-state algorithms are conceptually different from distance-vector algorithms. They 
were used in late ARPANET system and are widespread in contemporary commercial 
software products as well. 

Link-state algorithms also operate by topology information exchange over the 
network protocol, but not the whole topology is exchanged, just portions of it. Each 
router reports state information about its links, neighbors, and delays. Link information 
is then forwarded throughout the network without any modification by intermediate 
nodes, and finally all nodes receive information on all other nodes and their links. Then, 
the topology on all routers can be built up using the information portions, and shortest 
path calculations can be executed to determine the best routes [R51]. 

The first task a router should do is to discover all of its neighbors. This is done 
in a similar way as in the case of distance-vector based algorithms, using special “hello” 
packets. Further, each router need to have a unique identifier (which is not necessarily 
the IP address, but a protocol dependent number commonly provided by the 
manufacturer) that helps to identify all routers on all possible nodes of the network. 
Then the line costs are measured using Internet Control Message Protocol (ICMP) 
“echo” packets. Measurement can either be load dependent, or independent, which is a 
configuration issue. For the sake of precise results, it is common to repeat 
measurements and take the average on all measurements. 

When a router knows the distances to all neighbors it builds link-state packages 
that basically consist of the identifier of the sender, and all neighbors, and also the 
distance among each node pair. For example, in the network shown in Figure 4.3, router 

A may send a packet like { }E,1,D,1,B,1AL =)(  or router F { }E,1,C,1FL =)( , 

which are relayed by other routers, so all routers receive them. 
Link-state packages can be sent not only periodically but whenever some event occurs, 
thus preventing the network from unnecessary communication burden. 

The most crucial part of any link-state routing algorithm is how the packets are 
distributed. Routers that are closer to the sender may receive link-state packets earlier 
than those are being farther from it, which may also lead to loops, inconsistent routing 
databases, or unreachable network portions. Basically flooding is used for distribut ing 
link-state information with some extensions: a counter that functions as a timestamp on 
each packet is maintained by each router. If multiple packets are found which have 
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identical timestamps, one of them is dropped. If several packets are received from the 
same node, the older packet is dropped. There is an auxiliary life field in each packet, 
which is decremented in every minute. When the life of a packet reaches a threshold 
value, it is simply dropped. 

Whenever a link-state packet is received, it is not immediately relayed, but it is 
stored for some time in a queue to let some further checks be carried out. When no 
packets are received, packets still in the waiting queue are sent over. 

When enough link-state information is gathered, each router can build the model 
of the whole network topology. In order to determine the source spanning tree of the 
network, i.e. a tree graph structure which contains the shortest paths to other nodes, 
shortest-path computations are carried out.  Such an algorithm is Dijkstra’s algorithm 
(see section 4.4). The tables are updated with respect to the results of the shortest path 
computations. 
 

4.3 Dynamic routing protocols 
 
Dynamic routing protocols refer to the implementation of routing principles. Routing 
protocols should not be mixed up with routed protocols. While the former refers to data 
structures and algorithms responsible to computations finding the best way to a 
specified destination, the latter refers to protocols routed over the network. Typical 
examples to routed protocols are IP, IPX, Novell NetWare or DECnet. The most 
popular routing protocols are discussed in the following. 
 

4.3.1 Routing Information Protocol 

 
Routing Information Protocol (RIP) was the first routing protocol used in networking.  
The protocol specification was proposed by Hedrick. RIP is basically a distance-vector 
algorithm that uses hop count as a metric. In order to avoid routing loops RIP sets a 
limit on hop counts, which is a defined number, 15, so any routing entry that informs 
about destination farther than 15 hops are considered invalid or unreachable. 15 is also 
the maximum network diameter14 that can be scanned by a RIP router. The real 
advantage of the limitation is that the protocol is very robust. 

Routing updates are scheduled at regular intervals with a small amount of added 
perturbation in order to avoid network congestion. Only the best routes are considered 
to be valid, all “second best” entries are dropped. Each entry has also got an own timer 
which makes old entries to be invalid, when a certain time threshold is exceeded. 

                                                 
14 The term diameter is used to refer to the maximum distance that can be achieved on the network in the 
networking literature. Since it is measured from the current host, the term radius would be more 
expressive. 
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RIP uses IP addresses for identification. RIP2, which is an update version of the 
protocol, allows storing not only host entries, but network entries in the routing table as 
well. There is also a special tag that enables to distinguish rules learned by RIP and 
rules learned by other protocols. The full specification of RIP can be found in [R14]. 
 

4.3.2 Interior Gateway Routing Protocol 

 
Interior Gateway Routing Protocol (IGRP) is also based on distance-vector routing 
updates, such as RIP but differs from it in many ways. IGRP stores data in separate 
structures such as: neighbor table, topology table, feasible successors table and routing 
table. 

Each neighbor has an entry in the neighbor table containing identification and 
distance information. For distance metric in IGRP a 5-dimensional vector is used. 

Topology table contains all possible destinations advertised by neighboring 
routers. It is also an important difference from RIP that for each destination node a list 
of neighbors is stored which advertise routes to that destination, thus less appealing 
routes are also stored. Those advertised routes that have smaller cost values than the one 
currently used to transport packets are considered to form the set of feasible successors 
for that target. Whenever a route becomes unusable the set of feasible successors is 
sought for a new route. If the set is empty, the route to the destination turns into active 
state, which means that route recalculation is carried out by a special DUAL finite state 
machine. DUAL guarantees to compute loop-free routes and forms a new set of 
successor states, as well as updates the routing table. 

Though update-packets are sent regularly, routers may initiate an update request 
to their neighbors. This is typically done when a route becomes active. 
Like advanced RIP protocols, IGRP also use tagging to distinguish rules that have been 
added by the IGRP protocol (internal routes) and rules that have been inserted by 
another algorithm. More details on IGRP can be found in [R38]. 
 

4.3.3 Open Shortest Path First 

 
Open Shortest Path First (OSPF) is a link-state algorithm based routing protocol. As its 
name prompts, OSPF is an open standard, thus all specifications are available in [R29]. 
OSPF is designed to work in different levels of hierarchy. Different areas can be defined 
within an autonomous system that can be connected by an area backbone which is also 
an OSPF area. Routing information concerning to different levels of the hierarchy are 
separated from one another in different data structures. The backbone network topology 
is invisible at lower levels of the hierarchy. 

All neighboring routers that have synchronized link-state databases are adjacent 
routers. Each router periodically sends link-state advertisement on adjacency 
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relationships to inform other routers on certain part of the topology. As it is usual in 
link-state algorithms, from all received and feasible advertisement a topology database 
is built up on each router which is used by a shortest-path algorithm to compute the 
spanning tree with itself as a root node and determine the best next-hop to each possible 
destination. 
 

4.3.4 Border Gateway Protocol 

 
Border Gateway Protocol (BGP) is an exterior protocol that is used for rout ing between 
autonomous systems. There is a slight implementation difference between interior 
protocols (such as all previous ones) and exterior protocols. The latter should be capable 
to advertise lots of network entries, and should be capable to synchronize and keep 
routing database in consistent state even if the autonomous system has more than one 
exterior gateway. 

BGP runs over a reliable transportation protocol, typically over TCP, which 
eliminates the need to implement explicit update fragmentation, retransmission, 
fragmentation and sequencing. BGP may be implemented on computers that do not 
route at all; any host using BGP is permitted to relay BGP information. 

Each BGP router holds an active connection with its peers on which it 
periodically sends keep-alive messages. If the connection is closed for some reason, all 
the routes toward the closed connection are also invalidated. No deletion takes place, 
since it is needed to send information on invalid routes over the network, to let other 
routers know, which particular links are down. At the beginning of the BGP connection 
full routing information is exchanged; later only change updates are reported. BGP can 
aggregate rules in order to allow compact routing tables. 

BGP can work in hierarchy as well. The fundamental BGP specification is 
written in [R39]. 
 

4.4 Shortest-path computation 
 
Shortest-path computations are executed in any of the link-state algorithms whenever 
enough information is gathered about the network topology. Following the notation of 
Ahuja at al. in [R1], network topologies are represented by directed graphs having the 
following assumptions: 

• All metrics are represented by positive integers. 
• The graph is connected; that is every node has a directed path to every other 

node. 
• No negative cycles are present15. 

                                                 
15 This assumption comes from the nature of the application, as well as the definition of the metric. 
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• Bidirectional links are treated as double edges in the opposite direction. 
 
Algorithms that determine shortest-path among network nodes are referred to as 
shortest-path algorithms and can be classified into label setting and label correcting 
methods. Both use labeling technique to indicate the minimum distance from the source 
node, as well as the predecessor node, through which the shortest distance is achieved; 
both algorithms are proved to be convergent to the optimal solution. Distance labels are 
upper bounds on minimum distances, and are updated in interactive steps. Label-setting 
algorithms divide the set of nodes into two subsets: temporarily labeled nodes and 
permanently labeled nodes. As the computation advances, the number of permanently 
labeled nodes grows until all nodes are labeled as permanent. At this  stage the algorithm 
terminates. Label-correcting algorithms sign all nodes as temporary, and it is possible to 
modify all the labels at any stage. Label-setting algorithms are simpler than label-
correcting algorithms and have smaller computation cost. However, label-correcting 
algorithms can be applied to a broad range of problems, such as negative cycle-
detection, and offer much more flexibility [R1]. 
 

4.4.1 Dijkstra’s algorithm 

 
One of the simplest and most popular methods of label-setting algorithms is Dijkstra’s 
algorithm which is used for finding the shortest path between a particular source node, 
and all other nodes, thus forming a spanning tree which has the root in the source. The 
algorithm initializes labels on the source node to zero distance and void predecessor and 
any other nodes to infinitive distance and unknown predecessor. A neighbor node is 
then selected with the lowest label value as an initial step. Labels are denoted by 

rom_sourcedistance_fnoderpredecesso ,_  tuples. The selected node is examined by 

an optimality criterion, whether ijij cdd +>  is true, where id  is the distance from the 

source to node i (the source-source distance is labeled as 0), jd  is the distance from the 

source to node j, and cij denotes the distance between nodes i and j. If the label on node j 
is larger than the new path which is found via node i, the distance on j is updated to 

ijij cdd +=  and the predecessor of node j is marked to i. If the condition is false, then 

no action is performed. Figure 4.4 gives a formal algorithmic description where ipred  

denotes the predecessor node of i in the shortest path. An illustrative example is shown 
in Figure 4.5. 
 
Property 4.1: The computational cost of Dijkstra’s algorithm is proportional to )( 2nO  
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Figure 4.5 

Example to how Diskstra’s algorithm works. Nodes belong to set S are denoted by grey. 
The two final steps are abbreviated in a single pane, pane (e) 
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Figure 4.4 
Formal description of Dijkstra’s algorithm 

 

4.4.2 Floyd-Warshall algorithm 

 
Floyd-Warshall Algorithm (FWA) belongs to the class of label-correcting algorithms. It 
solves the all-pairs shortest-path problem, i.e. it determines shortest path from every 
node to every other node. As general label-correcting algorithms FWA scans through 
the set of edges to find nodes for which the optimality equation discussed at Dijkstra’s 
algorithm is hurt. The basic idea of the algorithm is the assumption that all the distance 
labels between two arbitrary nodes are either updated in every time step or left 
untouched depending on the existence of any intermediate node, that makes a shortcut. 

