

Consistent, global state transfer
for message-passing parallel algorithms in

Grid environments

PhD thesis

Written by

József Kovács
research fellow
MTA SZTAKI

Advisors:
Dr. Péter Kacsuk (MTA SZTAKI)

Dr. László Kovács (ME)

Leader of Doctoral School:
Dr. Tibor Tóth

Computer and Automation Research Institute,
Hungarian Academy of Sciences

(MTA SZTAKI)

„Hatvany József” Doctoral School of Information Science,
 University of Miskolc

(ME)

Budapest, 2008

 2

Abstract
This dissertation introduces a new way to combine and complement existing

parallel checkpointing techniques to be applied for software heterogeneous
ClusterGrid infrastructure in order to provide transfer (migration) of parallel
algorithms (applications) among clusters and nodes. While existing solutions are
aiming at providing application transparency by building special middleware, the
solution presented in this dissertation provides both application and middleware
transparency for the algorithms at the same time.

This dissertation addresses the problem of migrating parallel applications
among clusters where source and target clusters may not be operated by identical
middleware components. In this case, application may not lay on any special service
provided by the middleware running on the cluster. Therefore the solution must
somehow be designed in a way that middleware of the cluster is not taking part in the
checkpointing procedure and the application programmer must not be forced to touch
his/her application source code to reach this functionality.

The solution presented in this dissertation introduces a new checkpointing
method by which transparent migration of parallel applications can be solved. The
overall checkpointing design space is introduced, requirements are defined and the
method is introduced. Two different checkpointing frameworks – targeting different
application development methods - have been designed and introduced: Grapnel and
TotalCheckpoint. Based on these results process and application migration is
introduced providing middleware and application transparency.

 3

Contents

ABSTRACT..2

CONTENTS ...3

LIST OF FIGURES..6

ABBREVIATIONS ..7

1 INTRODUCTION..9

1.1 CLUSTER, GRID, CLUSTERGRID ..10
1.2 OVERVIEW OF ROLLBACK -RECOVERY TECHNIQUES ...12
1.2.1 LOG-BASED ROLLBACK/RECOVERY...13
1.2.2 CHECKPOINT-BASED ROLLBACK/RECOVERY...14
1.2.3 CHECKPOINT BASED MIGRATION...16
1.3 OVERVIEW OF CHECKPOINTING AND MIGRATION FRAMEWORKS17
1.3.1 COCHECK...17
1.3.2 CONDOR...18
1.3.3 FAIL -SAFE PVM ...18
1.3.4 DYNAMITE ...19
1.3.5 MPVM (MIST)...20
1.3.6 TMPVM..21
1.3.7 DAMPVM ...21
1.3.8 CHARM ...22
1.3.9 CLIP ..22
1.3.10 ZAPC..23
1.3.11 LAM/MPI ..23
1.3.12 CHARM4MPI ..24
1.3.13 FT-MPI ..24
1.3.14 STARFISH MPI..25

2 NEW CHECKPOINTING METHOD ON CLUSTERGRID............26

2.1 TRANSPARENCY CONDITIONS IN CLUSTERGRID ENVIRONMENTS27
2.1.1 OVERVIEW ...27
2.1.2 IDENTIFICATION OF THE COMPONENTS..27
2.1.3 USE CASES..29
2.1.4 REQUIREMENTS IN CLUSTERGRID...32
2.1.5 FORMAL DEFINITION OF THE REQUIREMENTS..33
2.1.5.1 Abstract State Machines ..33
2.1.5.2 Basic universes, functions and relations ...34
2.1.5.3 Formal definition of the requirements ..35
2.1.6 ANALYSIS OF THE REQUIREMENTS..36
2.1.6.1 Existing checkpointing techniques ...36
2.1.6.2 Classification of related works ...37
2.2 THE CLUSTERGRID CHECKPOINTING METHOD ...41
2.2.1 OVERVIEW ...41

 4

2.2.2 INTRODUCTION OF THE CLUSTERGRID METHOD..41
2.2.3 FORMAL DEFINITION OF THE CLUSTERGRID CHECKPOINTING METHOD......................44
2.2.4 DEFINITION OF THE CPGROUND ASM MODEL ..48
2.2.4.1 Universes and signatures..48
2.2.4.2 Initial state...49
2.2.4.3 Rules ...49
2.2.5 VALIDATION OF THE CPGROUND MODEL..56

3 CHECKPOINTING PVM APPLICATIONS..................... ...62

3.1 THE GRAPNEL CHECKPOINTING FRAMEWORK ...63
3.1.1 OVERVIEW ...63
3.1.2 P-GRADE ENVIRONMENT AND GRAPNEL LANGUAGE ..63
3.1.3 THE GRAPNEL CHECKPOINTING SOLUTION...66
3.1.3.1 Overview of the solution..66
3.1.3.2 Structure of the GRAPNEL checkpointing framework ...68
3.1.3.3 The GRAPNEL checkpointing protocol ...69
3.1.3.4 Checkpoint aware communication primitives ...71
3.1.3.5 Interruption and consistent cut ...73
3.1.3.6 Redesigned communication algorithms ..75
3.1.4 DEFINITION OF THE CPGRAPNEL ASM MODEL..77
3.1.4.1 Universes and signatures..77
3.1.4.2 Initial state...78
3.1.4.3 Rules ...78
3.1.5 CORRESPONDENCE OF CPGROUND AND CPGRAPNEL ASM MODELS86
3.1.5.1 Notion of equivalence..86
3.1.5.2 Proof of equivalence ..87
3.2 THE TOTAL CHECKPOINT FRAMEWORK ..93
3.2.1 OVERVIEW ...93
3.2.2 STRUCTURE AND PRINCIPLES..93
3.2.3 DESIGN ISSUES AND SOLUTIONS..95
3.2.3.1 Identification of processes ...95
3.2.3.2 Dynamic process creation ..95
3.2.3.3 Starting the execution ..96
3.2.3.4 Recovering the execution...98
3.2.3.5 Checkpointing the application..101
3.2.3.6 Restoring message buffers with dynamic message format103
3.2.4 COMPARISON OF GRAPNEL AND TCKPT CHECKPOINTING....................................104
3.2.5 OVERVIEW OF THE ENHANCED TCKPT...105
3.2.6 DEFINITION OF CPTCKPT ASM MODEL ...107
3.2.6.1 Universes, Signatures and Initial state..107
3.2.6.2 Rules ...108
3.2.7 RELATION OF CPGRAPNEL AND CPTCKPT ASM MODELS..110
3.2.7.1 Correctness of refinement ..110

4 MIGRATION OF PVM APPLICATIONS112

4.1 PROCESS MIGRATION ON CLUSTERS..114
4.1.1 OVERVIEW ...114
4.1.2 CONDOR...114
4.1.3 SELF-COORDINATED MIGRATION IN THE GRAPNEL APPLICATION..........................115
4.1.3.1 Assumptions..115
4.1.3.2 Key components ..115

 5

4.1.3.3 Preparation of the migration procedure ..116
4.1.3.4 The migration procedure..116
4.1.3.5 Migration among nodes under the Condor job scheduler117
4.1.4 MODELLING ...120
4.1.5 SUMMARY ..121
4.2 APPLICATION MIGRATION ON CLUSTERGRID ...122
4.2.1 OVERVIEW ...122
4.2.2 MOTIVATION ..122
4.2.3 DESIGN ISSUES...122
4.2.3.1 Initiation of application migration..123
4.2.3.2 Self-checkpoint capable server process ..124
4.2.3.3 Migration of working files of the application ...125
4.2.4 FLOW OF MIGRATION..125
4.2.5 MODELLING ...127
4.2.6 SUMMARY ..128

5 DISCUSSION AND CONCLUSION...130

6 ACKNOWLEDGEMENT..132

7 REFERENCES...133

 6

List of Figures
Figure 1 Classification of rollback-recovery algorithms ..12
Figure 2 Classification of checkpoint levels ..15
Figure 3 The CoCheck checkpointing protocol..17
Figure 4 View of the Condor MW paradigm ...18
Figure 5 Architecture of Fail-safe PVM ..19
Figure 6 Architecture of the Dynamite PVM system ...20
Figure 7 The tmPVM virtual machine ...21
Figure 8 Structure of CLIP..23
Figure 9 Structure of the FT-MPI implementation...24
Figure 10 Architecture of the Starfish MPI..25
Figure 11 Components of a checkpointing environment..28
Figure 12 Structure of the proposed checkpointing technique....................................44
Figure 13 Phase transition diagram of the CPground model ..60
Figure 14 Hierarchical design in the P-GRADE environment....................................64
Figure 15 Relation of P-GRADE and GRAPNEL application65
Figure 16 Structure of a GRAPNEL application generated by P-GRADE67
Figure 17 Structure of the Grapnel application in checkpoint mode...........................68
Figure 18 Guarded communication primitives to prevent interruption72
Figure 19 Modification of receive communication primitives to multi-receive73
Figure 20 Consistent and inconsistent cuts in a system state......................................74
Figure 21 Phase-transition diagram of processes in CPgrapnel ASM model87
Figure 22 Computational segments in CPground and CPgrapnel models...........................88
Figure 23 Startup phase of SGMINITIALISATION in CPground and CPgrapnel models89
Figure 24 Resumption phase of SGMINITIALISATION in CPground and CPgrapnel models....90
Figure 25 Communication phase of SGMEXECUTION in CPground and CPgrapnel models ..91
Figure 26 Checkpoint/Restart phase of SGMEXECUTION in CPground and CPgrapnel models

..91
Figure 27 Termination phase of SGMTERMINATION in CPground and CPgrapnel models92
Figure 28 Shutdown phase of SGMTERMINATION in CPground and CPgrapnel models92
Figure 29 Architecture of the Totalcheckpoint framework...94
Figure 30 Protocol of normal startup for a single process ..97
Figure 31 Protocol of normal startup for the child process...98
Figure 32 Protocol of resumption at startup for a single process99
Figure 33 Protocol of resumption at startup for the entire application100
Figure 34 Protocol of checkpoint saving in TCKPT ..102
Figure 35 Software layers in GRAPNEL and TCKPT checkpointing105
Figure 36 Comparison of structures of GRAPNEL and TCKPT checkpointing105
Figure 37 Evolution of the Enhanced Totalcheckpoint framework...........................106
Figure 38 Coordinator initialisation in the Enhanced TCKPT framework106
Figure 39 Structure of the Enhanced TCKPT framework..107
Figure 40 Startup phase of SGMINITIALISATION in CPgrapnel and CPtckpt models...........111
Figure 41 Resume phase of SGMINITIALISATION in CPgrapnel and CPtckpt models..........111
Figure 42 Migration protocol in the GRAPNEL application117
Figure 43 Migration of GRAPNEL application among Condor nodes119
Figure 44 Process checkpointing and termination in CPgrapnel..................................120
Figure 45 Initialisation and resumption segment in CPgrapnel....................................121
Figure 46 Phases of application migration in ClusterGrid..126
Figure 47 Application checkpointing and termination in CPgrapnel............................127
Figure 48 Application resumption in CPgrapnel..128

 7

Abbreviations

APP APPlication

ASM Abstract State Machine

CKPT CheKPointT

CP CheckPoint

CR Checkpoint-Restart

CRR Checkpointing and Rollback-Recovery

DIWIDE DIstributed WIndows DEbugger

FT Fault-Tolerant

GCA Grid Checkpointing Architecture

GRAPNEL GRAPhical NEtwork Language

GRED GRaphical EDitor

GRP GRaPh (graph representation of GRAPNEL)

GUI Graphical User Interface

HPC H igh Performance Computing

HTC H igh Throughput Computing

ID IDentifier

IO or I/O Input-Output

LIB LIB rary

MPE Message Passing Environment

MPI Message Passing Interface

MW Master-Worker

NFS Network File System

OS Operating System

P-GRADE Parallel Grid Run-Time and Application Development
Environment

PVM Parallel V irtual Machine

PVMD PVM Daemon

PVMLIB PVM LIB rary

PWD PieceW ise Deterministic

RM Resource Manager

SCHED SCHEDuler

SGM Computational SeGMent

 8

SI,SR,SF Initial State, Running State, Finishing State

SRC SouRCe (code)

STID System Task IDentifier

TCKPT TotalChecKPoinT

TID Task IDentifier

TM Turing Machine

UTID User Task IDentifier

 9

1 Introduction
Parallel applications are developed to utilise the computational power of

numerous computers to increase performance. These applications consist of processes
for calculation and a message-passing framework to exchange sub results among the
processes running on different node of a supercomputer, a cluster or a Grid. The
executing infrastructure is a collection of machines accumulating mainly processing
and storage capacity. Due to the inherently dynamic and error prone behaviour,
parallel applications must survive the loss of any resource they are using during
execution.

In order to avoid the failure of a parallel application running on multi nodes,
special checkpointing techniques are required to save the overall state of the
application. Later, the application can be resumed on a different set of nodes based on
the saved state. Process migration in distributed systems is an event when a process
running on a resource is redeployed to another one in a way that the migration does
not influence the result of calculation. To enable this mechanism a very strict and
coordinated cooperation of the operating system, scheduler, checkpointer, message-
passing framework and the application is required.

The goal of the research is to design and provide a parallel checkpointing
technique for parallel applications and execution environments, where the impact
generated by the checkpointing facility is minimized for the entities mentioned above.
In this work, a highly automated new checkpointing framework is presented. The main
design goals are to perform programmer transparency, adaptability, automation and
independence from the execution environment.

The dissertation is organised in the following way. Section 1 is to define the
scope of the dissertation by introducing Clusters, Grid and ClusterGrid in section 1.1,
by over viewing the rollback/recovery and checkpointing techniques in section 1.2,
and by summarising existing solutions in section 1.3.

In section 2 the focus is on to develop a general method. First, transparency
conditions are identified in section 2.1 and then the method is defined in section 2.2.
In both cases a formal description is given based on the model framework introduced
in section 2.1.5.2. For the method, the ground model is elaborated in section 2.2.4 by
defining the initial states and finally the model is validated in section 2.2.5.

Section 3 aims at giving a concrete checkpointing solution applying the ground
model. The P-GRADE checkpointing and migration framework is developed in
section 3.1, the corresponding model is introduced in section 3.1.4 and its relation to
the ground model is detailed in section 3.1.5. To overcome the limitations of the
P-GRADE checkpointer, the TotalCheckpoint framework is designed and introduced
in section 3.2. Finally, the corresponding model is developed in section 3.2.6, and the
relation to the grapnel model is detailed in section 3.2.7.

Section 4 is detailing the method of migration based on the P-GRADE
checkpointer tool. Process migration is defined and introduced in section 4.1, while
application migration is elaborated in section 4.2.

Finally, section 5 discusses and summarises the work described in this
dissertation and section 6 contains references.

 10

1.1 Cluster, Grid, ClusterGrid
In order to deliver more performance, increasing the number of processors to

execute a job is trivial. With the increasing speed of network components and with the
decreasing cost of single processor computers building computer clusters in the early
90s became an efficient alternative to the different supercomputers containing
hundreds/thousands of processors but with an extremely high-cost.

A computer cluster [26] is a group of tightly coupled computers that work
together closely to provide the view of a single computer. The components of a cluster
are usually, but not always, connected to each other through fast local area networks.
High-performance computing (HPC) clusters are implemented primarily to provide
increased performance by splitting a computational task across many different nodes
in the cluster, and are most commonly used in scientific computing.

The HPC computer cluster can be defined as follows:

1. Consists of many of the same or similar type of machines
(Heterogeneous clusters are a subtype, still mostly experimental)

2. Machines use dedicated network connections

3. All machines share resources such as a common home directory
(NFS can be a problem in very large clusters.)

4. They must trust each other so that rsh or ssh does not require a password,
otherwise you would need to do a manual start on each machine.

5. Must have communication software such as an MPI or PVM implementation
installed to allow programs to be run across nodes

Such clusters commonly run custom programs which have been designed to
exploit the parallelism available on HPC clusters. HPCs are optimized for workloads
which require jobs or processes running on the separate cluster computer nodes to
communicate actively during the computation. These include computations where
intermediate results from one node's calculations will affect future calculations on
other nodes.

The concept of Grid [28] emerged as a natural extension and generalization of
distributed supercomputing or meta-computing [27]. Still one of the important goals of
the Grid is to provide a dynamic collection of resources from which applications
requiring very large computational power can select and use actually available
resources. In that sense Grid is a natural extension of the concepts of supercomputers
and clusters towards an even more distributed and dynamic parallel program execution
platform and infrastructure. Components of such a Grid infrastructure include
supercomputers and clusters and hence parallel application programs and
programming tools of supercomputers and clusters are expected to be used in the Grid,
too.

These days there are many projects with the idea of extending and generalizing
the existing parallel program development and execution environments towards the
Grid. The current idea is that a parallel program that was developed for
supercomputers and clusters should be used in the Grid, too. Indeed, execution of a
parallel program in the Grid does not defer semantically from the execution in a
parallel computing system. The main difference comes from the speed, reliability,
homogeneity and availability of the exploited resources. In the traditional parallel

 11

systems like supercomputers, the speed of the processors, communication networks,
memory access, I/O access are steadily high, the components of the supercomputers
are homogeneous and highly reliable and statically available (after allocating them by
a resource scheduler). Clusters have more or less the same parameters as the
supercomputers though their components might be heterogeneous, they are usually
less reliable, a bit slower and the availability of their components is less static than in
the supercomputers.