Let k
ijd  denote the distance between nodes i and j provided that k-1 intermittent nodes 

are involved in the path. FWA initializes 1
ijd  with distances cij, if link exist between i 

and j, or 8 if it does not. 

The value of 1+k
ijd  is computed using the following recursive rule 

 

{ }k
kj

k
ik

k
ij

k
ij dddd +=+ ,min1  (4.1) 

 
where k goes from 0 to n+1. The rule is valid since the shortest path that uses nodes 1, 

2, …, k as internal nodes either miss to go through node k ( k
ij

k
ij dd =+1 ), or does pass 

through node k ( k
kj

k
ik

k
ij ddd +=+1 ) [R1]. 

Figure 4.6 shows Floyd-Warshall algorithm. In the case of all-pairs shortest-path 
problem precedence relations among nodes in any path is stored in the ijpred  matrix. 

input: N set of nodes, E set of edges, s source node 
input: A(i) the nodes available from node i, c[i,j] distances 
output: labels on all nodes, pred[i] vector 
initialize set S:=ø; S’:=N; d(s):=0; d(i)=8; for all other nodes; 
initialize pred(s):=null; 
function Dijkstra(N,E,c) 
begin 
  while |S|<n do do 
    let node i∈S’ be the node with the smallest label value 
    S:=S+{i}; S’=S’-{i}; 
    for each (i,j) ∈A(i) do 
      if d(j)>d(i)+c(i,j) then d(j)=d(i)+c(i,j); 
                               pred(j):=i; 
      end 
    end 
  end 
end 
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From this matrix the shortest-path between all sources and destinations can be 
determined by pointing on the destination node, and traverse in backward order. It is 
shown in [R1] that: 
 
Property 4.2: The FWA computes the shortest distance between all nodes at the cost of 

)( 3nO . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6 
Floyd-Warshall shortest-path algorithm 

 
 

4.5 Reinforcement learning based routing 
 
Although current dynamic routing algorithms are wide-spread, and robust enough, they 
have some shortcomings to deal with as it is pointed out by Littmann and Boyan in [R6]. 

Both distance-vector and link-state algorithms implement a naive approach: the 
routers exchange reliable information over the network layer with one an other, thus, all 
information must be confident and consistent. Especially link-state algorithms are 
sensitive to inconsistencies, since all routers maintain the model of the whole topology, 
and if, for some reason, different routers process the same link-state information 
different ly, it may lead to unavailable network portions or loops. The problem would 
disappear if there was a global observer which could keep the topology maps in 
consistent state and tell the packet the optimal path all the time. However, in networking 
technology there is no global observer, and decisions should be made on the basis of 
local information. Global information (or parts of global information) is produced by 
periodical or if-needed information exchange at the price of a definite communication 
cost. Consider a distance-vector algorithm: for small networks the routing tables are 

input: N set of nodes, E set of edges 
input: c(i,j) the known one-step distances between nodes 
output: labels on all nodes, pred(i,j) matrix 
initialize for all i and j d(i,j):=8; pred(i,j):=null; 
initialize for all nodes i d(i,i):=0; 
initialize for all edges d[i,j]:=c(i,j); 
function Floyd_Warshall(N,E,c) 
begin 
  for k:=1 to n do 
    for each edge (i,j)∈E do 
      if d(i,j)>d(i,k)+d(k,j) then 
        d(i,j):=d(i,k)+d(k,j); 
        pred(i,j):=d(i,k)+d(k,j); 
      end 
    end 
  end 
end 
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relatively small, so periodical exchange is feasible at sufficiently low communication 
cost, but in the case of large networks exchanging full routing tables may consume 
considerable amount of time. 

Global information can be obtained in smaller chunks as well, forming the 
concept of a new routing model called preference-based or agent-based routing. The 
basic idea of preference-based routing is similar to distance-vector algorithms: all 
routers use the estimation of their neighbors on how far the destination is plus the direct 
distance to the router. The difference is, that instead of transportation-layer information 
exchange, the estimated delivery times are determined by trial and error probes, thus 
each router has a realistic, on-line estimate on the delivery times, which also gives the 
possibility of adapting to topology changes. Each node maintains a preference table, 
which is called Q-table, assigning estimated delivery times to each destination-next hop 
pair. The estimates are updated each time the router sends a packet to one of its 
neighbors. As the node routes packets, preference values gradually reflect more and 
more accurate model of the global network topology. 

Preference-based routing is formed on the basis of reinforcement learning. Each 
router is treated as an intelligent agent that makes routing decisions on the basis of 
estimated delivery times and gathers reinforcement signal proportional to the quality of 
routing16 from neighbors or from possible destinations each time a packet is sent. 

To formulate the routing problem as a reinforcement learning problem, first the 
states, actions, and reinforcement functions are to be defined. In the case of routing 
states are identified simply as destination nodes [R6]. Note that the real state identifier 

is a triplet: identifierpacketndestinatiosource _,, . 

 
Property 4.3: The state of a router agent can be uniquely identified by the source, the 
destination nodes and the packet identifier. 
 
In each delivery step the router may decide which neighbor to send the packet to. It is 
reasonable to define selected next-hop neighbors as actions. When the packet arrives at 
the neighbor, it immediately sends two pieces of information back to the sender: the 
neighbor’s estimation on the delivery of the packet to the destination and implicitly a 
reward signal. When the packet is sent, a timer is started, which stops when the 
acknowledgement is received from the neighbor. Various functions of the time 
difference are then used as a reinforcement feedback. The estimates are updated by the 
following rule: 
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16 The quality of routing may refer to constraints on different additive or non-additive metrics as well as 
to the confidentiality of data delivery. 
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Here ),( adQ s
k  denotes the actual node’s estimate on the delivery time to destination d 

in time step k, when selecting neighbor a. Learning-rate is denoted by α , discount rate 

is by γ , and the delivery time estimation of neighbor a by )',(' adQ s
k  where 'a  the next 

hop after the next hop. Note that instead of maximization, minimization is used due to 
the interpretation of the Q-values: estimated delivery times; the shorter they are, the 
better the delivery is. 

Although both denote the same thing and for the environment dynamics, 
a

s
a

ss PP =' , there is a semantic difference between a and 's : while the former means 

“send this packet out on a certain interface”, the latter means “the packet has arrived at 
the neighbor, and it has sent an acknowledgement”. From the routing point of view 
there is no reason to distinguish between the two terms, since local network interface 
problems are as wrong as remote machine breakdown with respect to the packet flow. 
Note that the preference values are distributed among all routers. Also note that if all 
tables from all nodes would be put together the resulting table, which would specify 

states as ndestinatiosource,  tuples, will be a large preference table of the whole 

network, and slightly modified update rule of equation 4.2 could be used to operate on 
it. Following the work of Watkins and Dayan [R59] it is easy to see that such Q-values 
converge to the optimal estimated data delivery times under certain conditions. In the 
routing case, this large Q-table is stored in smaller chunks on the different nodes, and 
joining them is carried out by network communication. Since, the distributed nature has 
no effect to the convergence, the following property is true : 
 
Property 4.4: The distributed Q-learning algorithm that uses equation 4.2 as update 
rule retains convergence to the optimal Q-values. 
 

Q-routing algorithms can be boosted up by dual Q-routing, when not only the 
next-hop node sends estimation about the delivery time to the destination node, but the 
source itself sends an update to the next-hop to adjust delivery times from the source, as 
it is a potential destination to other packets. The next-hop node forwards this 
information along the path. The method is also called backward exploration and details 
can be found in [R21]. 

There are many appealing properties of distributed preference-based routing, but 
several questions are still open: Which neighbor to choose at the initial steps? How 
cycles are detected and avoided? How good news and bad news traverse along the 
network? The basic model does not deal with these questions, so an extended version is 
proposed in the next section. 
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4.6 Proposed extensions 
 
In this section we give some proposal to the original Q-routing algorithm worked out by 
Littmann and Boyan, and we give the framework how Q-routing algorithm can be 
integrated with Boltzmann-annealing to remedy most of its original shortcomings. The 
new routing algorithm is referred to as extended Q-routing. 

If a node is considered as an intelligent agent and it enters the system, it has no 
knowledge about the network topology. In this scenario, the expected behavior of the 
agent is to make some explorative steps around the neighbors. This can be 
accomplished by selective flooding, where “selective” refers to be selective in time. 
When the agent has gathered information enough, or has no more time to explore, it is 
expected to start using one of its discovered routes to transport packets to the desired 
destination. The proposed method how the agent focuses on the best route is using 
Boltzmann exploration, which either gives equal chance to all neighbors or it is 
discriminative i.e. use only the best neighbors to a given destination depending on a 
single control parameter named temperature. For each destination an individual 
temperature value is assigned that controls the “sureness” of the data delivery toward a 
particular node. Separate temperatures allow distinguishing between destinations, so 
there may be destinations to which firm routes are used, and destinations toward the 
delivery is under exploration. 

Router table initialization can be boosted up by initial communication with the 
neighbors. Whenever a router is new to the network, it first sends “hello” messages to 
the other routers which in turn send the list of possible destination nodes back. The new 
router is then registers its neighbors, initializes its tables to zero and sets temperature 
vector to some initial, non-zero value. The router agent  then makes exploration during a 
given time period using dynamically adjusted temperature bounds following a 
predefined simulated annealing schedule. When the exploration is over, the temperature 
values corresponding to each destination go below the minimal value, and the router is 
ready to use the best route toward that destination. When this point has been reached, 
the routing procedure is identical to the ordinary Q-routing algorithm. 

Whenever a router or a link breaks down, all neighbors begin to use the second 
best route bypassing the damaged part of the network. Alternative paths may be simple 
bypasses, but can be totally different routes depending on the network structure, or the 
speed of the links. However, there is no guarantee to appropriate path recovery, i.e. 
when the router or link comes up again after failure the traffic should be adjusted back 
to the original, and presumably, better route. The reason why this may occur is that the  
Q-values are updated only along a used (or partially used) path, but if the recovered 
path is just bypassed by another route, no packets are transmitted along it, thus no Q-
value update happens. This problem is pointed out by Boyan and Littmann [R6] as well 
as by Choi et al. [R9], and is also referred to as the “path-hysteresis” problem. The 
solution in the Boltzmann-annealing model is straightforward: Temperature values of 
certain routers are to be re-adjusted to the ir theoretical maximal value, and a re-
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annealing process should follow, but only for a single temperature value. This process 
can be initiated by a special “raise temperature” packet sourced by the neighbors of the 
damaged router (or the previously damaged, now recovered router itself), or endpoints 
of a damaged link, when they detect that the failure is over. The “temperature up” signal 
is flooded throughout the network, as long as its time-to-live (TTL) value is exceeded, 
or a router finds that the sender is neither a neighbor nor a destination entry. The 
temperature raising signal for a given destination is always dropped when any annealing 
procedure is being done for that destination. 

Temperature can be raised up as a consequence of the routing agent’s own 
decision as well. When the agent experiences, that for a particular destination the data 
delivery has significantly increased, it may raise its own temperature up, and may carry 
out an exploration cycle. This requires the storage of not only the expected values of 
delivery times, but their standard deviation from the mean value as well. 

Cycle detection along the path, especially in the exploration phase, is also a key 
issue. Ordinary Q-routing does not involve any explicit cycle detection. As it is shown 
in [R6], the cycles are punished in the regular way, and for small networks the learning 
system will surely find a cycle-free path superior to any other paths involving a cycle. 
However, in large networks cycle-free path learning cannot be guaranteed. An efficient 
cycle detection algorithm is, thus, needed: each router can detect a cycle if the package, 
that has already traversed it, has some clues there. It is satisfactory if the header of each 
packet is stored in the memory as long as an acknowledgement packet arrives or the 
memory is short of free space. 

Acknowledgements are also important parts of the successful data delivery and 
the learning process. There are basically two kinds of acknowledgements which actually 
aid cycle detection: immediate reward from the neighbor and remote feedback from the 
destination (via the same neighbor). The first kind of acknowledgement s used in the 
original Q-routing model is applied to give an immediate estimate on the expected 
delivery time. On the other hand remote reward gives a real estimate on the total packet 
delivery time. If both types of rewards coexist in the system, equation 4.2 varies as: 
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(4.3) 

 
The immediate rewards are denoted by )(' tf , the indirect reward is denoted by )(" tf  

which are both the functions of measured times, i.e. the time between sending the 
packet from the source and receiving it at the destination, as well as the time sending the 
packet from the source and receiving it by the immediate neighbor. Function g(l) is the 
punishment function when a packet is in a loop. In the simplest case it is inversely 
proportional to the length of the loop. 

Action-state values can be normal distribution probability variables as well, as 
Gullapalli shows in [R12]. In this case each action-state value is represented by a mean, 



 67 

and a standard deviation. Equation of the mean value is symmetrical to equation 4.3, 
while that of the standard deviation for all Q-table entries can be written as follows: 
 

[ ])(")(')1(),(1 ththad s
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k ++−=+ βσβσ . (4.4) 

 

4.7 Implementation, experimental results 
 

4.7.1 General principles 

 
Based on the extension proposal principles in section 4.6, we developed a distributed 
extended Q-routing network topology simulator in Java. The simulator imitates IP- layer 
transportation through UDP packets. The reason for this design principle is that in 
extreme case the whole simulator may run on a single computer. Each router is 
implemented as an individual UNIX process that has multiple Java threads. Each router 
connects to its neighbors via UDP socket connection. Since the topology is simulated, 
there is a dispatcher agent which maintains the network topology, and tells each router 
the appropriate neighbor-mapping. This agent has no function in a real environment, 
since delivery times as well as topology are real; there is no reason to simulate them. 
Figure 4.7 shows the sketch of the routing simulator. The dispatcher agent forms a 
central access point to the simulated topology, and enables to gather statistics and 
provides some visualization tools as well. 
 
 

 
 

Figure 4.7 
The scheme of reinforcement learning routing simulator 

 
Delivered packets are simulated by objects. There are five basic packet types: 

hello, data, acknowledgement, raise temperature, and “send me Q”. 
Hello packets are similar to those used in the classical dynamic routing 

protocols, with the only difference that they are forwarded throughout the network. 
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When an agent receives a hello packet, it registers the sender into its Q-table and 
initializes the corresponding preference values to 0. If it finds that an entry for that host 
already exists, the packet is simply ignored. 

Data packets are also referred to as routed packets. Whenever a data packet 
arrives at the agent and the agent is not the destination, a decision is made where to 
forward the packet with respect to the following algorithm: The node where the packet 
has come from is excluded from the selection possibilities; then a probability 
distribution is calculated with respect to the preferences and the actual temperature 
value; a random action is generated out of the probability distribution. Note that when 
the temperature is sufficiently small, the only action that can be selected with almost 
probability of 1 is the best Q-valued action. Also note that the preferences are in reverse 
order, i.e. the smallest the Q-value is, the better the action. 

Relevant header information of all packets is stored in an associative array for 
future processing. If the packet entry already exists in the array, the packet probably has 
already been passed through the agent, thus a loop emerges in the delivery path. The 
loop detection method is detailed in subsection 4.7.3. 

As it was stated before, remote acknowledgement packets are sent whenever a 
data packet arrives at its destination node. An acknowledgement packet traverses back 
to the source on the same path as the data packet arrived. It holds two pieces of 
information: the Q-value of the next hop17 is inserted into the packet as in the case of 
ordinary Q-routing; the reward is computed from the difference between the time stamp 
of the data packet header stored and the time stamp of the acknowledgement. If an 
acknowledgement is received without corresponding stored data header, the 
acknowledgement is dropped, and warning message is send to the dispatcher agent. 
There is also an immediate acknowledgement  and feedback which arrives whenever the 
packet reaches the next hop router. When all reward- like information is gathered, Q-
values are backed up, and the acknowledgement is forwarded backwards to the source. 
If the source node is reached the acknowledgement is dropped after backup. 

Raise temperature packets are used to explicitly control the temperature value 
corresponding to a given destina tion. Whenever an agent receives this kind of packet, it 
calculates temperature bounds and sets the actual temperature to its maximal value 
corresponding to the destination from which the packet has come. 

Before a stored data packet header is dropped due to timer expiration, the agent 
sends “send me Q” packet to the neighbor which the data packet is forwarded to. The 
neighbor then replies with a “send me Q acknowledgement” holding its estimated 
packet delivery time to the destination of the dropping packet. This results in immediate 
reinforcement. 

The exact specification of the used packet formats for Internet Protocol version 
4 (IPv4) can be found in Appendix C. 
 

                                                 
17 Next hop from the point of view of the data packet. 
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4.7.2 Time to live fields 

 
There are two kinds of time to live (TTL) fields: packet-wise, and queue-wise, which 
are independent from each other. Packet-wise TTL field is a counter which counts 
through how many routers the packet has already traversed so far. If the value exceeds 
some threshold, the packet is dropped in order to avoid network congestion. Queue-wise 
TTL field corresponds to packet header storage on routers. Each queued header has got 
a TTL field which is proportional to the amount of time the header has spent on staying 
in the queue. Since there is no reason to store header information forever, having 
exceeded some time value, the header is dropped. In case of an acknowledgement that 
regards to an entry that has already been dropped arrival no learning takes place. Queue-
wise TTL is also proportional to the amount of memory available to store header 
information. In the physical implementation, a special cleanup process is used to scan 
for free memory, and if the queued header information grows beyond a threshold value, 
old entries, i.e. entries that have old queue-wise TTL values are expunged from the 
queue. Under normal load conditions queue-wise TTL values decrease slower than 
packet-wise TTL values, so each acknowledgement will probably find a corresponding 
entry in the stored header values. Under heavy load conditions queue-wise TTL values 
may decrease quicker, and acknowledgement will not find valid entries in the header 
queue. 
 

4.7.3 Loop detection 

 
Although any preference routing algorithm could survive without loop-detection, the 
efficiency can be seriously improved by using it. Since negative path length are 
excluded from the system, there is no reason to enter any packet into a delivery loop, 
since if there exists two paths between two arbitrary nodes, one with and the other 
without a loop, the loop-free path will always be shorter in terms of any non-negative 
metric, than the looped one and it receives better reinforcement. In the extended Q-
learning model, whenever a loop is detected in the delivery path, it is wholly unfolded, 
and only the loop-section is punished in order to let other useful pieces of the path to be 
selected it in the future. 

Two-hop loops have already been excluded, since the previous hop is always 
removed from the possible next-hop selection palette. Larger loops are, however, more 
difficult to detect. The basic principle is to use a special data field, called “looped bit” to 
indicate whether the packet is outside, or inside a loop. The looped bit is set by an agent 
that first detects, that the packet has already been there without acknowledgement. 
Suppose a simple loop topology, such as in Figure 4.8. Suppose further, that a packet 
traverses nodes in the following sequence: EABCDA. In this case node A is the first 
node that sets the looped bit, since it is the first node which receives the packet twice. 
Every other node can detect that if the looped bit of the received packet has set or not. If 
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it is set and the original sender of the packet, i.e. the one maintained in the header 
queue, and the currently chosen next hop is the same, then the packet is backtracking in 
a loop, and is forwarded back to the original sender with looped bit set, along with a 
large artificial delivery time value which serves as punishment. If the chosen next hop is 
different, than the packet exits the loop, and the looped bit is cleaned. When the 
direction of the packet is reversed at the first time, node A also indicates the fact of the 
loop by setting the looped bit in the packet header, and when the backtracking 
procedure reaches node A again, it cleans the looped bit and forces the packet to be sent 
to any directions other than node B (i.e. the packet cannot be forwarded to any of its 
senders, neither to node E which originally sent the packet, nor to node B who sent the 
backtracked packet with looped bit cleaned). Whenever a packet is received with looped 
bit set, the punishment update is applied to the original next hop, since the actual agent 
knows that the next hop contributed to the loop. During the backtracking process the 
header information is removed from the header queue to keep the system clean. 
 
 

 
 

Figure 4.8 
Simple loop in a delivery path 

 

4.7.4 Experimental results 

 
The routing algorithm was tested on different network topologies, with node number up 
to 100. The topology information was loaded artificially through the dispatcher agent. 
Results were monitored via the logs of the dispatcher. All networks were trained to the 
all-pairs shortest path problem, i.e. all nodes were sender and receiver at the same time, 
and the shortest path is sought among all nodes. Test parameters of the algorithm are 
summarized in Table 4.1. 

Studying the output of the test runs the random behavior can be stated by packet 
losses, dropped header queue information and selection of non-optimal paths. This is 
the exploration stage when the agents discover the topology. At later stage, when the 
agents have reasonable estimate about the network topology, there are less packet 
losses, but non-optimal routes are also selected. As the temperature value decreases, the 
agents more and more often select the optimal path, and when the minimal temperature 
value is reached, only the best path is chosen. A test topology (the backbone of the 
Hungarian Academic Network) is shown in Figure 4.9. 
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Parameter Value 
Learning rate 0.1 
Discount rate 0.9 
Annealing schedule linear annealing with variable 

temperature bounds 
Exploration interval proportional to nodes × links 

 
Table 4.1 

Most important parameter settings of Q-routing algorithm with Boltzmann exploration 
 

The shortest path results were validated by using Dijkstra’s algorithm. In most 
of the cases the modified Q-routing algorithm found the theoretical optimum even under 
large load conditions. 

Figure 4.10 illustrates the delivery time between two towns (which are indicated 
by asterisks in Figure 4.9) as the function of time steps. It is easy to see, that at the 
beginning and throughout the exploration cycle, the path lengths are of variable size, the 
fluctuation is large. As the exploration cycle is over, only the best path is used. Since 
there may be stochastic delays in the delivery chain, the delivery time is allowed to 
show small variance in the exploitation stage as well. 

Link and router breakdown tests were performed manually. The algorithm was 
capable to detect changes and diverted the traffic onto an alterna tive path (see the curves 
in the middle of Figures 4.11b and 4.12b). At the beginning, the usual exploration 
shows that the length of delivery heavily fluctuates. Then a stable, bypass route is 
chosen. When the link comes up again, all nodes perform similar annealing cycles for 
the damaged router, or routers on both side of a damaged link as in Figure 4.10, and 
finds the best path to be the original one, thus fulfilling a complete path recovery. 
Figure 4.12 illustrates the same behavior, but for two pairs of nodes. 

The scheme of the router agent algorithm can be seen in Figure 4.13. 
 