The Grid represents a significant modification in these parameters. The Grid is
very heterogeneous, the components (resources) dynamically change both in the
respect of their speed and availability and there is no guarantee for their reliability. It
means that a parallel program that was developed for a homogeneous, high-speed,
static and reliable execution environment should perform satisfactorily well even in a
heterogeneous, changing-speed, dynamic and un-reliable execution environment.

In a computational Grid various resources are collected where one or more
broker component performs the mapping of applications to resources based on the
application requirements and resource capabilities. In this dissertation ClusterGrid is
defined as a Grid that can contain clusters represented as one compound and
indivisible resource for the broker. Clusters can be maintained by different
organizations, so scheduling and execution policy as well as software environment of
the clusters can be different. On clusters various schedulers can handle jobs and at the
same time the cluster might run different versions of operating systems or message-
passing environments. Above all any kind of service can be installed additionally to
support the requirements of the organization owning and operating the cluster. These
services may differ in every cluster in the ClusterGrid.

Technology of Grid is closely related to cluster computing. The key
differences between grids and traditional clusters are that grids connect collections of
computers which do not fully trust each other, and hence operate more like a
computing utility than like a single computer. In addition, grids typically support more
heterogeneous collections than are commonly supported in clusters.

A ClusterGrid in the context of this dissertation is defined as a Grid of clusters,
where each cluster is handled as an individual and indivisible resource by the Grid.
Each cluster can be owned by different authorisation therefore clusters have their own
local policies regarding the handling of jobs to execute.

Since clusters have different policies, their middleware is also defined by the
local authority operating the cluster which results in a software-heterogeneous Grid of
clusters. Any job to be executed on a cluster might face with different middleware
components on the different clusters.

After a short introduction of Clusters, Grids and ClusterGrids, the focus is on
the latter one. A more precise definition of ClusterGrid will follow in Section 2.1.

 12

1.2 Overview of rollback-recovery techniques
In the recent decade numerous surveys, classifications and taxonomies have

appeared aiming at summarizing existing approaches of the different rollback-
recovery [49][50][51] techniques. The main purpose of this section is to give a short
overview of the rollback/recovery techniques based on the available literature.

Checkpoint is defined as a designated place in a program at which normal
processing is interrupted specifically to preserve the status information necessary to
allow resumption of processing at a later time [52]. Checkpointing is the process of
saving the status information. By periodically invoking the checkpointing process, one
can save the status of a program at regular intervals. If there is a failure one may
restart computation from the last checkpoint thereby avoiding repeating computation
from the beginning. The process of resuming computation by rolling back to a saved
state is called rollback recovery.

A checkpoint can be saved on either stable storage or the volatile storage of
another process, depending on the failure scenarios to be tolerated. For long-running
scientific applications, checkpointing and rollback-recovery can be used to minimize
the total execution times in the presence of failures. For mission-critical service-
providing applications, checkpointing and rollback-recovery can be used to improve
service availability by providing faster recovery to reduce service down time.

Rollback-recovery in message-passing systems is complicated by the issue of
rollback propagation (rolling back to previous state of the application enforced by the
inconsistency of message states) due to inter process communications. When the
sender of a message m rolls back to a state before sending m, the receiver process
must also roll back to a state before m’s receipt; otherwise, the states of the two
processes would be inconsistent because they would show that message m was not
sent but has been received, which is impossible in any correct failure-free execution.

Figure 1 Classification of rollback-recovery algorithms

In some cases, cascading rollback propagation may force the system to restart
from the initial state, losing all the work performed before a failure. This unbounded
rollback is called the domino effect. The possibility of the domino effect is highly
undesirable because all checkpoints taken may turn out to be useless for protecting an
application against losing all useful work upon a failure.

 13

In a message-passing system, if each participating process takes its
checkpoints independently then the system is susceptible to the domino effect. This
approach is called uncoordinated checkpointing. One way to avoid the domino effect
is to perform coordinated checkpointing: the processes in a system coordinate their
checkpoints to form a system-wide consistent state. A state is consistent if for every
process state it is true that 1) every message that has been received has also been sent
in the state of the sender and 2) each message that has been sent has also been received
in the state of the receiver.

Such a consistent set of checkpoints can then be used to bound the rollback
propagation. Alternatively, communication-induced checkpointing forces each process
to take checkpoints based on some application messages it receives from other
processes. This approach does not require system-wide coordination and therefore
may scale better. The checkpoints are taken such that a consistent state always exists,
and the domino effect cannot occur.

Systems with more than one processor are known as multiprocessor systems.
As the number of processors increase the probability of any one processor failing is
high. It has been found in practice that over 80% of the failures in such systems are
transient and intermittent [53]. Checkpointing and rollback recovery are particularly
useful in such situations. Checkpointing, however, is more difficult in multiprocessors
as compared to uniprocessors. This is due to the fact that in multiprocessors there are
multiple streams of execution and there is no global clock. The absence of a global
clock makes it difficult to initiate checkpoints in all the streams of execution at the
same time instance.

The aforementioned solutions rely solely on checkpoints, thus the name
checkpoint-based rollback-recovery. In contrast, log-based rollback-recovery uses
checkpointing and message logging (see Figure 1). In log-based rollback-recovery a
process can deterministically recreate its pre-failure state even if it has not been
checkpointed by logging and replaying the nondeterministic events in their exact
original order. It is mostly used for applications that frequently interact with the
outside world.

1.2.1 Log-based rollback/recovery
Log-based rollback recovery protocols, or message logging protocols,

supplement normal checkpointing with a record of messages sent by and received by
each process. If the process fails, the log can be used to replay the progress of the
process after the most recent checkpoint in order to reconstruct its previous state. This
has the advantage that process recovery results in a more recent snapshot of the
process state than checkpointing alone can provide. Additionally, log-based
approaches avoid the domino effect, since the failed process can be brought forward to
the global application state rather than individual processes being forced to roll back
for consistency with the failed process.

Log-based recovery protocols rely on the piecewise deterministic assumption
(PWD). This assumption dictates that the system has the ability to detect the
nondeterministic events that transition to the next state interval. Furthermore, the
system must be able to record information about the events such that the important
aspects of the event can be recreated in a reconstruction of the process state [57].

An orphan process p is a process that does not fail, but whose state depends on
a nondeterministic event that was not recorded to stable storage and the determinant of

 14

which was not recorded on p. Such a process therefore cannot be restored to a
consistent state because the information required to replay an event has been lost [49].

There are three main techniques (see Figure 1) used by log-based recovery
protocols to guarantee that all processes can be recovered to a consistent state in the
event of a failure: Pessimistic, optimistic, and causal. Each of the three approaches has
its own tradeoffs for performance, ease of process recovery, and ability to roll back
processes that did not fail.

Pessimistic logging techniques, sometimes called synchronous logging, record
the determinant of each event to stable storage before the event is allowed to affect the
computation. This ensures that the system will easily be able to recover from the
failure of any process occurring at any time, because no process can be affected by an
event that has not been logged. Pessimistic logging has two key advantages. First, in
the event of a failure, processes that did not fail can never become orphans and need
not take any special actions. This greatly simplifies the recovery algorithm. Second,
garbage collection of message logs and checkpoints is simple - only one checkpoint
must be maintained for each process, and message logs older than that checkpoint can
be discarded [49].

Optimistic or asynchronous, logging techniques record logs to volatile storage,
which is then periodically written to stable storage. This substantially reduces the
performance overhead on the application because it does not need to block while
waiting for each message to be written to disk. Unfortunately, recovery of the system
in the event of a failure is much more complex. Since messages recorded in volatile
memory will be lost in the event of a process failure, processes can become orphans.
In addition to the recovery of the failed processes, the surviving processes must be
rolled back to a state that does not depend on any lost messages [57].

Causal logging protocols maintain the advantages of both optimistic and
pessimistic logging, but at the expense have requiring much more complex recovery
techniques. The low overhead of optimistic logging is attained by saving logs to
volatile storage, similar to optimistic logging [58][59].

1.2.2 Checkpoint-based rollback/recovery
Checkpoint-based rollback/recovery techniques can be classified into three

groups based on the abstraction level: kernel-level, library-level and application-level,
where the library- and kernel- level checkpointing is also called jointly as system-level
checkpointing (see Figure 2).

The kernel-level [54] checkpoint support is implemented by a kernel module
part of the operating system. Any executed process can be checkpointed in this way,
since no changes in the executable are required. The internals of a process are text,
data, dynamically allocated data, shared libraries, stack, processor registers, signal
handlers and the signal masks, open files and shared resources. A kernel module can
easily access the state of theses internals to create a checkpoint. Later the
reconstruction of the process is also done by the operating system. This technique
produces checkpoint file with binary data (e.g. copy of the memory), so it can be used
on computational nodes of a cluster with the same platform.

The library-level checkpointing usually requires the application to be relinked
with a special library performing the state saving and resumption procedure. In this
case special techniques are used to access the process internals. Similarly to kernel-

 15

level the checkpoint information contains bits that constitute the state of the process.
Sometimes it is problematic to patch the operating system to support checkpointing, so
the main advantage of this approach is to avoid the modification of the OS. Tools
implementing this approach are for example Condor [32], Libckpt[31] and Ckpt[29].

The third alternative is application-level [55] checkpointing, where
applications provide their own checkpointing code. The application is written so that it
correctly restarts from various positions in the code by storing certain information to a
restart file. The programmer needs to save data to recover the program state. The
advantage is that the checkpoint information can be produced in a way that the
application is able to checkpoint and restart among nodes with different platforms.
The disadvantage of this approach is that it complicates the coding of the application
program. Sometimes adding this type of checkpoint support to a parallel application is
a comparable task with developing the whole application.

Figure 2 Classification of checkpoint levels

Beyond the previous three directions, two additional aspects (independent from
the abstraction levels) are distinguished in parallel checkpointing on how parallel
processes are instructed when checkpointing is performed. The three aspects are:
coordinated, uncoordinated, communication-induced (see Figure 1).

In uncoordinated checkpointing each process of the application can save its
state at any time independently from the neighbouring processes. Checkpointing
action is not taking the consistency of messages into account, so it can be
implemented and executed easily. The problem may occur at restart phase. First, each
process reloads its state from the latest checkpoint and then they check whether the
application has consistent state [56] regarding messages. Consistency exists if neither
duplicated nor lost messages is detected. If the latest checkpoints do not form a
consistent state of the application, based on the dependencies of messages rollback
propagation is executed. Due to the domino effect it can easily happen that rollback is
repeated until the application reaches its initial point i.e. the application is started from
the beginning.

Contrary to the previous one, coordinated checkpointing creates a consistent
state of the application at the time of checkpoint saving instead of trying to create it at
resumption phase. Whenever an application must be checkpointed, a global
coordination protocol, implemented by exchanging special marker messages, is used
to coordinate the state saving of the individual processes by creating a consistent state
for the application. A global snapshot is taken from which the computation can be
restarted. In this case a distinguished process is responsible to initiate and execute the
checkpoint saving protocol. The Chandy-Lamport [56] algorithm is the most well-
known protocol for this purpose.

 16

Communication-induced (or quasi-asynchronous) checkpointing provides
resilience to the domino effect without requiring global coordination across all
checkpoints. Each process takes checkpoints locally, as in uncoordinated
checkpointing. However, such protocols allow for processes to be forced to take a
checkpoint in order generate a global checkpointed state that will not cause domino
effect. Each message passed between processes contains extra protocol information
that allows the recipient to determine for it whether or not it should take a forced
checkpoint [49].

1.2.3 Checkpoint based migration
Process migration in distributed systems is a special event when a process

running on a particular resource is moved to another one in such a way that the
migration does not cause any change in the process execution. It means that the
process is not restarted instead; its execution is temporarily suspended and then
resumed on the new resource. In order to provide this capability migration usually
relies on some checkpointing techniques to save the state of the target process and to
reconstruct it on the target machine.

Such migration mechanism can be used in several scenarios. First, in
supercomputing applications load-balancing is a crucial issue. Migration can solve the
problem of unbalanced parallel sites of the Grid. Processes on overloaded machines
can migrate to underloaded machines without terminating the entire application.
Similarly, load-balancing can be ensured among different sites of the Grid, i.e., when a
site becomes overloaded complete applications can migrate to other sites. Third, the
migration module can be used for providing fault-tolerance capability for long-running
applications if machines are corrupted or need system maintenance during the
execution. Fourth, migration can be driven by resource needs, i.e., processes can be
moved to a remote site in order to access special unmovable resources. For example,
processes may need to use special equipments or huge databases existing on dedicated
machines in the Grid.

During migration a tool suspends the execution of the process, collects all the
internal status information necessary for resumption and terminates the process. Later
it creates a new process and all the collected information is restored for the process to
continue its execution from where it was suspended.

 17

1.3 Overview of checkpointing and migration frameworks
In this section an overview is given on various systems in the field of parallel

(mostly PVM and MPI) checkpointing. There are numerous systems, but without
giving an endless list, the most significant tools on this field are introduced.

1.3.1 CoCheck
CoCheck is a research project which aims at providing Consistent

Checkpointing for various parallel programming environments both PVM and MPI.
CoCheck implements a coordinated, consistent checkpointing of parallel applications.

In PVM version of CoCheck [64][72] a special process, called Resource
Manager (RM) is dedicated to perform decision on task allocation whenever a new
task is spawned. When checkpointing, it notifies the tasks by sending signal-message
pairs to all the processes to interrupt them as a first step. After successful interruption
it synchronizes the messages in order to avoid having in-transit messages in the
messaging layer at the time of checkpointing.

Figure 3 The CoCheck checkpointing protocol

When all the messages have been flushed, the processes detach and finally the
process memory is saved (see Figure 3). The restart of a parallel job is steered by a
modified startup routine (crt0.o) that belongs to the operating system. This tool was
developed in the mid of 90’s and it has no more code maintenance, but it became a
basic reference work for all parallel checkpointing systems.

To create the MPI version of CoCheck [71] a new MPI implementation has
been developed, called tuMPI. To add checkpointing support for tuMPI, the central
instance of CoCheck (RM in the PVM version) was integrated as an additional
component in the daemon processes of tuMPI. Consistent state of the application
processes was ensured by the same algorithm as used in the PVM version. Finally, the
tool was optimised for migration of tasks, by transferring checkpoint information to a
skeleton process of the migrating one.

One of the main well-known features of CoCheck is its checkpoint protocol,
which makes sure in-transit messages are flushed from the message-passing layer.
This protocol is derived from Chandy-Lamport algorithm.

 18

1.3.2 Condor
The goal of the Condor Project [33] is to develop, implement, deploy, and

evaluate mechanisms and policies that support High Throughput Computing (HTC) on
large collections of distributively owned computing resources. Condor is a specialized
workload management system for compute-intensive jobs. Like other full-featured
batch systems, Condor provides a job queuing mechanism, scheduling policy, priority
scheme, resource monitoring, and resource management. Users submit their serial or
parallel jobs to Condor, Condor places them into a queue, chooses when and where to
run the jobs based upon a policy, carefully monitors their progress, and ultimately
informs the user upon completion.

Condor is able to execute and schedule different types of applications (e.g.
sequential, PVM, MPI, Java, etc.) and for PVM they introduced the CoCheck protocol
in 1996. Later it became unsupported, so the Condor versions in the last few years
changed direction regarding PVM checkpointing.

Figure 4 View of the Condor MW paradigm

The new model they introduced is a fault-tolerant execution for Master-Worker
(MW) type applications [73]. For Condor, there is a tool for making a master-worker
style application that works in the distributed, opportunistic environment of Condor.
MW applications use Condor as a resource management tool, and can use either
Condor-PVM or MW-File a file-based, remote I/O scheme for message passing. The
user must define the code for the Master process, the Worker processes and the system
will distribute the works automatically among the workers in a way defined by the
programmer. When a worker process aborts or fails, Condor automatically spawns a
new worker with the same workpackage, the failed worker owned.

In the Condor job-scheduler tool there is no real checkpointing of parallel
application, but fault-tolerant execution of PVM applications are supported in a
limited way. However, Condor is able to checkpoint sequential jobs; therefore it is
sometimes reused by parallel checkpointing tools, like CoCheck.

1.3.3 Fail-safe PVM
Fail-safe PVM [65] has been designed and implemented by the Carnegie

Mellon University. The main purpose of the framework is to provide a fault-tolerant
PVM environment regarding single-node failures.

 19

Fail-safe PVM uses checkpoint and rollback to recover from such failures.
Both checkpoints and rollbacks are transparent to the application. The system does not
rely on shared stable storage and does not require modifications to the operating
system. The main goals and advantages of this system are application independence,
application transparency, compatibility and minimal overhead.

Figure 5 Architecture of Fail-safe PVM

Fail-safe PVM is an enhanced version of PVM, i.e. the design and
implementation has been done in a way that PVM internals are modified in order to
fulfil the goals.

The main strengths of the system is the capability to detect failed-nodes and to
migrate application processes from the failed nodes to the failure-free ones. The PVM
daemons are modified in order to synchronize among each other to prepare the
application for checkpointing. At recovery the daemons are able to rollback
themselves to create a consistent state of the parallel virtual machine. After the
daemons are rolled back, they initiate the application to start recovering itself. To do
this the application processes are reordered among the error-free PVM daemons to
take the work from the failed one. The checkpoint information is distributed among
the daemons. After the application has successfully restarted from the last consistent
state, it is instructed to continue the execution.

As a summary, FPVM is strongly focusing on migration support of the PVM
processes, where the migration is driven in a way to provide fault-recovery of the
application.

1.3.4 Dynamite
Dynamite [66] aims to provide a complete integrated solution for dynamic load

balancing of parallel jobs on networks of workstations. It contains an integrated load-
balancing and checkpointing support for PVM applications.

Dynamite provides dynamic load-balancing for PVM applications running
under Linux and Solaris. It supports migration of individual tasks between nodes in a
manner transparent both to the application programmer and to the user, implemented
entirely in user space. Dynamically linked executables are supported, as are tasks with
open files and with direct PVM connections. In Dynamite, a monitor process is started
on every node of the PVM virtual machine. This monitor communicates with the local
PVM daemon and collects information on the resource usage and availability of the
nodes.

 20

The architecture of Dynamite is modular. It is possible to use just the dynamic
loader of Dynamite and get checkpoint/restart facilities for sequential jobs that do not
use PVM. Even when using PVM, it is not required to use the Dynamite
monitor/scheduler: the user can migrate tasks manually from the PVM console (using
the new move command) or from custom programs (using the new pvm_move
function call). This gives Dynamite extra flexibility, and makes its components
reusable for different projects.

Figure 6 Architecture of the Dynamite PVM system

The system focuses on migrating individual PVM processes. To provide this
capability, Dynamite replaces the dynamic loader and the whole PVM implementation
for the daemons.

1.3.5 MPVM (MIST)
In MPVM [67], the interface between the PVM daemons (pvmd) and the

Resource Manager has been extended to accommodate task migration, allowing the
MPVM Resource Manager to use dynamic scheduling policies.

In order to support task migration, both the pvmd and PVM library (pvmlib) is
modified. The modifications made were also driven by the goals of source code
compatibility, portability, and migration transparency. To ensure source code
compatibility, the modifications maintain the same function calls, parameters and
semantics, as provided by PVM. To maximize portability, the migration mechanism is
implemented at user-level, using facilities available through standard Unix library
routines and system calls. Migration transparency is addressed by modifying the pvmd
and pvmlib such that the migration could occur without notifying the application code
and by providing ”wrapper” functions to certain system calls.

To avoid explicit modification of the source code of the PVM application for
installing the signal handler, the (m)pvmlib defines its own main() function which
executes the necessary initialization and then calls a function called Main(). A
Migration Transparent Version of PVM linked with the pvmlib, the resulting
executable will have the pvmlib's main() as the entry point, allowing execution of the
migration initialization code prior to the execution of the application's code.

An important component of the migration protocol is what is collectively
called Control Messages. These control messages or CMs are special system messages
added to the pvmds and the pvmlib for the primary purpose of managing task

 21

migration. Just like other system messages, these control messages are invisible to the
application code.

The medium for the state transfer is TCP connection between the source pvm
task and the destination migrated task. MPVM uses the approach of transferring the
entire virtual address space of a process at migration time. That is mainly the reason
why MPVM does not support fault-tolerance.

The protocol implemented in MPVM is designed in way that after the
migration the task has the same task identifier, so translation tables are not needed.
However, there is a need for routing tables in the PVM daemons.

1.3.6 tmPVM
The tmPVM [68] system aims to provide efficient migration of PVM tasks. It

does not create application wide checkpointing, i.e. it does not support fault-tolerant,
the application does not have a stored consistent global state.

Figure 7 The tmPVM virtual machine

A task to be migrated creates a checkpoint file by spawning an external
extractor to scan the /proc file system. This task waits until the task is restarted on the
destination node, and in the mean time forwards any messages that it receives to the
destination (new) instance. The destination instance has a new PVM task identifier
after the migration, so a special TID alias directory (mapping table) is maintained in
the PVM daemons to translate between the original and current task identifier.

A load monitor module is spawned on each node to collect local load
information. In tmpPVM, a centralized resource manager gathers and maintains local
information for each participating node. All load monitor modules are assumed to be
active till the shutdown of the tmPVM virtual machine. Users are required to include
an initialisation call (named TCP_TM_init()) before any statement. The routine will
install the necessary mechanism, data structures and notification to the load monitor
modules.

1.3.7 DAMPVM
DAMPVM [69] (Dynamic Allocation and Migration Parallel Virtual Machine)

is an extension to the PVM environment. DAMPVM traces the changes of some

 22

parameters on the machines in the virtual machine like nodes loads, other users
activities, measures the speeds of the nodes to get to know how much processing
power is available on the nodes.

The programs can be written analogously to PVM ones but the programmer
must use the library supported by DAMPVM instead of PVM. This library offers
communication and creation functions analogous to the PVM ones plus some extra
connected with process instrumentation. DAMPVM kernels (one on each machine)
start processes on the appropriate machines. DAMPVM is a regular PVM application
so there are processes - kernels (one on each machine) and additionally the DAMPVM
library.

The goal of DAMPVM is to minimize the total execution time of the whole
application (all the processes started by the user of DAMPVM) - DAMPVM performs
dynamic allocation of processes. Heterogeneous migration is possible because it is
performed on the code level. A programmer must support two functions for packing
and unpacking the state of a process to enable DAMPVM kernels to migrate a process.
Dynamic allocation and migration is performed automatically by DAMPVM.

1.3.8 Charm
Charm [70] is a checkpoint/restart system, where PVM calls are wrapped in

order to modify the behaviour of the calls and to support checkpointing. To preserve
communication it uses a similar version independent protocol to the one defined in
CoCheck, but it is optimised for faster migration, since message flushing is only
performed for migrating tasks. The messages sent to the migrating processes are
stored in a delaying buffer and when the migration has finished the content of the
delaying buffer is forwarded to the new destination. The key advantage of this system
is that no modification of PVM is performed. The system has a C-manager that is
responsible for performing the proper protocol among the processes of the application.

C-manager is implemented as a PVM task. Users start the charm system
(cmanager), then cmanager spawns the user’s PVM task. It also reads in the
checkpointing-related .rc files. By this technique the application will know, the Task
ID of the C-manager and will be able to cooperate with it in order to perform
checkpointing.

With the slight modification of the start-up mechanism of the PVM
application, Charm is able to migrate PVM processes. At the same time this system
does not provide application wide checkpoint, i.e. it is not possible to checkpoint the
whole application, shutdown all the running component and to restart the
checkpointed application on a different cluster.

1.3.9 CLIP
CLIP [74] (Checkpoint Libraries for Intel Paragon) is a semi-transparent

checkpointer for the Intel Paragon. CLIP can checkpoint programs written in either
NX or MPI. The conceptual structure of CLIP is depicted in Figure 8. In
checkpointing mode, CLIP code acts as middleware between the user's application and
the Paragon libraries.

To use CLIP, a user must link the CLIP library with the application program.
Additionally, the user must place one or more subroutine calls in the code specifying
when checkpoints can occur. When the code is executed, CLIP takes periodic
checkpoints of the program's state to disk. If for some reason (hardware or software

 23

failure) the program is terminated prematurely, it may be restarted from the
checkpoint file.

Figure 8 Structure of CLIP

1.3.10 ZapC
ZapC [75] is a novel system for transparent coordinated checkpoint-restart of

distributed network applications on commodity clusters. ZapC provides a thin
virtualization layer on top of the operating system that decouples a distributed
application from dependencies on the cluster nodes on which it is executing.

This decoupling is done by introducing a PrOcess Domain (POD) abstraction.
POD enables ZapC to checkpoint an entire distributed application across all nodes in a
coordinated manner such that it can be restarted from the checkpoint on a different set
of cluster nodes at a later time.

ZapC is designed to support migration of unmodified legacy applications while
minimizing changes to existing operating systems. This is done by leveraging loadable
kernel module functionality in commodity operating systems that allows ZapC to
intercept system calls as needed for virtualization.

1.3.11 LAM/MPI
LAM/MPI [76] is a high performance implementation of the Message Passing

Interface (MPI) standard. LAM/MPI provides a System Services Interface (SSI), a
modular component system that allows easy extensibility to new environments. One of
these services is designed to provide a transparent checkpointing and rollback
recovery (CRR) with high portability.

The CRR framework implements most management of coordinated
checkpointing and rollback recovery for MPI parallel applications. MPI applications
running under LAM/MPI can be checkpointed to disk and restarted at a later time.
LAM requires a 3rd party single-process checkpoint/restart toolkit for actually
checkpointing and restarting a single MPI process - LAM takes care of the parallel
coordination.

Currently, the Berkeley Labs Checkpoint/Restart package (BLCR) [77] is
supported which is a kernel-level single-process-CRR tool for Linux. It works as a
dynamically loadable kernel module, so it is not a universal tool for different Linux
versions and platforms.

LAM/MPI allows new back-end checkpointing systems to be "plugged-in"
simply by providing a new CR SSI module. An example to replace kernel-level

 24

checkpointing of LAM/MPI with user-level checkpoint and recovery is introduced by
[78] where BLCR is replaced with libcsm. New CR modules are designed and the tool
is modified to provide the needed APls. Because LAM/MPI supposes checkpointing is
thread-based and implements the framework on this assumption, its workflow had to
be modified to integrate the library.

1.3.12 Charm4MPI
ChaRM4MPI [84] is a Checkpoint-based Rollback Recovery (CRR) and

Migration System for Message Passing Interface, specially designed and implemented
for Linux Clusters. It is based on coordinated checkpointing protocol, synchronized
rollback recovery to provide process migration.

In ChaRM4MPI users can migrate MPI processes manually from one node to
another for load balance or system maintenance. This tool is implemented in a user-
transparent way and uses the techniques employed by libckpt [31] and CoCheck [72].
The whole implementation is based on MPICHP4 [79], which is an MPI
implementation developed at Mississippi State University and Argonne National
Laboratories that employs P4 [79] library as the device layer.

Regarding the architecture, one management process, called manager, is
implemented as the coordinator of parallel CRR and process migration. It can operate
users’ checkpoint or migration commands received through a GUI. The source code of
P4 listener is altered to perform signal interruption of computing processes in case
commands received from the coordinator. The start-up procedure of MPICHP4 is
modified, so all MPI processes will register themselves to the coordinator. In this way,
the latter can maintain a global process-info-table to manage the whole system.

1.3.13 FT-MPI
The aim of FT-MPI [80] is to build a fault tolerant MPI implementation that

can survive failures. The system offers a wide range of recovery options for the
application developer other than just returning to some previous checkpoints. FT-MPI
is built on the HARNESS [81] meta-computing system.

Figure 9 Structure of the FT-MPI implementation

FT-MPI extends the MPI communicator states with additional states (e.g. ok,
detected, recover, recovered, failed). A communicator changes its state when either an
MPI process changes its state, or a communication within that communicator fails for
some reason. By allowing the communicator to be in an intermediate state the
application has the ability to decide how to alter the communicator and its behaviour.

 25

The current implementation is built as a number of layers and integrates a wide
variety of underlying services to provide fault-tolerance (see Figure 9). Different
services provide FT-MPI with notification of failures from communications libraries
as well as the OS support layer.

Since FT-MPI provides fault-tolerance by reporting failures through e.g.
modification of communicator states, the responsibility to handle the undesirable
situations is still remains a duty of the application programmer. The typical usage of
FT-MPI would be in the form of an error check and then some corrective action such
as rebuilding a communicator and so on.

1.3.14 Starfish MPI
Starfish [82] MPI is a daemon based implementation approach for MPI. Each

host of a cluster must have a Starfish daemon (see Figure 10) forming a parallel
computer over the cluster. Application processes can only be migrated within the so-
called parallel computer i.e. where a starfish daemon is running.

Figure 10 Architecture of the Starfish MPI

Starfish uses its own distributed system to provide built in checkpointing.
Starfish MPI handles communication and state changes which are built upon the
Ensemble system [83] and managed by strict atomic group communication protocols
among the daemons.

 26

2 New checkpointing method on ClusterGrid

 27

2.1 Transparency conditions in ClusterGrid environments

2.1.1 Overview
Checkpointing of message-passing based parallel algorithms or applications

can be realised using various techniques and methods. A concrete solution must
always face the requirements imposed by the Grid middleware. The goal of the first
group of thesis is to identify the requirements and conditions towards the checkpoint
and migration techniques imposed by the ClusterGrid environment and to elaborate a
new (abstract) technique which fulfils the already identified requirements.

As a preparation of thesis 1.1, I have defined the main characteristics of the
ClusterGrid environments and several desirable use cases for state migration
mechanism. As a next step, I have identified the cluster components which may
influence the internal operation of a checkpointing system and then I determined the
requirements in 4+1 points. By using the ASM formal framework for modelling I have
developed the model of the cluster components and their most relevant characteristics,
and then based on this model I have elaborated a formal description of the
requirements and conditions for checkpointing techniques. Finally, based on these
criteria I have analysed, evaluated and classified the existing solutions and stated
thesis 1.1.

Thesis 1.1: In a cluster environment a formal framework of requirements can
be defined for message-passing parallel algorithms, which enables transparent
checkpointing of the algorithms for the scenarios defined in the dissertation. In
addition, currently there are no checkpointing and migration facilities fulfilling
the defined requirements in a cluster environment for the defined scenarios.

Related publications are [3][4][19].

2.1.2 Identification of the components
Based on the abstraction levels and coordination types (both defined in Section

1.2), checkpointing of a parallel application can be implemented in several ways. In
this section the most relevant components are identified which contribute to the whole
checkpoint and restart procedure. The following (logical) components are identified as
possible contributors to the checkpoint or restart procedure (see Figure 11) in a cluster
environment:

1. Operating system (“OS”)

2. Scheduler (“sched”)

3. Source code of the application (“src”)

4. Linked libraries of the application (“lib”)

5. Message-passing layer (“message-passing system”)

6. External coordination process (“Coord.”)

An application is shown (see Figure 11) with three processes ("ProcA",
"ProcB", "ProcC") running on three nodes of a cluster. Processes - from logical point
of view - contain user written code ("src") and libraries linked ("lib") to the code of the
processes. The distinction is introduced to distinguish between library or application
level checkpointing.

 28

In case of application level checkpointing the source code (depicted as "src" in
Figure 11) must be prepared by the programmer as it has been detailed in section 1.2.

If automatic library (system) level checkpointing is supported, a special library
(depicted as "lib" in Figure 11) is linked to the process. The library is usually activated
during execution; it scans through all the memory space of the process and saves the
information into a temporary storage for later usage. Saving results into a binary file
includes all memory segments, registers, signals and so on.

Figure 11 Components of a checkpointing environment

The message-passing system (MP) (see Figure 11) is running in the
background to transport messages among the processes. In certain solutions (e.g. Fail-
safe PVM [65], Dynamite [66], MPVM [67], etc.) this layer is modified to support
checkpointing of the messages and of the links among processes. This support usually
means cooperation with the application to be prepared for checkpointing in a way that
consistency of in-transit messages and connections are preserved.

In order to facilitate the coordination of checkpoint among the processes of the
application an external checkpoint coordination process (depicted as "Coord." in
Figure 11) can be connected to each process of the application. This auxiliary process
usually performs coordination of checkpoint saving, exchange of checkpoint related
information or identifiers among the application processes. Furthermore, it can
manage open files and play a central role in the resumption procedure, too.

Checkpoint support in schedulers can be an integrated part. Most of the
schedulers for clusters (depicted as "sched" in Figure 11) perform checkpointing up to
some extent (e.g. Dynamite [66]). Checkpointing of an individual process is usually
fully supported by these schedulers, which means checkpoint/restart mechanism is
integrated. The Scheduler decides (usually based on load of the nodes) when
checkpoint must be carried out and shutdown a process.

Last, but not least another component where checkpoint support might be
implemented is the operating system (depicted as "OS" in Figure 11) in case of kernel-
level checkpointing as it has been described in section 1.2.

 29

To summarize, the list of components/modules/parts defined above represents
potential/possible modification points that existing checkpoint frameworks usually
exploit. Based on the type of checkpointing, different combination of the components
are added, replaced or modified. As a consequence, depending on the components
modified by the checkpointing system, different levels of compatibility can be reached
among the clusters in case of a ClusterGrid.

2.1.3 Use cases
This section is aimed at defining some of the use cases that are typical in a

ClusterGrid system concerning a job life-cycle including submission, fault-related
events, checkpointing and migration. Before defining use cases it is necessary to
determine some basic key features of the Grid system and the critical characteristics of
the jobs to be submitted in order to understand the potential behaviour of the entire
system.