4.8 Implementation proposal 
 

4.8.1 IP-layer implementation 
 
Though the simulator is implemented using UDP, all the applied packet format 
extensions can be implemented at network layer level. The specification of IP-header 
allows inserting extra options into an ordinary IP-header up to 60 bytes, and since all 
options required by Boltzmann exploration based Q-routing are within this limitation, it 
is reasonable to specify IP-packet format extensions as IP options. 
 



 72 

 
 

Figure 4.9 
The backbone topology of the Hungarian Academic Network. Nodes of the graph 
indicate Hungarian regional centers; edges denote “delay distances” among them 

 
 

 
 

Figure 4.10 
Delivery times between two towns indicated by red line in Figure 4.9 vs. received 

acknowledgement time steps diagram 
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(a) 
 

 
 

(b) 
 

Figure 4.11 
Re-annealing schedules between a source-destination pair 

 
 
 
 

 
 

(a) 
 

 
 

(b) 
 

Figure 4.12 
Re-annealing schedules between two source-destination pairs 
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Figure 4.13 
The schematic algorithm of Boltzmann exploration based extended Q-routing 

 

function routing_agent() 
begin 
  initialize internal data structures; 
  thread cleanup 
    if free memory falls below a threshold value then 
      clean up headers with old TTL value; 
    end 
  end 
  thread timer 
    start/stop timers on event; 
  end 
  thread annealing 
    if Tmax, Tmin and Tactual are set then 
      start annealing using any of the annealing functions; 
    end 
  end 
  thread routing_loop 
    if packet arrives then 
      if destination reached then 
        send acknowledgement back to the source; 
        process packet; 
      else 
        case packet type in 
          data: select outgoing interface using Boltzmann-eq.; 
                switch the packet; 
                send immediate Q-estimate to the previous 
                  node; 
          acknowledgement: calculate parameters; 
                           use backup rules to update Q- 
                             values; 
                           forward the acknowledgement; 
                           if source node is reached then 
                             sink acknowledgement; 
                           end 
          looped: unfold loop; 
          hello: register the router; 
                 forward hello packet; 
          raisetemp: raise the temperature corresponding to 
                       the node that originated the packet; 
                     forward raisetemp if needed; 
          smq: ask the neighbor for Q-values corresponding 
                 to a specified packet header; 
          sqm-ack: update Q-values with values received; 
        end 
      end 
    end 
  end 
end 
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Any IP option can be specified by the following scenario: 
• Each option has a unique code which indicates the control of that option. There 

are specific codes reserved for specific purposes, but there are free slots for 
individual use. The option code is the first field. 

• Each option code is followed by a length field which indicates the total length of 
that option as it comes from Portel’s IP specification [R35]. 

• The last field is the value of the option which can be of different length 
depending on the previous field. 

Appendix C also details the IP version 4 packet formats for the extended model. All the 
extensions are designed to be compatible with all the standard IP specifications [R35]. 

The vast majority of protocol proposals are put into the data packet due to the 
loop detection algorithm. Each packet type, such as data, hello, acknowledgement, raise 
temperature, send  me Q, and send me Q acknowledgement has a common field called 
control code which involves all control information related to Boltzmann exploration 
based Q-learning. In most of the packet types there is no need for any extra option other 
than the control code. 

Reverse path packets such as any type of acknowledgement packet or raise 
temperature packets are based on Internet Control Message Protocol (ICMP) specified 
in [R36]. ICMP packets consist of header information only without any data part, and 
are used to transfer control information between any pairs of nodes. Note that in the 
case of large amount of data, the packets are fragmented, there is only a single reverse 
path packet corresponding to the first packet in a fragmented data set needed, which 
largely reduces communication overhead. IP layer acknowledgement may be combined 
with transportation layer acknowledgement in case of reliable transportation protocol 
such as TCP, thus, further reducing the number of extra packets. 

Q-values in all types of acknowledgement packets are stored as 4-byte floating 
point numbers. 
 

4.8.2 UDP implementation 
 
The proposed model can also be implemented by using higher level protocols, in the 
same way as ordinary dynamic routing protocols are implemented. In this case there are 
two separate routing tables, the ordinary routing table, and a table which is used for 
routing the exploration packets. In the ordinary table, stable rules, which have been the 
result of an exploration cycle, are inserted only. The other table may contain temporary 
rules, and all routing protocol packets are transferred via this table. IP-route version 2 
and Linux Netfilter modules are capable to maintain different routing tables as well as 
pre-routing chains to let different packets be routed by the different tables [R62]. All the 
proposed option- level IP-header extensions (see Appendix C) can be used to build up 
the Boltzmann exploration based routing protocol. 
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4.9 Discussion 
 
In the chapter we studied the most important functionalities of packet routing. Different 
dynamic routing protocols, such as RIP, OSPF or IGRP have been surveyed. All these 
protocols use transportation level reliable information exchange to share routing table 
data with one another. 

There is a new concept, named Q-routing, which uses network layer information 
exchange through trial and error probes and learns routing information from experience. 
This concept is proved to give better flexibility and robustness, than general shortest 
path algorithms, but suffers from path recovery and loop detection problems. 

We proposed an extended Q-routing model based on Boltzmann-exploration to 
overcome both problems. Simulated test results have shown that the reward-punishment 
procedure can be successfully applied to detect and to punish looping parts of any path 
while retaining the non- looping parts be competitive. Environment changes are detected 
either by protocol included warning packets, or by the routing agent’s self recognition. 
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Chapter 5 

Flow-shop Scheduling in Virtual Manufacturing 
Environment 
 
 
 
In the first part of the chapter a brief survey on manufacturing disciplines will be given, 
with special emphasis on the virtual manufacturing concept. Then job scheduling issues 
are examined where special attention is paid to the flow-shop scheduling problem. 

In the second half of the chapter we show the design and the implementation of 
combined reinforcement learning and Boltzmann-annealing based scheduling algorithm 
which uses the framework of the virtual manufacturing concept and provides dynamic 
scheduling capabilities as well. The algorithm aims at solving the simple m-machine, n-
job flow-shop scheduling task on- line. The results shown in this chapter are based on 
our papers [P1] and [P2]. 
 

5.1 Introduction 
 
The term manufacturing refers to the process of making ready products from different 
input resources, such as processing equipment, material, energy and information in 
finite time steps. In a broader sense the term manufacturing is defined as “all the 
activities and processes from order receiving to delivering customer goods” [R17]. 
Manufacturing processes are accomplished by manufacturing systems (MS) which, 
following the definition of Tóth in [R52], are the structured set of humans, machinery 
and equipment bounded to a material and information flow. MS is “a complex 
technological object composed of machining, material handling, tooling and controlling 
sub-systems”. 

Intelligent manufacturing systems (IMS) introduced by Hatvany and Nemes in 
[R13] aim at integrating the fields of artificial intelligence (AI) and manufacturing 
systems in the sense that the resulting intelligent manufacturing systems are expected to 
solve tasks, or sub-tasks in unexpected or unforeseen environmental conditions with 
certain limitations. These conditions may mean changing market demands, late 
deliveries of suppliers, failed operations, machine break-downs, etc. The key benefit of 
IMS is that the internal structure of the manufacturing process is capable to exploit and 
feed back experience on a particular manufacturing process in order to let the system 
improve the execution of the same task in the future. 
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A step toward contemporary manufacturing research is the recognition that 
computer systems  and information technology (IT) can provide firm infrastructure as 
well as excellent computational capabilities to create simulation on manufacturing 
process models, which make the system more predictive. The integration of IMS and IT 
brought the disciplinary field of virtual enterprises (VE) and virtual manufacturing 
systems (VMS). Tóth in [R52] gives a more comprehensive view of the terms as well as 
the history of manufacturing from direct numerical control (DNC) systems to up-to-date 
computer integrated manufacturing (CIM) approaches. 
 

5.2 The concept of virtual manufacturing, distributed models 
 
In a nutshell, all virtual manufacturing concepts are about to create computer-based 
models of real manufacturing systems, accomplish performance improvement 
calculations on these models utilizing the fact that a simulation step can be carried out  
in the fraction of time of a real manufacturing operation, and feed the results of the 
computation back to the real manufacturing system. Figure 5.1 gives an example on the 
VM concept on the flexible manufacturing cell’s (FMC) level. The manufacturing 
system can be divided into four parts: real production system (RPS), real information 
system (RIS), virtual production system (VPS), and virtual information system (VIS) 
[R17]. The real part (RIS and RPS), on one hand, represents the real system which 
consists of all the machines, workstations, shop-floor network, control system and 
monitoring tools that make up the manufacturing environment in the cell. On the other 
hand, the virtual parts represent the computational model of the above mentioned 
system elements which take the form of objects18 on a large-performance computer, or 
the network of computers. Note that the mapping between the real part and the virtual 
part is bijective, however, the virtual part may be structured in a totally different way 
than the real system. As Monostori and Kádár points out the virtual system may work 
using distributed manufacturing concepts, such as heterarchical control, while the real 
system uses hierarchical control structure [P7][R5][R17][R27]. 

Holonic manufacturing (HM), or as it is most frequently referred to, agent-based 
manufacturing aims at modeling the manufacturing system as network of individual 
decision makers, so-called agents. The agents represent either manufacturing resources, 
such as cells, machines, parts, or manufacturing functions, hardware or software 
entities; they try to reach a common goal while they also pursuit their own goals. 
Márkus and Váncza define heterarchical manufacturing systems as “transformation of 
manufacturing organizations” to “network-like, reconfigurable federations where 
production is carried out by more or less autonomous and cooperative production 
units”. The communication among the agents is accomplished in two fundamental 
ways: either using blackboard communication, or using message passing protocol. 
 
                                                 
18 The term object refers to data structures and algorithms. 
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Figure 5.1 
The concept of virtual manufacturing on the cell level 

 
Blackboard communication is a kind of shared memory communication where all the 
agents access a shared storage resource, e.g. a shared memory segment, and they 
synchronously and consistently read and write that area. Message passing is based on 
network communication when the agents exchange information packets via packets 
over the network layer (e.g. the IP layer). Message passing can be used on the enterprise 
networks, that connect different elements within the enterprise, and shop-floor networks 
that interconnect manufacturing elements, such as machines, workstations. 
 

5.3 Job scheduling 
 
In all manufacturing processes, the schedule of different jobs on different resources is of 
fundamental importance. Following Baker [R2] scheduling is the process of planning 
and applying optimal job allocation or assignment to the different resources. 



 80 

Typical scheduling tasks can be classified by using γβα ||  triples where a 

denotes the machining environment, such as the number or type of machines, ß denotes 
the job characteristics, like different relations among the jobs, and ? denotes the 
optimality criteria. Vízvári gives a thorough survey on the typical scheduling tasks and 
their classifications in the domain of manufacturing in [R59]. 

Finding optimal job schedules is, however, difficult. Mathematically grounded 
solutions exist to a limited set of small scheduling tasks only. In most of the cases direct 
enumeration does not help either, since the scheduling search space is extremely large 
making the evaluation of all states practically infeasible. In order to overcome this 
difficulty, either heuristics or some directed search methods driven by artificial 
intelligence or learning algorithms are applied. In real manufacturing environments the 
demands are even greater, since the schedulers are expected to sense any changes in the 
environment and to provide feasible and close-to-optimal re-schedules of the given task. 
“In the case of on-line dynamic scheduling there is a time constraint for the scheduler 
for finding the best possible result” [R27]. 