In the current context the execution of the submitted application is realised in a
Clustergrid containing numerous clusters independent of each other. The main
expectations towards these clusters are defined as follows:

Assumptions for the proposed ClusterGrid (AsmpCls):

AsmpCls 1. Each node of every cluster in the Grid is compatible at OS level to
each other. It is necessary that the binary of the submitted application can
be executed on any node of any cluster. In a real environment it is not
always true. In that case we consider the biggest subset of the Grid
consisting OS compatible nodes as the ClusterGrid environment.

AsmpCls 2. Each node of every cluster must have the same type of message-
passing system installed, i.e. each must have MPI or PVM or both.

AsmpCls 3. The scheduler is able to allocate a process of the application to
any node of the supervised cluster.

AsmpCls 4. Every node (except the front-end node) in a cluster are identical
regarding software environment.

Assumptions for the application (AsmpApp):

AsmpApp 1. The application uses PVM or MPI as message-passing layer.
AsmpApp 2. The physical requirements (memory size, disk capacity, etc.) of

the application fit to the capabilities of the clusters and nodes.
AsmpApp 3. The application is authorised to be executed on any of the clusters

in the Grid. In a real environment it is not always true. In that case we
consider the biggest subset of the ClusterGrid the application is authorised
nodes as the ClusterGrid environment.

Points (degree) of freedom for the proposed ClusterGrid (FreeClu):

FreeClu 1. Clusters of the Grid are not expected to have a specific
checkpointing service installed on their nodes. Decision on installed services
is made by the local policy of the cluster.

FreeClu 2. Clusters of the Grid are not expected to have installed the same
version of the message-passing software, but still must accomplish the
assumptions defined in AsmpCls2 and AsmpCls3.

 30

FreeClu 3. Clusters of the Grid are not expected to operate a predefined
scheduler. Decision on scheduler to be used on a cluster is made by the local
policy.

FreeClu 4. Clusters of the Grid are not expected to apply a predefined OS
version installed on their nodes, but still must accomplish the assumptions
defined in AsmpCls1.

FreeClu 5. Clusters of the Grid are not expected to perform OS or kernel
related updates to support checkpointing.

FreeClu 6. Clusters of the Grid are not expected to assign all of their nodes to
one application. A cluster might serve for execution of multiple (parallel)
applications at the same time. Decision on scheduler rules to be applied on a
cluster is made by the local policy.

The proposed assumptions (AsmpClu, AsmpApp) and the points of freedom

(FreeClu) in the middleware of the clusters determine the potential behaviour and
interaction among the clusters in the entire ClusterGrid.

Several scenarios are now defined to be supported during the execution of
application performed by the middleware of cluster.

Scenarios for process and application migration:

Scenario 1. Immediate process migration to free resources
This scenario defines a simple case when one of the processes of the

application (job) migrates from its source node to another (target) one. The reason is
that the source node is about to be pre-empted by the local scheduler.

1.1. User submits job containing k processes
1.2. Job is scheduled to Cluster A having n nodes where n>k
1.3. Job is executed on Cluster A on nodes 1..k and nodes k+1..n are free
1.4. Scheduler initiates termination of process running on node i, where 1≤i≤k
1.5. Scheduler assigns new node j for the job, where k<j≤n
1.6. Process from node i is migrated to node j
1.7. Job continues execution
1.8. Job finishes
1.9. User gets results

Scenario 2. Delayed process migration to free resources
This scenario defines a simple case when one of the processes of the

application is removed from its node, but the migration cannot be realised due to
unavailable free resource.

2.1. User submits job containing k processes
2.2. Job is scheduled to Cluster A having n nodes where n>k
2.3. Job is executed on Cluster A at nodes 1..k and nodes k+1..n are reserved
2.4. Scheduler initiates termination of process running on node i, where 1≤i≤k
2.5. No resource is available, process is waiting for free node
2.6. Node j becomes free, where k<j≤n
2.7. Scheduler assigns node j for the job
2.8. Process from node i is recovered on node j
2.9. Job continues execution

 31

2.10. Job finishes
2.11. User gets results

Scenario 3. Application migration among clusters
This scenario defines a case when the whole application is pre-empted by the

scheduler to vacate all the nodes of the cluster due to the request originated from the
Central Broker of the ClusterGrid. Central Broker is the component that manages a
queue of jobs submitted to the Grid and assigns the jobs to the clusters for execution.

3.1. User submits job containing k processes
3.2. Job is scheduled to Cluster A having n nodes where n≥k
3.3. Job is executed on Cluster A on nodes 1..k
3.4. Central broker initiates pre-emption of the entire application through the local

scheduler
3.5. Scheduler initiates vacation of all the nodes the application is using
3.6. Application is removed
3.7. Central broker reschedules the job to Cluster B having at least k available free

nodes
3.8. Application processes are recovered on Cluster B
3.9. Application continues execution
3.10. Job finishes
3.11. User gets results

Scenario 4. Process and application migration among clusters
This scenario defines a simple case when some of the processes of the

application are removed from their nodes, but the migration cannot be realised due to
unavailable free resources. Job removal is initiated by the local scheduler.

4.1. User submits job containing k processes
4.2. Job is scheduled to Cluster A
4.3. Job is executed on Cluster A
4.4. Scheduler initiates vacation of processes on some of the nodes of the cluster
4.5. Processes are removed and application is waiting for free resources
4.6. All the remaining nodes in Cluster A are reserved, therefore after a timeout

the scheduler initiates removal of the job from the cluster
4.7. Central Broker reschedules the job to Cluster B
4.8. Application is recovered on Cluster B
4.9. Job continues execution
4.10. Job finishes
4.11. User gets results

Scenario 5. Application initiated application migration among clusters
This scenario defines a simple case when some of the processes of the

application are removed from their nodes, but the migration cannot be realised due to
unavailable free resources. Job removal is initiated by the application itself.

5.1. User submits job
5.2. Job is scheduled to Cluster A
5.3. Job is executed on Cluster A
5.4. Scheduler initiates removal of some of the processes
5.5. Processes are removed and application is waiting for free resources

 32

5.6. After a timeout the application initiates self termination (this point is the main
difference comparing to Scenario 4)

5.7. Central broker realises the preemption of job and reschedules it to Cluster B
5.8. Application processes are recovered on Cluster B
5.9. Job continues execution
5.10. Job finishes
5.11. User gets results

As the various scenarios show, basically two different types of migration are
required in order for a job to perform its calculation in a Grid system. Without
checkpointing and/or migration the whole application should be re-executed from its
initial point.

In the following sections the focus is on the middleware components. Detailed
analysis reveals the requirements of the middleware.

2.1.4 Requirements in ClusterGrid
In case of ClusterGrid infrastructure where clusters can have different software

components installed, the relevant design goals or requirements of a parallel
checkpoint tool are compatibility (with the surrounding software components) and
integrity (of the checkpoint information of the application). While the first goal
ensures the seamless operation of checkpointer on clusters with various middleware
components, the second one is a basis for application migration among clusters.

In order to fulfil the compatibility requirement the following conditions must
be taken into consideration:

Condition 1. Operating system does not provide checkpointing facility

Condition 2. Solution does not rely on checkpoint support of the job manager

Condition 3. Solution relies on the native version of message-passing system

Condition 4. Dependence from external auxiliary process does not exist

The four conditions correspond to compatible operation of checkpointing
frameworks. Following these conditions an application can be checkpointed in
software heterogeneous ClusterGrid environment, i.e. under the control of any cluster
environment (consist of the components defined in Section 2.1.2).

Checkpointing can support fault-tolerance (restoration from a previous
checkpoint is done due to middleware error causing application abort) and migration
(restoration is done on another cluster) of a parallel application. Migration and fault-
tolerance requires different support from the tools, since migration itself does not
require checkpointing the state of the entire application (e.g. process migration) while
supporting fault-tolerance requires.

Migration facilities in some of the cases temporarily store checkpoint
information (e.g. in memory) about the checkpointed/migrating processes only. Since
in a ClusterGrid infrastructure application may not be allowed to reach nodes that are
part of another cluster, this type of migration technique would fail.

Therefore only those checkpointing and migration techniques are usable that
creates a correct set of checkpoints of the entire application. It is called the integrity of
checkpoints.

 33

Based on the previous explanation a new requirement must be defined as a
complementary one to the previous four. It is called integrity requirement. In order to
fulfil it the following condition must be satisfied:

Condition 5. Application-wide (included all processes) checkpoint saving is
performed

The five conditions together form a framework in which a checkpoint tool
must fit in order to provide parallel application checkpoint/restart support on a general
ClusterGrid infrastructure. By accomplishing these conditions applications can be
migrated among the different nodes of a cluster and among the clusters.

2.1.5 Formal definition of the requirements

2.1.5.1 Abstract State Machines
Abstract State Machines represent a mathematically well founded framework

for system design and analysis [36] [38] introduced by Gurevich as evolving algebras
[39]. The motivation for defining such a method is quite similar to that of Turing
machines (TM). However, while TMs are aimed at formalizing the notion of
computable functions, ASMs are for the notion of (sequential) algorithms [40].
Furthermore, TMs can be considered as a fixed, extremely low level of abstraction
essentially working on bits, whereas ASMs exhibit a great flexibility in supporting any
degree of abstraction.

In every state based systems the computational procedure is realized by
transitions among states. In contrast with other systems, an ASM state is not a single
entity or a set of values but ASMs states are represented as (modified) logician's
structures, i.e. basic sets (universes) with functions and relations interpreted on them.
Experience showed that any kind of static mathematic reality can be represented as a
first-order structure [40]. These structures are modified in ASM so that dynamics is
added to them in a sense that they can be transformed.

Applying a step of ASM M to state (structure) A will produce another state A'
on the same set of function names. If the function names and arities are fixed, the only
way of transforming a structure is changing the value of some functions for some
arguments. The transformation can depend on some condition. Therefore, the most
general structure transformation (ASM rule) is a guarded destructive assignment to
functions at given arguments [36].

ASMs are especially good at three levels of system design [36]. First, they help
elaborating a ground model at an arbitrary level of abstraction that sufficiently
rigorous yet easy to understand, defines the system features semantically and
independent of further design or implementation decisions. Then the ground model
can be refined towards implementation, possibly through several intermediate models
in a controlled way. Third, they help to separate system components. ASM is not a
paper theory but it has been applied in various industrial and scientific projects like
verification of Prolog [41] and Occam [42] compilers, Java virtual machine [43], PVM
specification [44], ISO Prolog standardization, validating various security and
authentication protocols, VLSI circuits, and many more. The definition of ASMs is
written in [39] and [45] and a tutorial can be found in [46]. A short overview is here as
follows.

 34

A vocabulary (or signature) is a finite set of function names, each of fixed arity
furthermore, the symbols true, false, undef, =, the usual Boolean operators and the
unary function Bool. A state A of vocabulary Ψ is a nonempty set X together with
interpretations of function names in Ψ on X. X is called the super-universe of A. An r-
ary function name is interpreted as a function from X^r to X, a basic function of A. A
0-ary function name is interpreted as an element of X.

In some situations the state can be viewed as a kind of memory. Some
applications may require additional space during their run therefore, the reserve of a
state is the (infinite) source where new elements can be imported inside the state.

A location of A (can be seen like the address of a memory cell) is a pair l=(f,a),
where f is a function name of arity r in vocabulary Ψ and a is an r-tuple of elements of
X. The element f(a) is the content of location l.

An update is a pair a=(l,b), where l is a location and b is an element of X.
Firing a at state A means putting b into the location l while other locations remain
intact. The resulting state is the sequel of A. It means that the interpretation of a
function f at argument a has been modified resulting in a new state. This is how
transition among states can be realized. An update set is simply a set of consistent
updates that can be executed simultaneously.

2.1.5.2 Basic universes, functions and relations
An application (element of universe APPLICATION) is comprised of several

processes (elements of universe PROCESS) that cooperate in some way. Their
relationship is represented by the function app: PROCESS → APPLICATION that
identifies the application the process belongs to. Processes are running on nodes
(elements of universe NODE) which belong to a cluster (universe CLUSTER). Their
relationship is represented by the function cluster: NODE → CLUSTER. However,
processes might exist that do not belong to any application on the cluster (app is
evaluated to undefined).

A process is logically divided into user defined code (universe CODE) and
libraries linked to the code (universe LIBS). Each PROCESS element has a
corresponding element from CODE and LIBS universes. The relationships are defined
by functions code: PROCESS → CODE and libs: PROCESS → LIBS.

A node can have: an operating system (universe OS), a scheduler logical
component (universe SCHED) and a service for handling message-passing activities
of any process running on the node (universe MPE). The relationships are defined by
the functions os: NODE → OS, sched: NODE → SCHED and mpe: NODE → MPE.
The assignment of any components and nodes are defined by the function mapped:
{PROCESS, OS, SCHED, MPE} → NODE.

In the checkpointing and resumption activities basically two different features
are distinguished. A component (e.g. OS, SCHED, MPE, CODE, LIBS) may perform
the checkpoint saving and resumption activity or may perform checkpoint
coordination. Relationship is represented by the function ckpt: {CODE, LIBS, SCHED,
MPE, OS} → {true, false}. The existence of the coordination activity is expressed by
the relation coord: {CODE, LIBS, SCHED, MPE, OS} → {true, false}.

Every application has its momentary internal state (universe STATE) which
represents a running application. Result of a checkpoint activity is one or more image
(universe IMAGE) belonging to a PROCESS. This relationship is represented by the

 35

function image: PROCESS → IMAGE, and multiple images are represented by the
universe IMAGES ∈ IMAGEN.

Checkpointing of an application is basically depending on the checkpointing
technique the actual cluster is applying. So, the checkpointing activity maps the state
of an application on a specific cluster to a certain image set. Resume is doing the same
to the opposite direction. Accordingly, there is the function called checkpoint:
{CLUSTER x STATE} → IMAGES and the other called resume: {CLUSTER x
IMAGES} → STATE.

2.1.5.3 Formal definition of the requirements
Based on the representation of the logical components taking part in a

checkpointing procedure, this section is aimed at giving a formal description of the
requirements defined in section 2.1.4. The following description uses the symbols
defined in section 2.1.5.

Condition 1. Operating system does not provide checkpointing facility

falsenosckptCnclusterNODEnCLUSTERC ==∈∀∈∀))((:)(,,

The expression denotes that no checkpoint support exists in the operating
system of each node n belonging to a given cluster C.

Condition 2. Solution does not rely on checkpoint support of the job manager

falsenschedckptCnclusterNODEnCLUSTERC ==∈∀∈∀))((:)(,,

The expression denotes that no checkpoint support exists in the scheduler (or
job manager) running on each node n belonging to a given cluster C.

Condition 3. Solution relies on the native version of message-passing system

Native version means a version with no checkpoint support added.

falsenmpeckptCnclusterNODEnCLUSTERC ==∈∀∈∀))((:)(,,

The expression denotes that no checkpoint support exists in the message
passing system (or layer) running on each node n belonging to a given cluster
C.

Condition 4. No dependence exists from external auxiliary processes

Assume we have an application (A) running on a cluster (C). We must ensure
that any process (P) which does not belong to any application, but running on
the cluster does not contain any checkpoint related functionality.

falsepckpt

CpmappedclusterApappPROCESSp

NAPPLICATIOACLUSTERC

=
=≠∈∀

∈∀∈∀

)(

:))((,)(,

,,

Condition 5. Application-wide (including all processes) checkpoint saving is
performed

The fifth condition ensures that all information for resuming all processes of
the application is available. So let us define m as an image set belonging to an
application on a given cluster (C) which contains images for each process of
the application.

 36

mpimage

AstatemCresumemAstateCcheckpoIMAGESm

ApappPROCESSpNAPPLICATIOACLUSTERC

⊂
⇒==∈∃

=∈∀∈∀∈∀

)(

)(),(,))(,int(,

:)(,,,

2.1.6 Analysis of the requirements

2.1.6.1 Existing checkpointing techniques
Based on the five conditions defined in section 2.1.4 an analysis is carried out

on the existing PVM checkpointing and migration systems. The goal of the analysis is
to summarize the solutions used by the various tools and to check against the
conditions defined in section 2.1.4 to examine the conformity of the tools.

In the list below the most commonly used programming techniques and
methods are summarized used by existing PVM [1] checkpointing and migration
systems. The identification of these techniques is necessary since they have a great
impact whether they can be used in ClusterGrid or not for transparent. The
programming techniques and methods listed below are the most common ones and at
the same time unfortunately they cannot accomplish the conditions defined in section
2.1.4. They are as follows:

A. Replaced PVM Resource Manager

In the PVM environment the scheduling functionality belongs to a special
process named Resource Manager (RM) [25]. This functionality can be dynamically
reassigned to another PVM process, which then becomes the new RM coordinating
the assignment of the newly spawned processes on the machines. Checkpoint solutions
replacing the PVM RM may fail to coordinate more than one application at a time
since only one RM is allowed to be assigned on a host under PVM. Another problem
may occur when the scheduler of the cluster already resides in PVM as RM. In this
case registering the checkpointer as RM leads to a conflict between the scheduler and
the checkpointer components.

This checkpointing technique violates Condition 3 defined in section 2.1.4.