In the rest of the chapter a specific scheduling class, called flow-shop scheduling 
is addressed. First the flow-shop task is defined, then a survey on the classical solutions 
are given. The classical heuristic solutions are non- improving algorithms, which means 
that in unchangeable environment they always provide the same, quasi-optimal solution. 
On the other hand, improving algorithms are capable to find better schedules if they 
have enough time to evaluate the different possibilities. 

We provide a scheduling framework which is capable of dynamic behavior and 
which utilizes computational time frames determined by real manufacturing events, 
such as job starting and finishing to make directed-search in the scheduling state space. 
The search process starts from a firm, but non-optimal solution provided by one of the 
classical algorithms and ends up in a new, improved solution if the global optimum is 
not reached. As the time goes on, exploration of new schedules gradually turns into 
focusing on the best solution, or solutions  that have been found. This is the point where 
Chapter 3’s simulated annealing combined with reinforcement learning algorithm can 
contribute to the general scheduling framework. 
 

5.4 Flow-shop scheduling 
 

5.4.1 The definition of flow-shop scheduling 
 
Flow-shop scheduling is also referred to as pipeline scheduling, and it can be defined as 
follows: given a time horizon, m processing machines, n jobs to be executed, a job 
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execution sequence19 is sought which yields the minimization/maximization a particular 
objective function.  Let the processing machines be denoted by mmmm ,...,, 21  and the 

jobs by njjj ,...,, 21 . All jobs are processed on all machines, no preemption is allowed 

and each job as well as each machine is unique. Processing each job on the machines 
consumes certain amount of time, which times are structured in a processing time 

matrix { }ijt=M  where tij is the processing time for job j on machine i. 

The optimality criterion of the scheduling problem can be various ranging from 
exact cumulative properties to stochastic ones. The most popular criteria are 
maximization of throughput, minimization of lateness, minimization of processing 
costs. One possible cost is the cost of machines that is spent on waiting for jobs to be 
processed. This is often regarded as the sum of off-machining times. For the easy 
comparison, throughout this chapter, the off-machining metric is used. 

Using the γβα ||  triplet notation, the flow-shop scheduling is abbreviated as 

min|| OFm  when each job is allowed to follow each other job, and min|| OprecFm  

when precedence relations are defined among different jobs. Fm indicates that the 
number of machines can be arbitrary and all jobs are executed on all machines; prec 
indicates precedence relations among jobs; Omin denotes minimization of the sum of off-
machining times. 

The computation complexity of the general problem, apart from special cases, is 
non-polynomial [R59]. 
 

5.4.2 Johnson’s algorithm 

 
The first algorithm that solved the 2-machine flow-shop scheduling problem was 
published by Johnson in 1957. The philosophy behind the Johnson’s algorithm is “not 
to let the second machine wait for processing”. Thus all jobs that have smaller 
execution time on the first machine are processed at the beginning, while those jobs that 
have shorter execut ion times on the second machine are left behind. This type of 
ordering aims at filling the second machine with jobs as soon as possible [R59], thus, 
minimizing its off-machining time. Note the simplification that the first machine can 
process jobs one after another, without off-machining times. 

Figure 5.2 shows a simple 2-machine flow-shop scheduling task involving 4 
jobs. In the figure, 4321 ,,, AAAA  denote the job execution times on machine A, while 

4321 ,,, BBBB  those on machine B, and 4321 ,,, XXXX  indicate the off-machining 

                                                 
19 Since the job sequence is the only control parameter, it determines the schedule as well, thus the terms 
“sequence” and “schedule” are used interchangeably in the flow-shop context throughout this chapter. 
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times. It is easy to observe that the total length of processing is determined by machine 

B as )(
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Figure 5.2 
2-machine, 4-job flow-shop scheduling task 

 
Note that the objective is to minimize the sum of off-machining times X, where X is 
defined for n jobs as 
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5.4.3 Palmer’s method 

 

Johnson’s algorithm can be extended up to 3-machines, but cannot be applied for larger 
problems. There are two fundamental approaches to expand the philosophy behind 
Johnson’s algorithm above 2 machines: one group of algorithms forms two virtual 
machines out of the m machine, and runs Johnson’s algorithm on them; the other group  
of algorithms uses the sorting principle applied in the 2-machine case, i.e. the shorter 
machining time at the beginning of the pipeline, the earlier execution, or the shorter 
machining time at the end, the later the execution. 

Palmer’s method belongs to the first class of algorithms. To each job a priority 
index is assigned with respect to the corresponding execution times on the different 
machines, and then the jobs are sorted in decreasing order of their priority indices 
[R33]. Equation 5.3 is used for computing priority values for each job j : 
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5.4.4 Dannenbring’s algorithm 
 
The “quick availability method” worked out by Dannenbring, defines abstract machines 
reformulating the m-machine problem into a single 2-machine task where the abstract 
machining times (o1j, o2j) are as follows: 
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Johnson’s algorithm is then applied to o1j and o2j to determine the job execution 
sequence [R11]. 
 

5.4.5 The quality of the solution 
 
The quality of the solution can be expressed in terms of optimality, efficiency, 
effectiveness and feasibility [R54]. 

Optimality means that the solution is the best with respect to the given 
optimality criterion. Since the NP-hard nature of the problem, this is rarely guaranteed, 
so instead of optimality, quasi-optimality is used. Quasi-optimality is difficult to define; 
its meaning ranges from “getting close-to-optimal” to “avoiding worst-case” scenarios. 

Efficiency defines the measure how the computational time spent on finding the 
solution relates to the time scale of the real processes. An inefficient scheduling 
algorithm solves the task within the same time, as the manufacturing system 
accomplishes the real manufacturing task. 

The purpose of scheduling effectiveness is to measure the distance between the 
solution and the theoretical optimum. In practice, however finding the global optimum 
is difficult. 

Feasibility is used to express that the solution matches all scheduling constraints. 
 

5.5 The structure of the proposed dynamic scheduler 
 
Classical flow-shop scheduling algorithms can be improved by using the appropriate 
combination of the concepts mentioned above. In [R27] a service-like architecture, 
called scheduling agent is proposed, that is a “system, which in normal static condition 
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can ensure global performance if other agents follow its command or its advice”. “In 
dynamically changing conditions, however, through increased autonomy of agents, a 
more dynamic behavior can be reached.” Improving the idea we propose the following 
structure: 

• using the concept of the scheduling agent, 
• in a virtual manufacturing environment, 
• where the scheduling algorithm is of an improving type, 
• and which can be initialized by one of the classical static scheduling algorithms. 

 
One of the results of using virtual manufacturing concept is that scheduling and 

dispatching are functionally separated. Note that scheduling is the way how a job 
sequence is created, so the whole scheduling window is examined, while dispatching is 
just an execution- like local decision. The differences between the two are discussed by 
Kádár in [R17]. 
 

5.5.1 General principles 
 
The general idea of using reinforcement learning (RL) combined with simulated 
annealing in solving scheduling problems is originated by Zhang and Diettrich [R64]. 
Their goal was to provide automatic, repair-based, domain-specific heuristics to build 
optimal job-resource allocations for the job-shop scheduling problem. In their solution 
simulated annealing probabilities appeared as an acceptance factor assigned to a 
schedule, and they also used experimental temperature bounds. The novelty of our 
proposed solution is that simulated annealing (SA) is used for building the job 
sequence, thus no unnecessary or “rejected-in-the-future” schedules are generated, and 
due to Theorem 3.2 temperature bounds that can be dynamically computed. 

In the routing problem, which is detailed in Chapter 4, the problem definition is 
as simple as searching the shortest path between two determined nodes in a network 
graph. Consider the graph representation of the flow-shop scheduling task: each job is 
represented as a node, each edge a feasible job transition having the expected off-
machining times on the edges. The graph is dynamic and there is a zero cost path from 
any node to the starting node whenever no other nodes are remained to traverse. The 
goal is to find the shortest possible round trip provided that all nodes are visited once 
and only once. In this respect, scheduling problem appears to be similar to the traveling 
salesman’s problem (TSP). 

To view the flow-shop scheduling as a reinforcement learning problem, the 
problem space, i.e. actions and states, and reinforcement functions should be 
determined.  A significant difficulty is that all RL methods are convergent only if the 
decision process is Markovian. Neither the flow-shop scheduling, nor the TSP is 
Markovian, since each decision point excludes one or more opportunit ies from the 
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available future decision set, thus influencing future decisions. This is the reason why 
the expression “domain-specific heuristics” is used. 

States are crucial parts of RL based algorithms since they uniquely identify the 
nature the process in any time step. There are two approaches how states are defined: a 
theoretical one, and a practical one. From theoretical aspect, a state is represented as a 
job sequence selected so far at any point of the sequencing process. However, in 
practical cases it is inconvenient, or even infeasible to store job sequences, especially 
for large number of jobs. It is much more convenient to split the sequence into two 
parts: the sequence of jobs that have already been selected, and the set of jobs still 
available. At the decision point only one job, i.e. the one that terminates the already-
selected job sub-sequence is examined. This gives the natural definition of states as last 
jobs in the sub-sequence, and also defines the set of actions as the set of available next-
jobs. “The policy tells what scheduling action to make next in order to maximize some 
measure of quality of the final schedule” [R64]. 

The action-state value of each state-action pair is stored in a nn ×  matrix, which 
is denoted by Q. Row i and column j of the matrix shows the estimated reward of 
continuing the job sequence from job i to job j. The update rule defined over action-
state values is as follows: 
 

)max( ,1 ijji
j

ijij QQrQQ −++= +
∉s

γα . (5.5) 

 
In the above equation α  and γ  are the standard RL parameters: learning rate and 

discount factor, respectively. Array s denotes the sequence of jobs selected so far. It is 
easy to see in the update rule 5.5 that the value-update of any state-action pair is 
influenced by the reward received as well as the estimated value of the remaining job 
sequence. In graph representation the term ji

j
Q ,1max +

∉s
 is the largest possible value that a 

successor job estimates on the reward of the total job sequence. Note that the process is 
naturally episodic: each episode consists of a full job-sequence creation. Reward is 
provided at the end of each episode, thus whole job sequence is evaluated and 
reinforced. This is quite important, since no additional jobs in the partially setup 
sequence can be considered as a “further step” to the optimal solution. Recall that the 
whole process is not a Markov Decision Process (MDP)! 
 

5.5.2 Evaluation/reward function 
 
Reinforcement values are some measurements of the “fitness” of the job sequence. For 
the sake of appropriate comparison a special evaluation function, the off-machining 
time, is used. Off-machining time is defined as the sum of times all machines have to 
wait for jobs to process from the beginning of processing the first job on the first 
machine to the end of processing the last job on the last machine. It is shown in 
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Appendix D that for a particular job sequence the off-machining time can be computed 
by the algorithm shown in Figure 5.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 
Algorithm to determine off-machining times 

 
 
Property 5.1: The computation cost of the evaluation algorithm is proportional to 

)(nmO . 

 
The algorithm uses the processing times matrix M and the job sequence permutation 
vector p as input and returns the sum of off-machining times. Vector p can take any 
permutation of the job indices, when no job precedence relations are set. The control 
parameter is also vector p, since the job sequence is sought that minimizes the off-
machining time. In some cases not all machines are free when the first job on the first 
machine starts; some machines may finish old, already-running jobs. The expected 
finish times on these machines are considered to decrease the initial off-machining 
times, thus these times appear as temporal boundary conditions for the evaluation 
algorithm and are subtracted at the beginning. Vector b denotes the boundary condition 
vector which, in some cases, is purely initialized as a zero-valued array. 

The off-machining time values can set up a partial ordering among different job 
sequences, and can be used as a reward: the smaller the value, the better the solution. In 

input: M(m,n), p(n), b(m); 
output: v; 
storage: d(n), D(m,n), g(m); 
function n_machine (M,p,b) 
begin 
  v:=0; 
  for i:=1 to m do 
    g(i):=b(i)-v; 
    s(i):=M(i,p(1)); 
    d(i):=max(0, -g(i)); 
    D(i,1):=d(i); 
    if g(i)<0 then g(i):=0; 
    v:=v+M(i,p(1)); 
  end 
  for j:=1 to n do D(1,j):=0; 
  for j:=2 to n do 
    for i:=1 to m do 
      s(i):=s(i)+M(i,p(j)); 
      D(i+1,j):=max(0,s(i)+d(i)-s(i+1)-d(i+1)); 
      d(i+1):=d(i+1)+D(i+1,j); 
    end 
    s(m):=s(m) +M(i,p(j)); 
  end 
  v:=0; 
  for i:=1 to m do v:=v+d(i); 
end 
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fact different functions of the reward, such as the square-reciprocal or inverse-signal are 
more appropriate to reward good sequences and punish wrong sequences. 
 

5.5.3 Job sequence setup 
 
Job sequence is determined by using equation 3.1. A special vector v is used for storing 
the value of the first action. The update rule that modifies initial preferences is similar 
to that of 5.5: 
 

)max( ,
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ii vQrvv −++= γα . (5.6) 

 
The method of setting up a job sequence is as follows: First, a probability distribution is 
defined over preferences v by using equation 3.1. Then a job is selected randomly with 
respect to the defined probabilities. Let the job be denoted by ji. Then the chosen job is 
removed from the available set of jobs, i.e. the ith column of matrix Q is masked, and 
the uncovered part of the ith row of Q is used for defining another probability 
distribution. (Equation 3.1 is applied again.) A job is chosen again with respect to the 
new distribution, which, in turn, will also cover a column in matrix Q and marks a new 
row of preference values, etc. As a final result, a job sequence is set up, and evaluated 
by the algorithm in Figure 5.3. 
 

5.5.4 Update rules 
 
Each evaluation step ends up in updating preference values, thus influencing future job 
selection probabilities. Another factor which determines probability values is the 
temperature used in the Boltzmann-formula. Since the whole sequencing procedure 

consists of n decisions, exactly n+1 different temperature values should be used. kt  is 
the vector form of the temperature in time step k, where kT1  is the temperature 

corresponding to the first decision (the first job), and the sequence k
n

kk TTT 132 ,...,, +  is 

used for storing temperature values corresponding to the remaining decisions. Note that 
exactly one row, the one corresponding to the last job, is unused in the temperature 
vector. 

Given a time step interval defined by tstart and tend, i.e. the start of the sequencing 
process and the intended finish time, an annealing schedule can be defined as follows: 
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iT=t , 1,...,2,1 += ni  are computed as 
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D  is a nn ×+ )1(  compound matrix. Note the following: 

• When calculating temperature bounds the simplified, but less exact, equations 
are used. Original equations of Theorem 3.2 can also be applied to define the 
temperature bounds. 

• Operator max() provides the largest element of array a; operator min() gives the 
smallest element; operator max2() is used for giving the second largest value in 
the array; operator dim() returns the dimension of the vector. Recall from 
Chapter 3, that 2)dim( >ie ! 

• Vector ie  is the ith row of the )1()1( +×+ nn  identity matrix. 

 

5.5.5 Dynamic scheduler 
 
The proposed dynamic scheduler that operates in the virtual part works as follows: 
Suppose that all system elements are up and running including the controller (RIS), the 
machines (RPS) and the virtual services (VIS and VPS). As an initializing event, the 
RIS gets the scheduling task as well as the process plans involving all necessary 
manufacturing data, such as expected values of processing times, job and resource 
descriptions. The process plans may also include a sequence plan to initialize the RIS. 
So far the system is built up in the same way as an ordinary hierarchically controlled 
manufacturing system. Whenever the RIS receives a task, it looks for virtual services on 
the enterprise network which provides on- line schedule advisory. If this service is not 
available, the job sequence provided by the process plan is executed. If the VIS is 
found, all manufacturing data are synchronized between the RIS and the VIS, and the 
VIS starts the simulation of schedules. Figure 5.4 shows a cycle of activities that are 
executed in each simulation step. The RIS waits for a short period of time to get the 
initial schedule proposal, and starts executing the first job with respect to its actual 
known job sequence. Whenever the RIS receives a sequence proposal, it makes 
feasibility checks on it to make sure, that the sequence does not mismatch the already-
executed jobs, and is a feasible (i.e. well- formed) sequence. All infeasible schedule 
proposals are discarded by the RIS. Job starting and finishing events are reported to the 
VIS by using special synchronization protocols. The virtual system also maintains the  
set of already-processed jobs to avoid wasting simulation cycles on producing ill-
formed schedules. The RIS periodically (and also before selecting a new job) asks the 
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VIS for a new schedule proposal, and if there is one, it is synchronized, and the new job 
is selected with respect to the new schedule. 

Exploiting the fact that the simulation is definitely faster that the real process, 
there is plenty of time to make simulation steps among the job events such as job 
starting and finishing, thus making the system flexible. As a basic rule, a time window 
which marks the time domain of the annealing process is defined between the job 
selection events. In each simulation time step a job sequence is prepared with respect to 
the values of the Q matrix. The sequence approaches to the best sequence found if the 
temperature values are decreased close to their minimal values, thus a guided search 
takes place which starts from random search in the job-sequence state space, and ends 
up in a quasi-optimal schedule, as the annealing progresses. Whenever a “next-job” 
decision is made, a new time slot is also available which mark a new annealing time 
domain, and a new simulated schedule. 
 
 

 
 

Figure 5.4 
A VIS Simulation cycle. An extra arrow indicates at the “job sequence setup” block the 

entry point of the cycle 
 

5.6 Validation of the model 
 
The proposed model has been extensively tested through randomly generated sample 
schedules. We statically compared the RL scheduler to other heuristic methods and also 
studied its dynamic behavior. 
 
 
 



 90 

5.6.1 Static analysis on different models 
 
The validation code is written in C for efficiency reasons. The features of the sample 
schedules are summarized in Table 5.1. 

Note that the theoretically grounded Johnson’s algorithm can be executed on 2-
machine tasks only. When “large tasks” are compared, only heuristic and RL-based 
methods are used. Figure 5.5 shows the comparison of off-machining times computed 
by Johnson’s algorithm, Palmer’s method, Dannenbring’s method and RL-based 
simulated annealing method as the function of the number of jobs. 

It is trivial to see that neither the heuristic nor the RL-based method can produce 
better results, than Johnson’s algorithm, since it provides the theoretical optimum. In the 
2-machine layout, Dannenbring’s method produces the worst approach on average, 
while by using Palmer’s indices the difference is significant only when the optimal off-
machining times are relatively small. The Boltzmann-annealing based RL scheduler was 
able to find the theoretical value in most of the cases. 
 
 

Parameter Value 
Maximum number of jobs 100 
Maximum number of machines 40 
Minimal job execution time 5 TU20 
Maximal job execution time 25 TU 
Precedence constraints None 

 
Table 5.1 

Properties of sample schedule plans 
 
 

Parameter Value 
Learning rate 0.2 
Discount rate 0.8 
Annealing schedule polynomial annealing (n=5) with 

variable temperature bounds 
Exploration interval proportional to the square of 

the number of jobs 
 

Table 5.2 
Summary of the RL-scheduler parameters 

 

                                                 
20 TU represents “time units”. Since the samples are generated randomly, all off-machining time values 
are dimensioned in an abstract unit called TU. 
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Figure 5.5 
Off-machining times vs. the number of jobs diagram for two machines (m=2). 

Boltzmann-annealing curve runs together with the Johnson’s algorithm curve in most of 
the cases 

 

 
 

Figure 5.6 
Off-machining times vs. number of jobs diagram for large number of machines (m=40) 
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In Figure 5.6 a similar comparison is shown but for large number of machines, 

40. It is easy to see that the RL-based method produces definitely smaller off-machining 
times than classic heuristic models. The key parameters of the RL scheduler are 
summarized in Table 5.2. 
 

5.6.2 Dynamic behavior 
 
The dynamic test analyzes the scheduler’s temporal behavior. Figure 5.6 shows the slice 
of simulated off-machining times vs. the number of simulation steps diagram of a 20-
job 20-machine flow-shop scheduling task. 
 
 

 
 

Figure 5.6 
Dynamic behavior of the scheduler 

 
For illustration reasons the annealing time was set to 95% of the value suggested in the 

previous sections, 
RISofparameterspeed
VISofparameterspeed

m j ___
___

95.0 1 , i.e. the 95% of the estimated 

time of the selected job’s execution. An annealing schedule is thus shorter than the 
affordable exploration time in a, say, production system. The gray area shows the 
exploration cycles after selecting a new job, the gaps among the cycles are the 
exploitation periods. During the simulation the best job sequence is maintained just in 
the case the job is executed earlier than the simulated annealing, and job sequence 
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request would arrive before finishing the exploration. The off-machining times 
corresponding to the best job sequence is indicated by the black line in the figure. 

The simulation starts when the VIS receives all the necessary information. The 
initial exploration time is usually set to some experimental value. It is easy to see that in 
the given example the off-machining times of the proposed schedules decrease from 
5000 to 4100. The latter value is kept as a quasi-optimal solution in the next exploration 
period. In the third exploration period, around simulation time step 33000, an 
unexpected event occurs: the machining times vary due to some machine failures in the 
execution of certain jobs, and the estimated off-machining of the stable job sequence 
goes up to 4250. Since the job sequence is considered as a quasi-optimum, it would be 
kept if there was no VIS in the system, thus escalating the failure further in the 
manufacturing pipeline with respect to time delays. However, the changes are reported 
to VIS, which is found to be in the exploration period, and which tries to find a new 
partial job sequence being more appropriate to the modified parameters. As a result of 
re-scheduling, the estimated off-machining time descends around 4150. It is important 
that the disturbance occurs before the end of an exploration period, thus the schedule is 
improved significantly only in the next period. Note that during the simulation the RPS 
starts and finishes jobs which cannot be executed once again. The already-executed-jobs 
are considered to be invariables to the VIS simulation. 
 

5.7 Implementation of precedence constrains 
 
So far no job precedence relations have been defined among jobs. In real life 
applications, however, constraints exist and represent either preferential ordering, or 
mandatory precedence. E.g. it is not reasonable to start with a finishing operation, and 
follow a roughing one. 

There are two approaches to treat precedence relations: The first approach is 
often regarded as selection methods, when feasible sequences are selected from 
arbitrary defined general sequences, like in the case of genetic algorithms’ repair 
methods [R27]. This method has the drawback of spending resources (processor time, 
memory) on finding solutions which will be surely rejected due to mismatching the 
constraints. 