B. Modified PVM daemon

In the PVM environment daemons running on each node are forming the
virtual machine. To provide checkpointing functionality for PVM application daemons
are often patched to handle checkpointing of communication. Since these daemons
(obviously) cannot be replaced dynamically, during the migration the application may
be unable to resume in case the target cluster environment does not contain the
daemon with the same patch or another version is installed. This checkpoint technique
is not compatible with the different software environments in case special
modification is required in one of the installed software components part of the
middleware.

This checkpointing technique violates Condition 3 defined in section 2.1.4.

C. OS level modification

In order to provide checkpoint/restart functionality some tools offer a solution
kernel level checkpointing. Since, the homogeneity of software environment of the

 37

various clusters in a ClusterGrid cannot be defined as a requirement; this approach
cannot fulfil the compatibility requirement.

This checkpointing technique violates Condition 1 defined in section 2.1.4.

D. Auxiliary process

There are solutions using external coordination process or daemon running in
the background continuously on (usually the master node of) the clusters. These
auxiliary processes may vary from cluster to cluster in a ClusterGrid infrastructure.
The internal protocol and behaviour of the coordination processes are not compatible
among the different checkpoint/restart tools, so the migrated application looses its
checkpoint support in case the target cluster does not have the very same coordination
process. The checkpointer tool must be prepared for different software environment in
order to be compatible with the existing tools running on a cluster.

This checkpointing technique violates Condition 4 defined in section 2.1.4.

E. Partial checkpoint of the application

Checkpoint tools usually provide an optimized version of migrating a process
of the application from one node to another within a cluster (e.g. tmPVM [68]) by
storing the checkpoint information in memory. It is fast and uses only a low amount of
resources on the nodes. When the migration is happening internal data are copied
directly from the memory of the source process to the memory of the target one. This
solution cannot be used in case the application must migrate from one cluster to
another since connection does not exist among the worker nodes of different clusters.
A parallel checkpoint/restart solution must take this fact into account.

 This checkpointing technique violates Condition 5 defined in section 2.1.4.

2.1.6.2 Classification of related works
After introducing the most commonly used checkpointing techniques for PVM

checkpoint/restart tools, Table 1 summarizes the aforementioned solutions used by the
various existing checkpointing tools. Each technique represents a category signed by
letters (A-E) used in section 2.1.6.1 and the techniques of the analysed tools are
classified into these categories.

In Table 1 those techniques and methods are listed only those are relevant in
the context of ClusterGrid. The listed techniques A-E (vertical columns of Table 1)
make any checkpointing tool unable to fulfil the compatibility (column A-D) and
integrity (column E) requirements for a ClusterGrid infrastructure. In the next
paragraphs a summary of the tools are given using the forbidden techniques in their
design or implementation.

CoCheck [64] is a research project that aims at providing Consistent
Checkpointing for various parallel programming environments like PVM and MPI
based on Chandy-Lamport [56] algorithm. The checkpoint/restart capability of this
tool is lying on the replacement of the default PVM resource manager which belongs
to category A and it is using a single checkpointing tool requiring the update of the
process startup mechanism at OS level belonging to category C.

The goal of the Condor [32] Project is to develop, implement, deploy, and
evaluate mechanisms and policies that support High Throughput Computing (HTC) on
large collections of distributively owned computing resources. The model they follow
is a fault-tolerant execution of Master-Worker (MW) [73] type applications therefore

 38

Condor does not provide application-wide checkpointing which belongs to category E.
Since Condor dynamically deploys PVM daemons through the Resource Manager
functionality of PVM, the solution covers category A. In addition, fault-tolerant
execution is limited to a programming framework and a fixed topology.

The main purpose of Fail-safe PVM [65] is detecting failed nodes and
migrating application processes from the failed nodes to the error-free ones. To do this
PVM daemons are modified which belongs to category B.

Approaches to implement

checkpointing/migration for PVM applications

Tools

 T

ec
hn

iq
ue

s

A
.

R
ep

la
ce

d

P
V

M
 R

es
ou

rc
e

M
an

ag
er

B
. M

od
ifi

ed

P
V

M
 d

ae
m

on

C
. O

S
 le

ve
l

m
od

ifi
ca

tio
n

D
.

A
ux

ili
ar

y

pr
oc

es
s

E
. P

ar
tia

l

ch
ec

kp
oi

nt
 o

f t
he

ap
pl

ic
at

io
n

 Violates condition 1-4.
Violates

cond. 5.

CoCheck � �

Condor � �

Fail-safe PVM �

Dynamite � � � �

MPVM (MIST) �

tmPVM � � �

DamPVM � � �

CHARM � �

Table 1 – Classification of existing PVM checkpointing tools

Dynamite [66] aims to provide a complete integrated solution for dynamic load
balancing of parallel jobs on networks of workstations. It contains an integrated load-
balancing and checkpointing support for PVM applications. The system focuses on
migrating individual PVM processes. It does not provide application wide consistent
checkpointing and it also uses a wide variety of techniques. Dynamite replaces the

 39

dynamic loader of the kernel and the whole PVM implementation for the daemons.
Background processes like monitor helps the system in its operation. This design
makes the tool belong to category B, C, D and E as well.

In MPVM [67], the interface between the pvmds and the Resource Manager
has been extended to accommodate task migration by modification of both PVM
daemon and PVM library. This point in the design belongs to category B.

The tmPVM [68] system aims to provide efficient migration of PVM tasks
therefore it does not perform application wide checkpointing. After analysing its
architecture, it turns out that special background monitoring components and resource
managers must be deployed in order to support tmPVM. As a summary, this tool
belongs to category B, D and E.

DAMPVM [69] (Dynamic Allocation and Migration Parallel Virtual Machine)
is an extension to the PVM environment. PVM library and the daemon are patched to
provide migration of PVM processes (only). Programmer must update its source code
to fit to DAMPVM requirements. Altogether, the tool with its architecture fits into
category B, D and E.

CHARM [70] is a checkpoint/restart system where a special external process
called C-manager is responsible for performing the proper protocol among the
processes of the application to realise process migration. The technique used in this
tool belonging to category D while supporting only process migration covers category
E, too. Besides, the startup mechanism of the PVM application is also modified by
using the C-manager.

Based on the analysis it can be seen that the introduced and examined PVM
checkpointing tools are not ClusterGrid compliant in the way it is defined in section
2.1.4, i.e. each tool breaks at least one of the requirements, therefore they are not able
to realise application and middleware transparent checkpointing with migration among
the clusters.

Continuing the analysis of the parallel checkpointing tools of the MPI,
different techniques can be identified causing dependencies on the Grid middleware
components running on a cluster. Analogously to the PVM checkpointing, the design
and implementation techniques violating some of the compatibility or integrity
conditions defined in Section 2.1.4 can be found in the tools.

CLIP [74] (Checkpoint Libraries for Intel Paragon) is a semi-transparent
checkpointer for the Intel Paragon. CLIP can checkpoint programs written in either
NX or MPI. To use CLIP, the user must place one or more subroutine calls in the code
specifying when checkpoints can occur. Inspecting its architecture and examining its
internal behaviour shows that the existence of the native Intel/Paragon NX
communication support is a requirement for checkpointing MPI application. The
solution applied in this tool depends on a specific version of the MPI, nonetheless
architecture of CLIP itself showing a layering structure.

The design and implementation of CLIP violates Condition 3 defined in
Section 2.1.4 requiring the usage of the native i.e. checkpoint-free version of the
message-passing communication service.

ZapC [75] is an application transparent coordinated checkpoint-restart of
distributed network applications on commodity clusters. It provides a thin
virtualization layer on top of the operating system that decouples a distributed

 40

application from dependencies on the cluster nodes on which it is executing. This
requires the installation of a loadable kernel of into the OS of the node. Modification
of the kernel in this way unfortunately violates Condition 1 defined in Section 2.1.4.

LAM/MPI [76] is a high performance implementation of the Message Passing
Interface (MPI) standard. It implements most management of coordinated
checkpointing and rollback recovery for MPI parallel applications and it integrates the
BLCR [77] kernel-level single-process checkpointer tool. Since LAMMPI integrates
the coordination of checkpointing and applies a kernel-level checkpointer, it violates
Condition 3 and 1 defined in Section 2.1.4.

ChaRM4MPI [84] is a Checkpoint-based Rollback Recovery (CRR) and
Migration System for Message Passing Interface, specially designed and implemented
for Linux Clusters. It is based on coordinated checkpointing protocol, synchronized
rollback recovery to provide process migration. In this solution the startup mechanism
is modified that makes checkpointing support dependent on this actual version of MPI
implementation and an external so-called coordinator is required during execution to
which the processes are connected. The implementation of this tool violates Condition
3 and 4 defined in Section 2.1.4.

FT-MPI [80] aims to build a fault tolerant MPI implementation that can
survive failures and is built on the HARNESS [81] meta-computing system. In FT-
MPI the MPI communicator states are updated i.e. additional return values are defined
those are not even part of the MPI standard. With this update modification of the
message-passing layer is realised, therefore Condition 3 defined in Section 2.1.4 is
violated.

Starfish [82] MPI is a daemon based implementation approach for MPI.
Application processes can only be migrated within the so-called parallel computer i.e.
where a starfish daemon is running. Starfish uses its own distributed system to provide
built in checkpointing. Based on these facts, Starfish MPI has its checkpointing system
integrated, therefore no native version of the MPI is used i.e. Condition 3. defined in
Section 2.1.4 is violated.

With this overview altogether 14 related works has been examined. The result
of the examination is that currently no tool providing parallel checkpointing is able to
satisfy the conditions defined in Section 2.1.4 which means transparent behaviour of
the examined tools is not possible. However, simple use cases defined in Section 2.1.3
show the real need of parallel checkpointing tools focusing on middleware
transparency.

 41

2.2 The ClusterGrid checkpointing method

2.2.1 Overview
The list of requirements introduced in thesis 1.1 defines several criteria for

transparent checkpointing. The various solutions proposed by the different
checkpointing techniques form a design space. In order to designate my proposed
solution I have defined the operational and architectural details of the desired
transparent solution. As a result, the definition of the proposed solution is summarised
by a seven point list and the definition has been suited into the ASM formal model
(CPground) introduced previously in thesis 1.1. In addition, I have elaborated the
necessary ASM rules to describe the internal operation mechanism. Finally, I have
proved thesis 1.2 through introduction of abstract events.

Thesis 1.2: The newly elaborated checkpointing method defined by the ASM
model called CPground implements transparent checkpointing both for the
programmer and for the middleware at the same time.

Related publications are [3][4][5][19].

The solution defined by the CPground abstract model enables the saving and
restoration of the consistent, global state of a message-passing based parallel
application or algorithm in a transparent way.

2.2.2 Introduction of the ClusterGrid method
In this section the main cornerstones of a new parallel checkpointing method

are introduced. The following seven key definitions form a method which meets the
requirements defined in section 2.1.4. The following method creates a more tight
solution range than it is allowed by the compatibility and integrity requirements.

The conditions defined in section 2.1.4 restrict the various checkpointing
approaches to those implementing the whole checkpoint restart functionality inside the
application. There are two different checkpointing levels which can be applied:

In application-level checkpointing applications can perform checkpointing by
providing their own checkpointing code. Applying this level of checkpointing a
solution can be designed which fulfils the requirements defined in section 2.1.4 since
no dependence on auxiliary components exists. The disadvantage of this solution is
that it requires a significant programming effort to be implemented while library level
checkpointing is transparent for the programmer.

Library level checkpointing requires a special library linked to the application
that performs the checkpoint and restart procedure. Using library level technique can
also result in a solution providing compatible method for checkpointing.

Apart from the two abstraction levels one must distinguish two further aspects
on how parallel processes are coordinated in case checkpointing performed:
coordinated and uncoordinated (see section 1.2.2). Both directions can satisfy the
conditions defined in section 2.1.4.

In the coordinated version (see section 1.2.2) a designated process controls the
checkpoint saving procedure to ensure the consistency of messages among the
processes in the application to avoid message loss or duplication. In uncoordinated
version (see section 1.2.2) consistency is ensured at restart time. During execution
checkpoints must be stored from time to time for each process without removing the

 42

ones created previously. At restart checkpoints for each process are searched through
and attempted to make a selection in a way that they form a consistent state for the
application and that they represent the latest valid state. While the coordinated version
forces the processes to synchronize, uncoordinated checkpointing gives freedom for
the processes to create checkpoint at any time. In coordinated checkpointing one
checkpoint per process is enough to perform a successful resumption of the
application, while in uncoordinated version the likelihood of successful resumption
can only be increased with raising the number of checkpoints per process. In extreme
cases when consistency is not established the application must be started from the
beginning.

After giving a short overview of the potential techniques, here is the proposed
transparent ClusterGrid method summarized by seven key definitions:

Definition 1. Library level checkpointing technique is used

The proposed checkpointing method performs library level checkpointing. A
library performing checkpoint and restart functionalities are linked to the application.
Therefore, application carries its own checkpoint facilities in its executable code.
Behaviour of the application is also modified to enable the linked checkpoint facility
to catch and wrap system and message-passing calls in the application. Library level
checkpointing technique is the only alternative to provide a transparent solution for the
programmer and for the surrounding ClusterGrid environment at the same time.

Definition 2. Application wide checkpointing is performed

Each time a checkpoint is taken; all processes must take part in the checkpoint
creation process. The generated checkpoint information must contain state information
of every process of the application. It is required since the checkpoint itself must store
enough information for the entire application to be resumed.

Definition 3. Checkpoint information is stored in files

Migration of an application between two clusters is converted to checkpoint,
terminate, movement of working files, resubmit and resume steps. Checkpoint
information must be stored into files in the working directory of the application in
order to transfer the generated checkpoint information transparently to the target
cluster in case of migration. There are checkpointing tools using storage techniques
like temporary memory, or sending the checkpoint information into a socket (to a
process being resumed) which are not possible among independent clusters.
Transferring checkpoint information through a file server can also be an alternative,
but it is not scalable, fault-tolerant and transparent for the middleware.

Definition 4. Parallel checkpointing technique is coordinated

The most problematic feature of uncoordinated checkpointing is the possible
inconsistency of individual checkpoints. In case only the last set of checkpoints is
stored, the likelihood of storing an inconsistent set is fairly big. In most cases
resumption results in rolling the application state back to the initial point if one
checkpoint per process is stored at a time. To store several checkpoints for each

 43

process raises a significant overhead for the storage system and at the same time it still
does not guarantee that consistency exists among one of the combinations of the
checkpoints. To overcome this problem coordinated checkpointing techniques are
used.

In message passing systems, earlier performance studies by Bhargava et al
(1990) [60] showed that coordinated checkpointing algorithms are costlier because
they incur extra communication. Later simulation studies by Elnozahy et all (1992)
[61], however, revealed that coordinated algorithms are better than independent
algorithms. The cost of coordination is much lower when compared with the cost of
maintaining multiple checkpoints and/or logging messages.

Definition 5. Coordination process is part of the application

In order to provide a coordinated checkpoint of the application a coordination
process is required. Originally, it can be an external one or the representative
functionality can be part of the application. Since Condition 4 in section 2.1.4
prohibits applying external (auxiliary) processes, coordination functionality must be
built in the application, which includes alternatives using separate and non-separate
processes inside the applications.

Definition 6. Processes migrate within a cluster without terminating the application

In case a process needs to be migrated from one node to another within a
cluster there are two alternatives. First one is that only the migrating process
terminates and restarts while the rest of the application is suspended. Second one is
that the whole application terminates after checkpointing which is then resubmitted to
the cluster with different process-host mapping. We can see that both results in
process migration. This definition states that the checkpointing solution must include
the possibility of providing migration of processes the former way.

Definition 7. Application source code is unmodified

All the checkpoint techniques listed above must be provided in a transparent
way for the programmer. The original application that has been created by the
programmer must be made checkpointable in a way that the source code does not need
to be changed.

Based on the proposed method described above the following scenario can be
outlined. The programmer has an application developed in a certain programming
environment. Without source code modification he/she adds checkpoint support to its
application through recompilation or relinking of the application. The resulted
executable with the required input files are submitted to a ClusterGrid as job. The
application is assigned to a cluster by a broker, it is submitted and started. During
execution local scheduler decides to deallocate some computational nodes because of
some reasons (overload, maintenance, etc). Before any node is lost by the cluster, all
jobs running on them are terminated gracefully. Checkpoint facility built in the
application detects the start of the termination of some of its processes and initiates a
checkpoint saving. It creates an application-wide consistent checkpoint represented as

 44

working files in the application working directory. At this point two different
continuations can happen.

(1) If some of the processes are terminated, the application tries to reallocate
the terminated processes on different nodes. When nodes are available new processes
are spawned that reload the checkpoints produced by the terminated processes. At the
end of reloading a checkpoint, migration is successfully performed for a process.
When all the processes are ready to run and all the necessary migration has finished
the application continues its execution.