The other approach allows only those job sequences to be built which surely 
satisfy all precedence constraints. A precedence constraint can be described as an if-
then-rule in the following form 
 

21
: lll jjc → , Cl ,...,2,1= , nll ,...,2,1, 21 =  (5.9) 

 
where C is the number of constraints, lc  is the constraint identifier and job 

1l
j  must be 

executed prior to job 
2l

j . Indices l1 and l2 are job indices. 
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The left hand side of the expression is the condition part, while the right hand 
side is the conclusion part. All constraints are summarized in a constraint set denoted by 
C. 

The next key question that emerges: How can restricted job sequences be built 
based on constraint set C? The answer comes from the meaning of the constraint: i.e. 
execution of the conclusion part is forbidden as long as the condition is not satisfied. It 
means that when the sequence is created, special attention should be paid to jobs being 
in the conclusion part of any rule C. For all those jobs the action selection probability 
values are set to 0 regardless to their preferences. This method prevents the job in the 
conclusion to be selected, as long as the condition job is not completed. 

In the computation, the algorithm covers all columns of matrix Q corresponding 
to any constraint conclusion. Whenever a job is selected, the constraint set is sought if 
the selected job is in the condition part of any constraint. If so, the column 
corresponding to the consequence of the constraint is uncovered, thus the scheduler 
allows probability values that correspond to the conclusion part to have nonzero values. 
The method works for transitive dependencies and constraint disjunctions as well. 

Since the set of constraints can be inconsistent, a special check is needed before 
the first sequence is made to discover if the constraint rules really define partial 
ordering among jobs. If there is any cycle in the constraint set, there is no ordering, and 
the constraints define “impossible” task. 
 

5.8 Discussion 
 
In this chapter a novel scheduling concept was shown that implements on-line support 
for dynamic flow-shop scheduling and integrates the virtual manufacturing concept and 
reinforcement learning to form a scheduling agent. 

Virtual manufacturing implements a kind of service to the real manufacturing 
system: it simulates different manufacturing layouts in the fraction of time of the real 
processes and makes schedule proposals whenever they are asked for. When no exact 
algorithms exist to solve a scheduling problem, improving algorithms such as RL 
combined with SA can be used as the “learning module” of the agent. The combined 
algorithm exploits the results of the temperature bounds theorem shown in Chapter 3 
and gives reasonable improvement of classical heuristic solutions with respect to off-
machining times. Furthermore, the agent can make corrected proposals if some 
unexpected event, such as machine failure occurs. Static algorithms can be easily used 
for cost efficiently initializing the scheduling agent. 

Precedence constrains are treated naturally by the special “matrix covering” 
technique. 
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Chapter 6 

Summary and Future Work 
 
 
 
In the dissertation combined reinforcement learning concepts, problems, proposed 
solutions, algorithms and application examples have been shown. Our contributions to 
this broad and continuously evolving interdisciplinary scientific domain can be 
classified around three topics: 
 
1) We proposed a general simulated annealing model tailored to reinforcement 

learning which lets the learning agent make smooth exploration and exploitation 
balancing in a defined control parameter domain. 
a) We used the Boltzmann distribution for assigning probability values to 

individual decision actions. It was shown that if the control parameter, 
temperature T converges to infinity, the probability distribution approaches the 
uniform distribution, and if T converges to 0, the probability distribution 
approaches to the greedy distribution. 

b) We showed that uniform and greedy distributions can be approached with a 
sufficiently small error, say ε , at finite and nonzero values of T, whenever the 
preference values are also finite. The smallest T value which guarantees uniform 
distribution within error level ε  and the largest T value that guarantees greedy 
distribution within the error level ε  were determined. 

c) We worked out a simulated annealing method which defines an annealing 
schedule between the extremes of T, on a given time horizon. 

d) The model was validated on the “n-armed bandit” problem test-bed. 
 
2) The Boltzmann distribution based simulated annealing model was applied in 

distributed shortest-path computation, and a new combined Q-learning and 
Boltzmann annealing based routing algorithm was developed which solves the “loop 
detection” and the “path recovery” problems of the Q-routing algorithm. 
a) We showed that the convergence of Q-learning under distributed action-state 

value representation is retained. 
b) A loop detection framework was added to the Q-routing model, which aids to 

reward acyclic parts of a delivery path, and to punish those parts that make up 
the cycle. 

c) A re-annealing protocol framework was also proposed to support path recovery 
when router or link comes into normal operation again after recovering damage. 
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d) A protocol extension was proposed on the “option-level” of the Internet Protocol 
version 4 standard. 

e) The whole annealing model was validated on our Java-based distributed network 
simulator program. 

 
3) An integrated reinforcement learning and simulated annealing based scheduling 

agent was proposed that uses the concept of virtual manufacturing. The agent is 
capable to propose improving flow-shop schedules, on-line, and is capable to follow 
environmental changes, such as machine breakdowns. 
a) A sequencing method based on Boltzmann annealing defined preference values 

was developed. 
b) An evaluation algorithm (reward function) was derived to determine off-

machining times for the flow-shop scheduling. 
c) We compared the model to other heuristic methods were made, both in static 

and dynamic aspects. 
d) A real system-virtual system communication protocol was proposed, and the 

scheduling agent and its test framework were implemented. 
 
The three areas mark three possible directions of future development : 

• The annealing model can be improved in two ways: It would be interesting to 
examine the behavior of the Boltzmann distribution over the set of complex 
numbers and to examine how annealing schedules and application domains are 
interrelated. 

• Implementing the proposed routing protocol within the frameworks of ordinary 
dynamic routing protocols is also a key issue, which would open the possibility 
of real- life testing for a broad range of users. 

• The proposed scheduler agent is only the first step toward the implementation of 
intelligent, on- line “services” to support real manufacturing systems. It is still 
interesting questions how the proposed framework can be used for supporting 
different scheduling (or not necessarily scheduling) problems, or how the agent 
can be made more intelligent in terms of utilizing feed-back from the real 
manufacturing systems. 
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Appendix A 

Proofs to Temperature Bounds Theorems 
 
 
 
Theorem 3.1: If temperature T approaches infinity, the action selection probability of 
all the actions approaches the uniform distribution; if T goes to zero the probability of 
selecting the strictly highest Q-valued action goes to 1, while the selection probability 
of others’ goes to 0. If there are k maximal equally preferred actions, the probability of 

making selections from among these actions goes to 
k
1

 as T goes to zero. 

 
Proof 3.1: First, transformation of the Boltzmann-formula is required serving as the 
starting point of all proofs through the rest of the appendix. 
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The parameters’ domain is set to 
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The case of temperature approaching infinity has, therefore, been proved. 
In the second case, when temperature approaches zero, there are two sub-cases: the first 
one is when there is only one maximal preference value, and the second one is when 
there are k equal and maximal preference values. 
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Before deriving the limit expressions, equation A1 should be further transformed. Since 
j runs from 1 to n, it is necessary that ij =  be satisfied at least once. Thus, 
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Theorem 3.2: Consider, 0>ε , as a small positive number, and an upper and a lower 
bound on Q-values, Qmax and Qmin. The following inequalities are held under these 
circumstances: 
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Note that κ  is the minimal difference between the largest and second largest Q-value, 
and due to the discrete nature of Qs, this difference is minimally 1. Also note that only a 
single value is allowed to maximize Q. 
 
It is the simpler part to establish (a), since the upper bound of temperature comes from 
the limitation of Q-values. The goal is as follows: 
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It comes from the preconditions, that ],[, maxmin QQQQ ji ∈ , which can be written as 

maxmin , QQQQ ji ≤≤ , for ji,∀ . So it is easy to see that, 
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since T
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Putting inequalities A4 and A5 together a lower bound on pi is received. Following 
similar reasoning, an upper bound can also be determined, and the two bounds for pi can 
be written as 
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An ε  should be found for which the bounds of equation A3 is held to the bounds of 
equation A6 as well. Hence, the stricter property is formulated as 
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Arranging these formulas to x, the lower limit of x is given as 
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Replacing x with the original exponential phrase, 
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As for the (b) part of Theorem 3.2, the theoretical lower bound of the temperature is 
naturally 0, but using zero temperature causes division by zero error during numerical 
computations. So, in practical applications the lower limit of the temperature must be 
slightly higher than zero, even high enough to avoid floating point errors, but small 
enough to guarantee greedy probability distribution at the specified error level. 

Since the probability pi can never be larger than 1, instead of equation ε<− ip1 , 

equation ε<− ip1  is considered. It was clear in part (a), that bounds on pi values must 

be found, but in this special case only lower bound of pi is to be examined. Taking the 
form of equation A2 of the Boltzmann formula, the lower bound can be set as 
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for some κ . Getting denominators disappeared, the previous inequality is held if 
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preconditions of the theorem it was stated that Qi is the highest among all Q-values, 
therefore 
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Returning to ε<− ip1 , the inequality must also be true, if the value pi is replaced by a 

stronger constraint, by the left-hand side part of inequality A10. So, 
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Due to the division by a negative number the relational signal turns over, and the lower 
temperature bound is expressed as 
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Appendix B 

Routing Table Example from a CISCO 12000 
Router 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B1 
Routing table excerpt from a CISCO 12000 router 

#sh ip route 
Codes: C-connected, S-static, I-IGRP, R-RIP, M-mobile, B-BGP 
       D-EIGRP, EX-EIGRP external, O-OSPF, IA-OSPF inter area 
       N1-OSPF NSSA external type 1, N2-OSPF NSSA external type 2 
       E1-OSPF external type 1, E2-OSPF external type 2, E-EGP 
       i-IS-IS, L1-IS-IS level-1, L2-IS-IS level-2, ia-IS-IS inter ar. 
       *-candidate default, U-per-user static route, o-ODR 
 
Gateway of last resort is not set 
 
B    208.221.13.0/24 [20/0] via 62.40.103.73, 1w3d 
B    206.51.253.0/24 [20/0] via 62.40.103.73, 1w3d 
B    205.204.1.0/24 [20/0] via 62.40.103.73, 1w3d 
B    216.103.190.0/24 [20/0] via 62.40.103.73, 1w3d 
B    213.239.59.0/24 [20/0] via 62.40.103.73, 1w3d 
B    213.152.76.0/24 [20/0] via 62.40.103.73, 00:19:06 
B    212.205.24.0/24 [20/0] via 62.40.103.73, 1w0d 
     209.16.192.0/25 is subnetted, 1 subnets 
B    209.16.192.128 [20/0] via 62.40.103.73, 1w3d 
B    207.254.48.0/24 [20/0] via 62.40.103.73, 1w3d 
B    205.152.84.0/24 [20/0] via 62.40.103.73, 1w3d 
B    203.171.97.0/24 [20/0] via 62.40.103.73, 1w3d 
B    203.1.203.0/24 [20/0] via 62.40.103.73, 1w3d 
B    198.205.10.0/24 [20/0] via 62.40.103.73, 4d16h 
B    192.35.226.0/24 [20/0] via 62.40.103.73, 6d12h 
     170.171.0.0/16 is variably subnetted, 4 subnets, 2 masks 
B    170.171.0.0/16 [20/0] via 62.40.103.73, 1w3d 
B    170.171.251.0/24 [20/0] via 62.40.103.73, 1w3d 
B    170.171.253.0/24 [20/0] via 62.40.103.73, 1w3d 
B    170.171.252.0/24 [20/0] via 62.40.103.73, 1w3d 
S    193.224.167.0/24 [1/0] via 193.6.21.142 
O    157.181.141.0/29 
           [110/2] via 195.111.97.170, 1d06h, GigabitEthernet2/1.912 
O    193.225.57.232 [110/2] via 195.111.97.68, 1d06h, POS1/2 
C    193.6.27.0/25 is directly connected, GigabitEthernet3/2 
S    193.6.27.62/32 [1/0] via 193.188.137.31 
S    193.6.27.62/32 [1/0] via 193.188.137.31 
S    193.6.27.63/32 [1/0] via 193.188.137.46 
B    192.23.11.0/24 [20/0] via 62.40.103.73, 1w3d 
B    192.6.26.0/24 [20/0] via 62.40.103.73, 05:27:22 
O IA 195.111.97.225/32 [110/3] via 195.111.97.67, 1d06h, POS1/1 
O IA 195.111.97.224/32 [110/3] via 195.111.97.68, 1d06h, POS1/2 
O IA 195.111.97.227/32 [110/3] via 195.111.97.66, 1d06h, POS1/0 
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Appendix C 

IP Packet Format Extensions of the Boltzmann-
exploration Q-routing Algorithm 
 
 
 
In this appendix the protocol specification of the Boltzmann-annealing based routing 
algorithm can be found. Though the simulator is written over UDP protocol, the concept 
can be implemented using slight modifications in the IP header. Figure C1 illustrates the 
original IP header specified in [R35], Figure C2 illustrates IP header holding the 
proposed extensions for data packet types. 
 