Figure 12 Structure of the proposed checkpointing technique

(2) In case all the processes are terminated the scheduler on the cluster detects
a successful finish of the. At this point the central broker of ClusterGrid reassigns the
job to another resource (cluster), transfers the executable and all working files
(including checkpoints) to the target cluster and resubmits the job. When the
application is being started the built-in checkpoint/restart facility detects the existence
of checkpoints and performs resumption. After successful resumption of every process
of the application execution continues. At successful finish of the application existing
checkpoints are removed. Checkpoint saving procedure can also be initiated
periodically.

As a summary, an architectural overview is shown in Figure 12. It can be seen
that the application must be extended with a task performing checkpoint/restart
functionality, but in a way that the application programmer is not forced to make
modification in the application i.e. in a transparent way.

2.2.3 Formal definition of the ClusterGrid checkpointing method
In this section a formal ASM definition of the ClusterGrid checkpointing

method (detailed in section 2.2.2) is introduced in order to give a precise description.
The formal definitions below are based on the universes and functions, relations
introduced already in section 2.1.5.

 45

Definition 1. Library level checkpointing technique is used

Library level checkpointing is defined by the “ckpt” function, which returns true in
case checkpoint related functionality belongs to the component passed as an input
parameter.

∀C∈CLUSTER,∀A∈APPLICATION,∀p∈PROCESS, app(p)=A:

ckpt(code(p)) = false & ckpt(libs(p)) = true

&

∀n∈NODE, cluster(n)=C,∀comp∈{SCHED, MPE, OS}, mapped(comp)=n:

ckpt(comp) = false & coord(comp) = false

The goal of the formula is to prohibit checkpoint functionality in the user code, to
ensure linked libraries to support it and finally to prohibit checkpoint functionality in
any other component of the cluster.

Definition 2. Application wide checkpointing is performed

Let us assume that we have an image set, which stores the state of each process of the
application.

∀C∈CLUSTER,∀A∈APPLICATION:

∀p∈PROCESS, app(p)=A:

∃m∈IMAGES:

image(p)⊆m &

checkpoint(C, state(A))=m &

resume(C, m)=state(A)

The latter two additional restrictions for the image ensure that this image is the result
of the checkpoint and the application can be resumed from it.

Definition 3. Checkpoint information is stored in files

To represent the image(s) of the application in files, we state that working file(s) of the
application exist which are assigned to the image(s).

∀C∈CLUSTER, ∀A∈APPLICATION, ∃m∈IMAGES:

checkpoint(C, state(A))=m &

resume(C,m)=state(A) &

∀i∈IMAGES: imagefileofapp(i)=A

The function ‘imagefileofapp’ returns the application if input parameter has a working
file representation owned by an application otherwise it returns the value of undefined.
The file is usually stored in the working directory. In other cases the only requirement
that the application owns it i.e. can access and read it and has file representation which
assumes that can be accessed in the same way as a file.

Definition 4. Parallel checkpointing technique is coordinated

 46

The assumption follows the idea that in coordinated checkpointing the cluster must
have a component (part or not part of the application) somewhere on its nodes
performing checkpoint coordination.

∀C∈CLUSTER, ∃comp∈{SCHED, MPE, OS}:

cluster(mapped(comp))=C & coord(comp) = true

OR

∀C∈CLUSTER , ∃p∈PROCESS:

cluster(mapped(p))=C AND (coord(libs(p)) = true | coord(code(p)) = true))

Definition 5. Coordination process is part of the application

The first part of definition ensures that exactly one process exists among the
application processes to which coordination activity belongs to.

∀C∈CLUSTER, ∀A∈APPLICATION:

∃p∈PROCESS: cluster(mapped(p))=C & app(p)=A &

(coord(libs(p)) = true | coord(code(p)) = true)

AND

∀comp∈{SCHED, MPE, OS}: cluster(mapped(comp))=C &

coord(comp) = false

The second part clarifies that no coordination activity exists in a component which is
not part of the application.

Definition 6. Processes migrate within a cluster without terminating the application

There are two possibilities to alter the mapping of (i.e. to migrate) the processes of an
application. It is possible to checkpoint the whole application, shutdown all the
processes and restart the whole application with a different mapping of processes. The
second possibility is to checkpoint all or some of the processes, but shutdown those
processes only that need to be remapped to another node. The method follows the
second alternative.

Let assume that formally a run of an ASM M is defined as an ordered set (M,<) of
moves m, of its agent satisfying the following conditions (this method is introduced in
[47]):

- Each move has its finite predecessors, i.e. for each m∈M the set {m’|m’<m} is
finite.

- The set of moves {m | m∈M} is linearly ordered by <

- Each finite initial segment X of (M, <) has an associated state σ(X) which is
the result of all moves in X with m executed before m’ if m<m’. For every
maximal element m∈X is the result of applying move m in state σ(X – {m}).

Let us define the cluster and the parallel application as follows:

 47

;)(:1:,,...,,

;)(:1:,,...,,

:,

21

21

ApappkipPROCESSppp

CnclustercjnNODEnnn

NAPPLICATIOACLUSTERC

iik

jjc

=≤≤∀∈∃
=≤≤∀∈∃

∈∈

where c is the number of nodes, k is the number of processes in the cluster.

Let assume we have two mappings (G1, G2) between the processes and nodes which
are defined as follows:

)(:1:,},....,,{

)(:1:,},....,,{

,2,2212

,1,1211

iii
k

c

iii
k

c

pmappedGkiGnnnG

pmappedGkiGnnnG

=≤≤∀∈
=≤≤∀∈

.Let us define two (sub)set of moves MM ∈1 and MM ∈2 where applying every
move in M1 results in state σ(M1) which is the state where the mapping of application
is exactly equal to G1 and applying every move in M2 results in state σ(M2) where G2
exists. We assume that 21 MM ⊂ to define the ordering of corresponding states.
Based on the ordering of moves we can define the ordering of states, where σ(M1)
happens before σ(M2) if and only if M1<M2.

Let us define the states between M1 and M2 representing the start of the migration and
the end of migration of the application, where d is the number of mappings that leads
to M2 from M1:

)1),\(:}{(:...

|\|

1
1211

12

U
i

j
jjid djMMmmMSSSS

MMd

=

≤≤∈∪=∈

=

σ

Now, we can define the state of ASM at the point where the two consecutive mapping
have happened.

ii

k

k

nnkii

ApappRUNNINGpphasePROCESSpnnnGM

ApappRUNNINGpphasePROCESSpnnnGM

':1,

)(&)(:),',...,','(:)(

)(&)(:),,...,,(:)(

2122

2111

≠<<∃
==∈∀=

==∈∀=
σ

σ

And finally, we can make definitions regarding the process phases between the two
states. Definition 6 can be fulfilled, if and only if there is least one process that does
not terminate between the two states while at least one is migrating. If a process is
terminated and restarted it must go through the resumption phase, but at the same time
does not necessary holds RUNNING phase continuously. Therefore the expression is
as follows:

RESUMINGpphasediSPROCESSp i ≠<≤∀∈∃)(:1,,

This expression says that at least one process exists during the execution of the
migration protocol (from S1 to Sd) that is not restarted.

Definition 7. Application source code is unmodified

Using the ‘ckpt’ and ‘coord’ functions it is possible to describe that checkpointing
activities cannot exist in the user code of any process of the application.

 48

∀A∈APPLICATION, ∀p∈PROCESS, app(p)=A:

ckpt(code(p)) = false & coord(code(p)) = false

As a summary, the definitions above clearly define each definition of the proposed
checkpointing method for Clustergrid environments.

2.2.4 Definition of the CPground ASM model
In this section a formal model - called CPground - is defined in the ASM

framework. This model forms the basis for a distributed checkpointing tool that
provides all the features introduced by the Clustergrid method in section 2.2.3. This
model is a ground model since in section 3, two additional refinements of this model
are going to be introduced.

2.2.4.1 Universes and signatures
The model presented here is a multi-agent ASM, where agents are processes

i.e. elements from the PROCESS universe. The nullary Self function represented here
as p allows an agent to identify itself, so it is interpreted differently by the different
agents [47].

Basic universes and signatures used in the CPground ASM model are introduced
in section 2.1.5.2, only extension of universes and signatures are described in the
following paragraphs.

To give a detailed internal behaviour of a parallel multi-process application the
communication activity must be modelled. To realise communication, processes are
sending and receiving messages (universe MESSAGE), where every message has a
sender (from: MESSAGE→PROCESS) and a receiver (to: MESSAGE→PROCESS).
The actual content of the message is irrelevant in this model.

During execution of the application, its processes interact with each other and
the surrounding cluster middleware components. Every interaction has an initiator and
a target. These interactions are modelled as “events”. There are numerous events
occurring among the participants, so modelling each of them is a difficult task and
irrelevant from checkpointing point of view. Therefore only the checkpoint related
events are modelled by the universe EVENT. The following events are represented:
spawn to create a new process, send to send a message, receive to receive a message,
terminate to finish execution of a certain process, checkpoint to perform checkpointing
of a process, resume performing resumption of a process, exit to notify a process to
finish execution. The occurrence of an event is represented by the external function
event: PROCESS → EVENT. Events are generated by an external function called
egen. This function describes events generated by certain instructions which are
located at certain points in the code. Each universe (representing the components of a
cluster middleware) contains elements representing instructions to be executed. The
function egen maps the instructions and an instruction pointer to an event: egen:
({CODE, LIBS, SCHED, MPE, OS}, INSTRUCTION_POINTER) → EVENT. (Note:
the referred universes are defined in section 2.1.5.2)

A program represented by an instruction set (INSTRUCTION_SET) that can
be divided according to the components that execute them. Elements of the
INSTRUCTION_SET are fragments of program codes, like instructions, procedures,
and so on. Therefore we define universes CODE for user defined code, LIBS for
linked libraries, SCHED for scheduler, OS for the operating system and MPE for

 49

message-passing subsystem. Accordingly, we can separate functional components
such as user program, library, operating system routine, message-passing procedures.

In the following sections only those rules are introduced and explained, where
functions related to the INSTRUCTION_SET universe are always related to LIBS. In
other words we model the library component. The rules that operate on CODE,
SCHED, OS and MPE universes, i.e. user program, scheduler, message-passing
components are omitted in the CPground model since well-known functionalities are
assumed such as creating a process, managing memory and handling I/O operations,
etc.

Processes are going through different phases during their execution
represented by the function phase: PROCESS → {init, waiting, receive_waiting,
running, checkpointing, resuming, terminating}. Any process of the application may
be marked to be checkpointed (process_to_checkpoint: PROCESS → {true, false}),
marked to be terminated (process_to_terminate: PROCESS → {true, false}), marked
to be resumed (process_to_resume: PROCESS → {true, false}) or marked to be stored
(process_to_store: PROCESS → {true, false}).

Two different roles are defined for the processes that are expressed by the
function role: PROCESS → {coordinator, userdefined}. The function role returns
userdefined for a process if it is programmed by the user. Every process has a function
for startup (startupmode: PROCESS → {normal, resume}) marking the process to be
resumed and a relation (master: PROCESS → {true, false}) that is evaluated to true
for exactly one process that is spawned first in the application.

2.2.4.2 Initial state
In this model, an application starts one process (master) initially which then

performs spawning the required additional processes forming the application.
Spawning the first process is the responsibility of the middleware components of the
cluster, while spawning the rest of the processes is down by any of the application
processes e.g. by the master. Therefore the initial state is exactly one process where
the functions are interpreted as follows:

∃p∈PROCESS: app(p)≠undef, phase(p)=init, role(p)=undef, master(p)=undef, startupmode(p)=undef

The initial state claims that the master process requires an application
(identifier) to belong to (“app(p)≠undef”) and the execution phase to be set to init
(“phase(p)=init”). The other three functions must be set to undef, since they are
updated internally.

2.2.4.3 Rules

1. Rules for initialisation
At startup, each process decides its role in the application. Two different roles exist:
coordinator that manages the checkpoint related activities and user-defined that is
programmed by the user. Coordinator has zero instruction set belonging to CODE
universe, while user-defined processes have instruction sets both from CODE and
from LIBS universe. The first initialisation rule fires once for user-defined processes

 50

and twice for coordinator process. This rule selects only the first (master) process to
be the coordinator. All the processes are updated to waiting phase by this rule.

CPground-R1a
if phase(p)=init then
 if role(p)=undef then role(p)=coordinator else phase(p):=WAITING
 endif if master(p)=undef then master(p)=true endif endif

When a coordinator is selected it decides at start-up, whether to execute the
application from the beginning (normal), or resume it from a previous checkpoint
(resume). This decision is based on the existence of the checkpoint information.

CPground-R1b
if role(p)=coordinator & phase(p)=waiting & startupmode(p)=undef
then
 if ∃i∈IMAGES: imagefileofapp(i)=app(p) then startupmode(p):=resume
 else startupmode(p):=normal endif
endif

In case of normal execution one user-defined process is created that is going to build
the whole application, otherwise resuming phase is started.

CPground-R1c
if role(p)=coordinator & phase(p)=waiting & startupmode(p)≠undef then if startupmode(p)=normal then
 phase(p):=running process_to_store:={} process_to_checkpoint:={} process_to_terminate:={} process_to_resume:={} extend PROCESS by child with app(child):=app(p) phase(child):=init role(child):=userdefined startupmode(child):=normal master(child):=false endextend else phase(p):=resuming event(p):=resume
 endif
endif

2. Rules for process creation

Whenever a process executes an instruction (programmed by the user) that generates
spawn event, a new process is created with the appropriate parameter set. The newly
created process (child) belongs to the same application. Obviously, the new process
will fire the rules of initialisation, after created. The way of creation and allocation of
process on a node is irrelevant in this model.

 51

CPground-R2a
if role(p)=userdefined & phase(p)=running & event(p)=spawn then extend PROCESS by child with app(child):=app(p) phase(child):=init role(child):=userdefined startupmode(child):=normal master(child):=false endextend
endif
This rule ensures that the newly created process starts running after it fired the
initialisation rules.

CPground-R2b
if role(p)=userdefined & phase(p)=waiting &
 startupmode(p)=normal & process_to_checkpoint(p)=false then
 phase(p):=running
endif

3. Rule for sending a message

Processes in a distributed system interact with each other via message passing.
Although, in modern systems there are higher level constructs (e.g. RPC, RMI, etc.
[86]) with a rich set of sophisticated message-passing services, in the lowest level they
all based on simple send-receive communication primitives.

A running process programmed by the user may execute an instruction (from the
CODE universe) that generates a send event to send a message to another process.
This event is handled by this rule that implements a non-blocking version of sending
operation. The content of the message is irrelevant, the source (from) and target (to)
process is modelled.

CPground-R3a
if role(p)=userdefined & phase(p)=running & event(p)=send(dest) then extend MESSAGE by msg with from(msg):=p to(msg):=dest endextend
endif

4. Rules for receiving a message

A running user process may execute an instruction (from the CODE universe) that
generates a receive event to send a message to another process. This event is handled
by this rule that implements a blocking version of receiving operation. In case the
message does not exist yet, the process waits for it by changing its phase. If the
message exists, it is removed from the universe MESSAGE, i.e. it is received by the
process. The source process of the required message may (source) or may not (any) be
specified to support nondeterministic behaviour.

 52

CPground-R4a
if role(p)=userdefined & phase(p)=running & event(p)=receive({source|any}) then
 if (∃msg∈MESSAGE):to(msg)=p & {from(msg)=source| } then MESSAGE(msg):=false else expecting(p):={source|any} phase(p):=receive_waiting
 endif endif

If a message exists from the appropriate (expecting) process, the message is removed
and process continues its execution by changing its phase.

CPground-R4b
if role(p)=userdefined & phase(p)=receive_waiting &
 ((∃msg∈MESSAGE):to(msg)=p & {from(msg)=expecting(p)| }) then MESSAGE(msg):=false phase(p):=running expecting(p):=undef
endif

5. Rules for initiating checkpoint procedure

Checkpoint procedure is initiated based on the occurrence of the appropriate event
during the execution of the application. In this model the exit event initiates the
checkpoint. Exit event can be generated by any middleware component, but usually it
is done by the scheduler component when a process is intended to be removed from its
node, i.e. process is marked to be pre-empted. This model handles this case by
performing an application-wide checkpointing.

There are two situations: In case the master (coordinator in this model) process gets
the exit event every process (including master) must be checkpointed and terminated.
Otherwise, after performing an application-wide checkpointing, the processes that got
this event must be terminated and restarted. These two situations are handled by the
following three rules.

Whenever a userdefined process receives an exit event, it is marked to perform
checkpoint, terminate and resume operations sequentially:

CPground-R5a
if role(p)=userdefined & phase(p)={running|receive_waiting|checkpointing} & event(p)=exit then process_to_checkpoint(p):=true
 process_to_terminate(p):=true process_to_resume(p):=true endif

In case the coordinator gets an exit event, the whole application (including the
coordinator itself) is going to be checkpointed and terminated, since without the
coordinator the application cannot continue its execution. Therefore, every process is
marked for checkpointing and termination and phase is changed accordingly.

 53

CPground-R5b
let allproc:=((∀cp∈PROCESS):app(cp)=app(p) & cp≠p) if role(p)=coordinator & phase(p)=running & event(p)=exit then process_to_checkpoint:=allproc process_to_terminate:=allproc process_to_resume:={} process_to_store:=allproc phase(p):=checkpointing event(p):=checkpoint
endif
Whenever the coordinator detects the need of checkpointing it initiates checkpointing
of all the processes by changing their phase to checkpointing and by notifying them
with a checkpoint event. Every process must take part since application-wide
checkpointing is required by the method defined in section 2.2.3.

CPground-R5c
let allproc:=((∀cp∈PROCESS):app(cp)=app(p) & cp≠p) if role(p)=coordinator &
 (∃p1∈PROCESS:app(p1)=app(p) & p1≠p & process_to_checkpoint(p1)=true & phase(p1)={running|receive_waiting}) then
 do forall p2 :p2∈allproc & app(p2)=app(p) & p2≠p & phase(p2)={running|receive_waiting} process_to_checkpoint(p2):=true phase(p2):=checkpointing event(p2):=checkpoint enddo
endif

6. Rule to create checkpoint

If a user process receives a checkpoint event, it creates an image file with its own state
and then changes phase to terminate if needs to be terminated, otherwise it waits for
the coordinator. Checkpoint creation of a single process is modelled by a high-level
macro called SINGLE_PROCESS_STATE_CHECKPOINT. The way – how the
relevant information for saving and restoring a single process is collected – is
irrelevant in this model. This macro takes the process and image file as parameter.
Refinement of this macro is out of scope of this model.

CPground-R6a
if role(p)=userdefined & phase(p)=checkpointing & event(p)=checkpoint then extend IMAGE by imagefile with imagefileofapp(imagefile):=app(p)
 SINGLE_PROCESS_STATE_CHECKPOINT(p,imagefile) endextend if process_to_terminate(p)=true then phase(p):=terminating else phase(p):=waiting endif
endif

7. Rules to terminate processes

The following rule handles the case when the user defined process reaches the end of
its execution and intends to terminate normally. This notification is realised by the
terminate event generated by the appropriate instruction belonging to the CODE

 54

universe. The detection of the event causes the process to change its phase to
terminating which is handled in the rules detailed later.

CPground-R7a
if role(p)=userdefined & phase(p)=running & event(p)=terminate then phase(p)=terminating
endif
The following rule handles two cases. In the first case when all user defined processes
reached the end of their execution and are being terminated normally, coordinator
removes existing checkpoint information (assumption: checkpoint information became
useless, since application finished successfully), instructs the processes to finish their
execution and terminates. In the second case, an application-wide checkpoint is just
about to finish (finished executing its user code), therefore coordinator performs self-
checkpoint and application terminates.

CPground-R7b
if role(p)=coordinator & process_to_resume={} &
 (∀p1∈PROCESS: p1≠p & app(p1)=app(p) & phase(p1)=terminating) then
 if phase(p)=running then
 do forall imagefile : imagefile∈IMAGE & imagefileofapp(imagefile)=app(p) IMAGE(imagefile):=false enddo
 do forall p2∈PROCESS: app(p2)=app(p) & p2≠p event(p2):=terminate enddo
 PROCESS(p):=false
 endif if phase(p)=checkpointing then
 extend IMAGE by imagefile with
 imagefileofapp(imagefile):=app(p) SINGLE_PROCESS_STATE_CHECKPOINT(p,imagefile) endextend
 do forall p2∈PROCESS: app(p2)=app(p) & p2≠p event(p2):=terminate enddo
 PROCESS(p):=false
 endif endif
The following rules ensures that the process terminates i.e. the process is removed
from the PROCESS universe.
CPground-R7c if role(p)=userdefined & phase(p)=terminating & event(p)=terminate
then PROCESS(p):=false endif

8. Rules to resume processes
Whenever an application is started and checkpoint information exists, application
continues its execution from checkpoint. This procedure starts with resuming the state
of the coordinator. The macro called SINGLE_PROCESS_STATE_RESUME expresses
a service providing the state recovery of the calling process. Similarly to the macro
called SINGLE_PROCESS_STATE_CHECKPOINT the refinement is omitted, library-
level resumption is assumed. As a next step user defined processes are spawned and
their resumption is initiated.

 55

CPground-R8a
if role(p)=coordinator & phase(p)=resuming & event(p)=resume then
 imagefile ∈ IMAGE: imagefileofapp(imagefile)=app(p) SINGLE_PROCESS_STATE_RESUME(p,imagefile) do forall child : process_to_store(child)=true extend PROCESS by child with app(child):=app(p) phase(child):=init role(child):=userdefined startupmode(child):=resume master(child):=false endextend
 enddo process_to_checkpoint:={} process_to_terminate:={} process_to_resume:=process_to_store phase(p):=running
endif
This rule ensures the restart of processes that have finished checkpointing and are
about to be resumed. These are the processes that got exit event previously, performed
checkpoint and must be restarted on another node of the cluster. The method of
resource allocation is irrelevant in this model; it is performed by the scheduler.

CPground-R8b
if role(p)=coordinator & phase(p)=running &
 ∃p1∈PROCESS: phase(p1)=terminating & process_to_resume(p1)=true then
 event(p1):=terminate extend PROCESS by child with app(child):=app(p) phase(child):=init role(child):=userdefined startupmode(child):=resume master(child):=false endextend
endif
A user defined process may get to waiting phase in two different ways: the process
finished checkpointing (and is waiting to continue execution) or the process has just
been started (and is waiting to resume and/or continue execution). To handle this case,
the coordinator changes the phase of every process accordingly.

CPground-R8c
if role(p)=coordinator & phase(p)=running &
 (∀proc∈PROCESS:app(proc)=app(p) & proc≠p & phase(proc)=waiting) then
 do forall pp : pp∈PROCESS & app(pp)=app(p) & pp≠p if process_to_resume(pp)=true then phase(pp):=resuming event(pp):=resume else phase(pp):=running endif
 enddo endif
Resumption of the state of a user defined process is performed when it gets a resume
event. It is done by the SINGLE_PROCESS_STATE_RESUME macro that has been
detailed at rule CPground-R8a. After resumption, execution is continued depending
whether the process was communicating or not at the time of the last checkpoint.

 56

CPground-R8d
if role(p)=userdefined & phase(p)=resuming & event(p)=resume then
 imagefile ∈ IMAGE: imagefileofapp(imagefile)=app(p) SINGLE_PROCESS_STATE_RESUME(p,imagefile) if expecting(p)=undef then phase(p):=running
 else phase(p):=receive_waiting endif
endif

2.2.5 Validation of the CPground model
In the CPground model an application interacts with the middleware components

through events. When an application requires service from one of the components, it
generates an event which is caught and served by a handler of that component. To
express which event is generated by a component (Eventgenerator) and which one is
handled (Eventhandler) by a component, the following functions are introduced:

Eventgenerator: EVENT × {CODE, LIBS, SCHED, MPE, OS} → {true, false}

Eventhandler: EVENT × {CODE, LIBS, SCHED, MPE, OS} → {true, false}

Let us define the following assumptions:

Assumption 1. During the execution of a distributed application, the application
relies on the following four basic functionalities or services that need external
support: process creation (spawn event) served by the message-passing layer
(it interacts with the operating system and scheduler), termination (terminate
event) served by the scheduler, message sending (send event) and receiving
(receive event) both served by the message-passing layer.

∀e∈{spawn, send, receive, terminate}, ∃c∈CODE: Eventgenerator(e, c)=true

∀e∈{spawn, send, receive}, ∃mp∈MPE: Eventhandler(e, mp)=true

∀e∈{terminate}, ∃s∈SCHED: Eventhandler(e, s)=true

Assumption 2. During the execution, termination (exit event) of a process can
be initiated by an instruction belonging to the scheduler (universe SCHED),
and the event can be handled by instructions executed by the user code
(universe CODE) or libraries (universe LIBS). The events terminate and exit
both causes the process to finish its execution, but are distinguished based on
the initiator.

∃s∈SCHED: Eventgenerator(exit, s)=true

∀p∈PROCESS: Eventhandler(exit, code(p))=true |
Eventhandler(exit, libs(p))=true

All events other than the ones defined in the previous two assumptions
(checkpoint and resume in this model) belong to the checkpointing functionality. The
next step is to define which interaction set/universe the checkpoint and resumption
event generation and handling belongs to.

The definition of the CPground model (see section 2.2.4) details that the rules
defined for the CPground model are updating the locations related to the LIBS universe.

 57

Therefore, any event generation or event handling activity realised by the rules named
CPground-* updates locations related to the LIBS universe.

After analysing the rules of CPground model, checkpoint event generation occurs
in rules CPground-R5b and CPground-R5c, while resume event generation occurs in
rules CPground-R1c, CPground-R8c.

Definition A :

∀e∈{checkpoint, resume}, ∃l∈LIBS:
Eventgenerator(e, l)=true and

∀e∈{checkpoint, resume},∀i∈{CODE, SCHED, MPE, OS}:
Eventgenerator(e, i)=false

Checkpoint event is handled in rule CPground-R6a, while Resume event is
handled by the rules CPground-R8a and CPground-R8d, respectively.

Definition B :

∀e∈{checkpoint, resume}, ∃l∈LIBS:

Eventhandler(e, l)=true and

∀e∈{checkpoint, resume}, ∀i∈{CODE, SCHED, MPE, OS}:

Eventhandler(e, i)=false

Before checking the ASM model against the seven definitions (defined in
section 2.2.3), ckpt and coord rules (see section 2.1.5.2) must also be expressed using
the functions Eventgenerator and Eventhandler. We can say that a checkpoint activity exists
in a component, if checkpoint related event generation or event handling is performed
by that component. For instruction set that handles checkpoint related events the
function ckpt evaluates to true and for the instruction set that generates these events
the function coord evaluates to true. Therefore

Definition C:

if ∃e∈{checkpoint, resume},

instruction∈{CODE, LIBS, SCHED, MPE, OS}:

Eventhandler(e, instruction) = true

then ckpt(instruction) = true,

otherwise ckpt(instruction) = false

Similarly coord function can be expressed in the following way:

 Definition D:

if ∃e∈{checkpoint, resume},

instruction∈{CODE, LIBS, SCHED, MPE, OS}:

Eventgenerator(e, instruction) = true

then coord(instruction) = true

otherwise coord(instruction) = false

 58

Based on the definitions A, B, C and D, now it is possible to evaluate the seven
definitions of the ClusterGrid checkpointing method defined in section 2.2.3.

Definition 1. Library level checkpointing technique is used

∀C∈CLUSTER,∀A∈APPLICATION,∀p∈PROCESS, app(p)=A:

ckpt(code(p)) = false (expression 1.1)

& ckpt(libs(p)) = true (expression 1.2)

& ∀n∈NODE, cluster(n) = C,

∀comp∈{SCHED, MPE, OS}, mapped(comp) = n:

ckpt(comp) = false (expression 1.3)

& coord(comp) = false (expression 1.4)

Evaluation of logic expression in definition 1 for the CPground model is divided into
four parts. The evaluation of the four parts is carried out in the following way:

(expression 1.1) ckpt(code(p)) =

Eventhandler(checkpoint, code(p)) | Eventhandler(resume, code(p)) =

(false | false) = false;

(expression 1.2) ckpt(libs(p)) =

Eventhandler(checkpoint, libs(p)) | Eventhandler(resume, libs(p)) =

(true | true) = true;

Since no checkpoint or resume events are generated or handled by any instruction
belonging to SCHED, MPE and OS universes, the last part is also evaluated to false
for each of the universes as described below:

(expression 1.3) ∀comp∈{SCHED, MPE, OS}:

(Eventhandler(checkpoint, comp) | Eventhandler(resume, comp)) =

(false | false) = false

(expression 1.4) ∀comp∈{SCHED, MPE, OS}:

Eventgenerator(checkpoint, comp) | Eventgenerator(resume, comp) =

(false | false) = false

Altogether, the expression for Definition 1 is satisfied, since all the four parts satisfies
the equivalence, separately.

Definition 2. Application wide checkpointing is performed

∀C∈CLUSTER,∀A∈APPLICATION:

∀p∈PROCESS, app(p)=A:

∃m∈IMAGES:

 59

image(p)⊆m &

checkpoint(C, state(A))=m &

resume(C, m)=state(A)

This definition says that for each process a checkpoint image is created at checkpoint
time. To decide whether the image is created, the appropriate rules of the coordinator
and the userdefined processes must be analysed. The rules CPground-R5b, CPground-
R5c on the coordination side ensures that in case of termination all the processes gets
the checkpoint event and the rule CPground-R6a ensures that an image is created by
the process that gets the event.

Definition 3. Checkpoint information is stored in files

∀C∈CLUSTER, ∀A∈APPLICATION, ∃m∈IMAGES:

checkpoint(C, state(A)) = m &

resume(C,m)=state(A) &

∀i∈IMAGES: imagefileofapp(i)=A

This definition expresses a further restriction the need of mapping the image into a
file. Image creation is performed by the rules CPground-R6a and CPground-R7b,
respectively. In both rules, the function imagefileofapp ensures that the image is
mapped on to a file belonging to the application.

Definition 4. Parallel checkpointing technique is coordinated

∀C∈CLUSTER, ∃comp∈{SCHED, MPE, OS}:

cluster(mapped(comp))=C & coord(comp) = true (expression 4.1)

OR

∀C∈CLUSTER , ∃p∈PROCESS:

cluster(mapped(p))=C & (coord(libs(p))=true | coord(code(p)=true) (expression 4.2)

The checkpoint method (modelled by CPground) conforms definition 4 if at least one
component performs coordination activity (i.e. coord function is evaluated to true for
one of the INSTRUCTION_SET subuniverses).

Expression 4.1 is evaluated to false, since based on definition A there are no
checkpoint related events generated by any of the SCHED, MPE, OS instruction sets.

At the same time, the expression 4.2 is evaluated to true according to definition A and
D since coordination activity exists among the processes of the application. The rule
CPground-R1a ensures that at least one process sets the expression role(self) to
coordinator and the rules CPground-R5b, CPground-R5c perform checkpoint event
generation in this process.

Definition 5. Coordination process is part of the application

∀C∈CLUSTER, ∀A∈APPLICATION:

 60

∃p∈PROCESS: cluster(mapped(p))=C & app(p)=A &

(coord(libs(p))=true | coord(code(p))=true)

AND

∀comp∈{SCHED, MPE, OS}: cluster(mapped(comp)=C &

coord(comp)=false

This definition is a more restrictive version of the previous (definition 4) one. While
the previous one requires a coordination component on the cluster, this definition
requires it to be integrated into the application. The existence of the coordinator
activity has already been showed in definition 4.

Definition 6. Processes migrate within a cluster without terminating the application

To see, whether the CPground model satisfies this point, we have to examine the state
transition of a process during migration. After analysing the rules a phase transition
diagram can be created as seen in Figure 13.

Figure 13 Phase transition diagram of the CPground model

Nodes represent the possible phases of the processes and the directed arcs represent
the firing of rules that change the phase of a process accordingly. Abbreviations for
the name of the phases are as follows:

 I: init, W: waiting, R: running, RW: receive_waiting,

 T: terminating, C: checkpointing, RE: resuming

Based on the phase transition diagram, the following four statements can be derived:

RW R W I

C T

RE

Rc

REc

Wc Cc

PROC ESS
CREATED

PROC ESS
DISCARDED

R8c R8d

R2b, R8c R4b

R4a

R7a, R7b

R7c, R8b
R5a, R5b, R5c

R5a,
R5b,
R5c

R6a

R2a,
R3a,
R4a

R6a, R7b

R8d

R1a

R1c, R2a,
R8a, R8b

R1a R1b, R1c

R1b, R1c

R8a

R7b

R5b R7b

role(p)=coordinator (R1a)

role(p)=userdefined (R1a)

 61

1. All user defined (i.e. role(p)=userdefined) processes at normal execution are going
through the following phases:

a. At startup: init ⇒ waiting ⇒ running

b. At receiving a message running ⇒ receive_waiting ⇒ running

2. Migrating user defined processes are going through the following phases:

a. running ⇒ checkpointing ⇒ terminating ⇒ init ⇒ waiting ⇒ resuming ⇒
running

3. Non-migrating user defined processes are going through the following phases if at
least one migrating process exists in the application:

a. running ⇒ checkpointing ⇒ waiting ⇒ running

4. Coordinator process does not change phase during the migration of the user defined
process(es).

Based on the four statements derived from the phase transition diagram of CPground
model, the original (Definition 6) expression can be evaluated to true, since the non-
migrating processes and the coordinator process never terminate during the migration
of migrating processes of the application. The coordinator terminates only in two
cases: if every user defined process has finished execution or if coordinator gets an
exit event from the scheduler. The first case means the normal termination of the
application, while the second one happens when the whole application is shut down by
the scheduler before it could finish the execution.

Definition 7. Application source code is unmodified

∀A∈APPLICATION, ∀p∈PROCESS, app(p)=A:

ckpt(code(p))=false & coord(code(p))=false

ckpt(code(p)) which is evaluated to false according to Definition 1 for the CPground
model. The second part can be evaluated taking definitions A and D. Definition D that
state the coord function is evaluated to true for the elements of the universe if it
contains at least one instruction that generates checkpoint or resume events.