 

 
 

Figure C1 
The specification of the IP packet header. Each row consists of four bytes 

 
The meaning of the individual fields is as follows: 

• Version: In case of IP version 4 this field is set to 4. 
• Header Length (HL): the length of the header in 32-bit units. The maximal 

allowable length is 60 bytes. 
• Type of Service (TOS): This field can be used by routers which implement 

priorities and quality of service in transmitting IP-packets. 
• Datagram length: The length of the whole datagram including the header. 
• Sequence number: Unique identifier of a packet on particular source. 
• Flags: Used for indicating fragmentation. 
• Offset: Used for indicating fragments’ order. 
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• Time to Live (TTL): The maximum allowable life-time of the packet. 
• Protocol: The field is used for indicating higher level protocols such as TCP or 

UDP. 
• Checksum: CRC checksum computed for the whole packet. 
• Source IP address: Identifier of the source node. 
• Destination IP address: Identifier of the destination node. 
• Options: Special options for specific usage, e.g. source routing. 
• Padding: Empty placeholder to extend the header to end up on 32-bit boundary. 

 
 

 
 

Figure C2 
Proposed extensions in the IP header. Data packet example 

 
The different fields are as follows: 

• Control word: Holds control bits which are used as packet type identifiers (1-
hello, 2-control, 4-data, 8-acknowledgement, 16-looped bit, 32-raise 
temperature, 64-send me Q (SMQ), 128-SMQ acknowledgement). The control 
word determines the remaining options as well. The following three options are 
valid for ordinary data packets only. Figure C3, Figure C4, Figure C5, Figure C6 
and Figure C7 indicates the option field of acknowledgement, hello, raise 
temperature, send me Q and send me Q acknowledgement packets respectively. 

• Timestamp: When the packet header is stored on routers, this filed is applied to 
hold the storage time. 

• From identifier: the identifier of the link where the packet has come from. 
• To identifier: the identifier of the link where the packet has sent to. 
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Figure C3 
Option part of acknowledgement packets 

 
The meaning of extra options is as follows: 

• Control code: The same as in the case of data packets. 
• Q-value: The floating point representation of the estimated Q-value21. 

 
 

 
 

Figure C4 
Option part of hello packets 

 
Note that in the case of hello packet there is no need for extra information introduced in 
the extended data packet format, only the control code is required. The same applies for 
raise temperature packets and SMQ packets as well. 
 
 

 
 

Figure C5 
Option part of raise temperature packets 

 
 

 
 

Figure C6 
Option part of send me Q (SMQ) packets 

 
 
 

                                                 
21 Estimated by the neighbor. 



 113 

 
 

 
 

Figure C7 
Option part of SMQ acknowledgement packets. 
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Appendix D 

The Flow-shop Schedule-evaluation Function 
 
 
 
Let processing machines be denoted by A and B, jobs by njjj ,...,, 21 . Let the job 

sequence be the same on both machines, i.e. pipeline processing. Processing times of 
the individual jobs on machines A and B are denoted by nAAA ,...,, 21 , and  nBBB ,...,, 21  

respectively. Let nXXX ,...,, 21  denote off-machining. The reason why off-machining 

times exist is that job jk+1 cannot start on machine A, since job jk has not finished (jobs 
may not be interrupted), and similarly job jk cannot start on machine B since it has not 
finished on machine A. Gantt-chart illustration is shown in Figure D1. 
 
 

 
 

Figure D1 
Gantt-chart of two-machine in flow-shop scheduling. Job sequence j1, j2, j3, j4 is 

assumed 
 
 
Off machining times can be computed by the following equation: 
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The total off-machining time is, therefore, given by 
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and computed by the algorithm shown in Figure D2. 
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Note that equation D2 does not involve any off-machining times on machine A. An 
improved version of the model is when there are also two processing units, for the  
future consistency, B and C, and there are off-machining times on both of them denoted 
by nXXX ,...,, 21  and nYYY ,...,, 21 , on machines B and C respectively. Equations D1 and 

D2 are then modified 
 

∑ ∑ ∑∑
=

−

=

−

==

−−+=
k

j

k

j

k

j
jj

k

j
jjk YCXBY

1

1

1

1

11

),0max( , 
 
(D3) 

 
and 
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(D4) 

 
Gantt-chart corresponding to the new layout is shown in Figure D3. An algorithm that 
computes the sum of off-machining times is shown in Figure D4. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D2 
Computation of off-machining times for two-machine flow-shop scheduling 

 
 

 
 

Figure D3 
Gantt-chart of two-machine flow-shop scheduling with initial off-machining times 

input: Ai, Bi, i=1..n 
output: Xsum 
function two_machine_task([A1..An],[B1..Bn]) 
begin 
  A:=A1; B:=B1; X:=A1; Xsum:=X; 
  for i=2 to n do 
    A:=A+Ai; 
    X:=max(0,A-B-Xsum); 
    Xsum:=Xsum+X; 
    B:=B+Bi; 
  end 
end 
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Figure D4 
Computation of off-machining times on two-machine flow-shop scheduling with initial 

off-machining times on the first equipment 
 
 
When the two tasks are joined together, i.e. scheduling in Figure D1 and Figure D3, the 
resulting task is a three-machine scheduling with off-machining times on the second and 
the third machines only. Note that off-machining times on the third machine directly 
depend only on off-machining times as well as machining times on the second 
equipment, so when values of Xi have been computed Yi can be done as well. Figure D5 
illustrates the three-machine layout; Figure D6 gives formal algorithmic description to 
compute off-machining times for the 3-machine task. 
 

 
 

Figure D5 
Three-machine flow-shop scheduling task with off-machining times occurring on 

machines B and C 
 
Since there are repetitions in the core of the cycle, the algorithm can be extended to 
arbitrary number of jobs and machines. By induction and rearrangement of operations it 
is shown that algorithm in Figure D7 computes off-machining times for n jobs and m 
machines. 

input: Bi, Ci, Xi, i=1..n 
output: Ysum 
function two_machine_extended_task([A1..An],[B1..Bn],[X1..Xn]) 
begin 
  B:=B1; C:=C1; X:=X1; Y:=B1+X1; Ysum:=Y; 
  for i=2 to n do 
    B:=B+Bi; 
    X:=X+Xi; 
    Y:=max(0,B+X-C-Ysum); 
    Ysum:=Ysum+Y; 
    C:=C+Ci; 
  end 
end 
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The data structures take a more compact form: 
Matrix M stores machining times on different machines for different jobs, where 
machines are indexed by mi ,...,2,1=  and jobs by nj ,...,2,1= . 

Matrix D has the same dimensional properties as M  has and is used for storing off 
machining times during computation. It indicates how much the off-machining time is 
on machine i before starting job j. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D6 
Computation of off-machining times having three machines and off-machining times on 

the second and the third one 
 
Property D1: For all machines the sum of off-machining times can be computed by: 
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Property D2: It is reasonable to accept that the first machine does not produce any off-
machining, so 
 

0),1( =jD , for nj ,...,2,1= . (D6) 
 
Machining times measured on individual processors are summed up in vector s. Since 
any algorithm that uses off-machining time evaluation may set up arbitrary job 
sequence, it is reasonable to address matrices not directly, but through a permutation 
vector that stores a certain job sequence. The job permutation vector is denoted by p 
and it stores a possible permutation of n,...,2,1 . 

In some cases there are already-running jobs on the other machines when the first job 
starts to execute on the first machine. The expected finish times of these initial 
operations may influence the rest of the schedule, thus, they need to be built into the 

input: Ai, Bi, Ci, i=1..n 
output: Xsum, Ysum 
function three_machine([A1..An],[B1..Bn],[C1..Cn]) 
begin 
  A:=A1; B:=B1; C:=C1; X:=A1; Y:=A1+B1; 
  Xsum:=X; Ysum:=Y; 
  for i=2 to n do 
    A:=A+Ai; 
    X:=max(0,A-B-Xsum); 
    Xsum:=Xsum+X; 
    B:=B+Bi; 
    Y:=max(0,B+Xsum-C-Ysum); 
    Ysum:=Ysum+Y; 
    C:=C+Ci; 
  end 
end 
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model. The expected initial processing time on a single machine appears as a boundary 
condition, and is denoted by b for the whole machine set. If it is smaller than the 
accumulated initial waiting time on a particular machine, it is simply subtracted from 
the corresponding initial off-machining time value. If it is larger, it delays the schedule 
on that machine; the if- then rule indicates this special case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D7 
Algorithm to compute off-machining times to arbitrary number of machines and jobs 

 
Property D3: The computation cost of the algorithm is as follows:  
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< 
 

input: M(m,n), p(n), b(m); 
output: v; 
storage: d(n), D(m,n), g(m); 
function n_machine (M,p,b) 
begin 
  v:=0; 
  for i:=1 to m do 
    g(i):=b(i)-v; 
    s(i):=M(i,p(1)); 
    d(i):=max(0, -g(i)); 
    D(i,1):=d(i); 
    if g(i)<0 then g(i):=0; 
    v:=v+M(i,p(1)); 
  end 
  for j:=1 to n do D(1,j):=0; 
  for j:=2 to n do 
    for i:=1 to m do 
      s(i):=s(i)+M(i,p(j)); 
      D(i+1,j):=max(0,s(i)+d(i)-s(i+1)-d(i+1)); 
      d(i+1):=d(i+1)+D(i+1,j); 
    end 
    s(m):=s(m) +M(i,p(j)); 
  end 
  v:=0; 
  for i:=1 to m do v:=v+d(i); 
end 
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Appendix E 

Structure of the CD-ROM 
 
 
 
The structure of the CD-ROM appendix can be found in Figure E1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E1 
Structure of the CD-ROM appendix 

 
The README.txt file contains further information about the software as well as the 
documents located on the disk. 
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