Since definition A says that

∀e∈{checkpoint, resume},∀instruction∈{CODE, SCHED, MPE, OS}:

Eventgenerator(e, l)=false

the expression coord(code(p)) is also evaluated to false, accordingly.

 62

3 Checkpointing PVM applications

 63

3.1 The GRAPNEL checkpointing framework

3.1.1 Overview
The theoretical background introduced in the first group of theses – which

resulted in a checkpointing solution defined by an abstract model – forms an
appropriate basis for developing a concrete tool. To utilise the theoretical results I
have chosen the P-GRADE graphical parallel program development environment
developed by MTA SZTAKI. The goal of the second group of theses is to apply the
abstract model for message-passing PVM applications or algorithms created by the
P-GRADE environment.

As a preparation of thesis 2.1 I have designed and elaborated a checkpointing
technique for PVM applications created by the P-GRADE development environment
based on the abstract method defined in thesis 1.2. I have studied the architectural
design of the GRAPNEL application. I have defined the required modifications on the
architecture and redesigned the communication primitives in a way that the
checkpointing operation can be activated at any time during the execution. In addition
I have elaborated an abstract model (CPgrapnel) that fits to the solution introduced in
P-GRADE. Finally, I have proven the correctness of refinement between the CPground
and CPgrapnel models. Based on the results thesis 2.1 is stated.

Thesis 2.1: The checkpointing technique integrated in GRAPNEL applications
– following a static process model and developed by P-GRADE – realises
transparent checkpointing and its corresponding CPgrapnel ASM model is a
correct refinement of the original model called CPground.

Related publications are [1][3][13][16][17][18].

The elaborated solution enables transparent checkpointing operation – both for
the programmer and for the middleware – for parallel applications which follow a
static process model and developed by the P-GRADE environment.

3.1.2 P-GRADE environment and GRAPNEL language
In order to cope with the extra complexity of parallel and distributed programs

due to inter-process communication and synchronization, a graphical programming
environment called P-GRADE [1][48] have been designed. Its major goal is to provide
an easy-to-use, integrated set of programming tools for development of general
message-passing applications to be run on both homogeneous and heterogeneous
distributed computing systems like supercomputers, clusters and Grid systems.

The central idea of P-GRADE is to support each stage of the parallel program
development life-cycle (e.g. designing, executing, debugging [2], monitoring) by an
integrated graphical environment (see Figure 14) where all the graphical views applied
at the various levels are associated with application designed and edited by the user.

The parallel program design is supported by the GRAPNEL [35] (GRAphical
Process NEt Language) language and the GRED (see Figure 14) graphical editor. In
GRAPNEL, all process management and inter-process communication activities are
defined graphically in the user's application. Low-level details of the underlying
message-passing system are hidden. P-GRADE generates automatically all message-
passing library calls (either PVM or MPI) on the basis of the graphical notation of
GRAPNEL. Since graphics hides all the low level details of message-passing, P-

 64

GRADE is an ideal programming environment for application programmers who are
not experienced in parallel programming (e.g., for chemists, biologists, etc.).
GRAPNEL is a hybrid language: while graphics is introduced to define parallel
activities, textual language parts (C/C++ or FORTRAN) are used to describe
sequential activities.

GRAPNEL is based on a hierarchical design concept supporting both the
bottom-up and top-down design methods. A GRAPNEL program has three
hierarchical layers which are as follows from top to bottom:

Figure 14 Hierarchical design in the P-GRADE environment

• Application layer is a graphical layer which is used to define the component
processes, their communication ports as well as their connecting
communication channels (directed arrows between processes on the
application window on Figure 14). Shortly, the Application layer serves for
describing the interconnection topology of the component processes.

• Process layer is also a graphical layer to define the internal structure of the
component processes by a flow-chart like graph (see Figure 14). The basic
goal is to provide graphical representation for the message passing function
calls. As a consequence, every structure that contains message passing calls
should be graphically represented. The following types of graphical blocks
are applied: loop construct, conditional construct, sequential block, message
passing activity block and graph block. Sequential blocks must not contain
any message passing calls.

• Text layer is used to define those parts of the program that are inherently
sequential and hence a textual language like C/C++ or FORTRAN can be

 65

applied at this level. These textual codes are defined inside the sequential
blocks of the Process layer (see Figure 14).
The top-down design method can be used to describe parallel activities of the

application program. At the top level the topology and protocols of the interprocess
communication can be defined and then in the next layer the internal structure of
individual processes can be specified. At this level and in the Text layer the bottom-up
and top-down design methods can be used in a mixed way. In the case of the top-down
design method, the user can define the graphical structure of the process and then uses
the Text layer to define the C/C++ or FORTRAN code for the sequential blocks. In the
bottom-up design approach, the user can inherit code from existing C/C++ or
FORTRAN libraries and then can build up the internal process structure based on
these inherited functions. Moreover, GRAPNEL provides predefined scalable process
communication templates that allow the user to generate large process farm, pipeline
and mesh applications fast and safely.

The GRED editor helps the user to construct the graphical parts of GRAPNEL
programs in an efficient and fast way. GRAPNEL programs edited by GRED are
saved into an internal file called GRP file that contains both the graphical and textual
information of GRAPNEL programs. The main concepts of GRAPNEL and GRED
are described in detail in [1].

After the edition of the application has finished the pre-compilation and
compilation of GRAPNEL programs takes place. The goal of pre-compilation is to
translate the graphical language information of the GRP file into PVM or MPI
function calls and to generate the C or FORTRAN source code of the GRAPNEL
program. For the sake of flexibility, PVM and MPI function calls are not called
directly in the resulting C code; they are hidden in an internal library, called the
GRAPNEL Library which has two versions. In the first version (GRP-PVM Library)
the GRAPNEL Library functions are realised by PVM calls, and in the second version
(GRP-MPI Library) they are realised by MPI function calls.

Figure 15 Relation of P-GRADE and GRAPNEL application

P-GRADE
environment

multi-process
message-passing

(PVM or MPI)
parallel application

GRAPNEL
application

DESIGN IMPLEMENT

 66

As a result of the compilation, one executable is created containing the code
for all communicating processes. The execution of each process is defined by the
following triplet: user code, GRAPNEL library and the concrete message-passing
library (PVM or MPI).

3.1.3 The GRAPNEL checkpointing solution
In the P-GRADE parallel application development environment the user

designs and develops an application by using native source code and graphical
annotations. Based on this information the executable (binary) is implemented i.e.
generated and compiled (see Figure 15). Details about how the generation and
compilation is performed can be found in [35].

The proposed checkpointing method defined in section 2.2 is adopted in order
to implement library(user-) level, fully automatic self-checkpointing for Grapnel
applications. Details are introduced in this section.

3.1.3.1 Overview of the solution
The solution of design is driven by the following key features of the grapnel

application:

• A built-in additional coordinator process to maintain the process creation
and building up the connection among the processes i.e. creating the layout
of the application

• An existing additional software layer in the application (explained in the
next few paragraphs) between the user source code and the underlying
message passing layer servicing the seamless checkpoint integration and
information layer about the application structure

Based on the key features detailed above the design of the grapnel application
checkpoint can be summarised by the following key points, which is in alignment with
the ClusterGrid checkpointing method defined in Section 2.2:

1. Library-level checkpointing of the individual processes is realised by an
existing single-process checkpointing library called Ckpt[29], in
consistency with Definition 1 of the ClusterGrid method.

2. Consistent – application wide - checkpoint is performed by using the well-
known Chandy-Lamport [56] algorithm that provides a solution to avoid
in-transit messages before checkpointing of the individual processes takes
place. Every process of the application executes the algorithm and creates
its checkpoint. This approach is consistent with Definition 2 of the
ClusterGrid method.

3. The created checkpoint information is saved into files in the working
directory of the application by the user processes or optionally (in case a
shared working directory does not exist) by a checkpoint server that can be
integrated (if needed) into the built-in extra server process of the grapnel
application. This consideration is consistent with Definition 3 of the
ClusterGrid method.

4. Coordinated checkpoint is performed by the built-in server process which
is called grapnel server. This consideration is consistent with Definition 4
of the ClusterGrid method.

 67

5. By default the grapnel application has a built-in manager process which is
going to be extended to perform the checkpoint coordination required by
the application. This consideration is consistent with Definition 5 of the
ClusterGrid method.

6. Coordination process (grapnel server) schedules the suspending of
processes, synchronisation of messages, checkpointing, termination and re-
spawn of migrating processes to enable migration of processes without
terminating the entire application. This consideration is consistent with
Definition 6 of the ClusterGrid method.

7. All the checkpointing support is integrated in a seamless way into the
grapnel library of the application, which resides between the application
source code and the message passing e.g. PVM library. The designed
grapnel application in the P-GRADE environment is considered to be the
original source code of the application. Adding the checkpoint support to it
does not require even a bit of change in the application, only re-linking is
performed. This consideration is consistent with Definition 7 of the
ClusterGrid method.

8. Checkpoint related information and checkpoint control messages are
distributed by the grapnel server through the process creation and through
the hidden communication channels between the user processes and the
grapnel server. It is needed to perform consistent checkpointing.

9. Existing extra software layer (GRAPNEL) between the user code and the
underlying message passing layer enables the altering of the
communication primitives, where required.

10. Code generation and compilation is done by the P-GRADE environment,
extra libraries can be linked without user interaction. Using this feature the
checkpoint libraries can be integrated into the application.

Figure 16 Structure of a GRAPNEL application generated by P-GRADE

The following sections detail the design and implementation of the Grapnel
parallel checkpointing tool for the P-GRADE generated Grapnel applications.

grapnel
server

client
A

client
B

client
D

client
C

message
passing
layer

Console Files

grapnel
library

 68

3.1.3.2 Structure of the GRAPNEL checkpointing framework
In order to understand the operation of the grapnel checkpointing framework, a

short overview is presented in the next paragraphs about the checkpoint-free operation
of the grapnel application.

The P-GRADE compiler generates [35] the grapnel executables which contain
the code of the client processes (signed by “client A, B, C, D” in Figure 16) defined by
the user and an extra process (signed by “grapnel server” in Figure 16), called grapnel
server which coordinates the run-time set-up of the application. The client processes at
run-time logically contain the user code, the message passing primitives and the
grapnel library (signed by “grapnel library” in Figure 16) that manages logical
connections among them. To set-up the application, first the grapnel server starts and
then it creates the client processes containing the user computation. As a result of the
co-operation between the grapnel server and grapnel library the message passing
communication topology is built up. To access all necessary input-output files and the
console (see Figure 16), the server acts on behalf of the client processes. The client
processes send requests to the server for reading and writing files and console and the
necessary data are transferred when the action is finished by the server on its master
host.

Figure 17 Structure of the Grapnel application in checkpoint mode

Based on the previously introduced application structure, the checkpoint
version (see Figure 17) of the grapnel application contains the following elements:

• Grapnel Server (GS) (signed by “Grapnel server module for coordination”
in Figure 17): an extra co-ordination process that is part of the application
and generated by P-GRADE. It sets up the application by spawning the

Grapnel Server
(GS) modul for
coordination

Client A

Client D

Client B

PVM

File

ckpt server
(optionally
built-in GS)

Storage or
Working dir

ckpt lib

ckpt lib

ckpt lib

ckpt lib

Terminal

Client C

ckpt
lib

user code

grp lib

PVM lib

 69

processes and defining the logical communication topology for them.
Checkpoint extension of GS coordinates the checkpointing activities of the
client processes e.g. executes the checkpoint protocol at initialisation,
saving and resumption phases.

• Grapnel Library (GL) (signed by “grp lib” in Figure 17): a layer between
the message passing library and the user code, automatically compiled with
the application, co-operates with the server, performs preparation for the
client process environment and provides a bridge between the server
process and the user code. Checkpoint extension of this library in client
processes prepares for checkpoint, performs synchronisation of messages
and re-establishes connection to the application after a process is rebuilt
from checkpoint.

• Checkpoint Server (CS) (signed by “Ckpt Server” in Figure 17): a
component that receives data via socket and puts it into checkpoint file of
the storage and vice versa. This component is optional; functionality can be
built in GS.

• Dynamic checkpoint library (CL) (signed by “ckpt lib” in Figure 17):
loaded at process start-up and activated by receiving a checkpoint event,
reads the process memory image, creates the checkpoint image and passes
this image to the CS. CL can be transformed into static library as well in
order to be part of the application or can be transported as a working file of
the application.

• Storage is a virtual component and can be established locally or remotely.
It is a repository for checkpoint files which can be of any type. The
simplest solution is using the working directory of the application if it is
shared among the nodes.

• PVM is the message passing layer of the application that performs process
management on PVM level and transfers messages among the GL and GS
components dealing with user data, grapnel-level process management and
checkpoint coordination.

• PVM lib is the client side part of the PVM message-passing layer i.e.
provides access for PVM services through function calls.

The resulted executable itself is a PVM application. The grapnel server process
with clients A, B, C, D (see Figure 17) form the application. Processes are connected
through the PVM system and each contains an individual process checkpointer library
linked to them. The necessary checkpoint protocol is executed among the GS and the
GL components of the client processes. Grapnel protocol messages are transported by
PVM, but are invisible for the user code.

3.1.3.3 The GRAPNEL checkpointing protocol
Before starting the execution of the application, an instance of the Checkpoint

Server (CS) is running in order to transfer checkpoint files to/from the dynamic
checkpoint libraries (CL) linked to the application. CS is optional component since in
systems where common working directory exists among the hosts checkpoint file
saving and loading is performed locally. Otherwise GS plays this role. In the rest of
this section, CS and GS will be referenced individually to split functionalities clearly.

 70

The overall execution of application with checkpointing support can be divided
into 5 main phases, which are detailed in this section.

1. Initialisation

2. Interruption

3. Synchronisation

4. Saving

5. Resumption

Initialisation phase

When the application is launched, the first process that comes to live is the GS
performing the coordination of the Client processes. After initialisation it starts
spawning the Client processes. Whenever a process comes to live, it first gets
connected to GS in order to download parameters, settings, etc. When each process
has performed the initialisation, GS instructs them to start execution or start the
resumption depending on the existence of the checkpoint information.

Each (user-defined) process of the application at start-up loads automatically
the CL that is going to perform the single process checkpointing or resumption later.
The processes connect to GS and wait for decision, whether to perform normal start-
up or initiate resumption. If GS decides to initiate resumption, user-defined process
continues with restoring its memory, otherwise it starts the execution from the
beginning.

Interruption phase

While the application is running and the processes are performing the user
defined computation the checkpoint mechanism is inactive. When a checkpoint is
required, GS instructs the client processes by sending a message/signal pair to them.
This step of the protocol is more detailed in section 3.1.3.4. When a process is
successfully notified about the start of checkpointing, the execution of the user code is
suspended and the grapnel library is started instead.

The GL first notifies GS about the successful interruption and waits for further
instruction. The interruption phase finishes when all the client processes of the
application are interrupted successfully.

Synchronisation phase

The Grapnel server initiates the synchronisation phase by sending a message to
all the processes of the application. This message notifies the processes to start the
synchronisation and contains a list of process identifiers. Having received the
identifiers each process executes the well-known Chandy-Lamport [56] algorithm.

The algorithm executes the following protocol. Each process first sends an
end-of-channel message to the processes that were included in the synchronisation
notification message before. After that, the sender starts listening on the message
channels one after the other. When receiving a message two different actions might be
performed. First, in case of receiving a user generated message i.e. the message is part
of the application protocol designed by the user, the message is stored in the memory
and the channel is repeatedly checked by the process. Second, in case of receiving an
end-of-channel message, the channel is clean i.e. no message is currently transported

 71

on this channel. Therefore, the next unclear channel is started to be checked by the
process.

When end-of-channel messages arrived through all the channels to a process
and each processes of the application got this from all partners, the underlying
communication system demonstrably does not hold any message sent by/to be
delivered to any of the processes of the application. In that case the communication
system reached a consistent state regarding message delivery. At this point the
synchronisation phase is finished, which is signed by a ready-to-save message sent by
each process to the GS.

Saving phase

The Grapnel server initiates the low-level checkpoint saving phase by sending
a do-save instruction message to all Grapnel client processes. In this phase the main
step is to store the memory image map. This operation is done by CL. Before this
operation the last step is to leave the message-passing (i.e. PVM) subsystem. When
the process successfully exits from PVM, the control is taken by CL which collects all
memory segments and necessary information and stores them into a file or optionally
sends it to the checkpoint server. After the checkpoint information is successfully
stored, the processes might continue their execution or terminate immediately. If the
application is started to resume its state, all processes turns to resumption phase.

Resumption phase

In the resumption phase after the process started (spawned by GS or continued
after checkpointing), the first step is to establish connection with the message-passing
(i.e. PVM) system. At this point the process gets a new identifier. After successful
connection, the process notifies GS about its new identifier and waits for permission to
continue the execution. When all the processes are ready to run, GS notifies them to
continue their execution.

There are two different ways to continue the execution, depending on the point
where the process was interrupted. If the process got the checkpoint signal while it
was executing computation, the resumption simply means to continue the execution
from the point where it was interrupted by the signal. If the process got the checkpoint
signal while it was executing receive operation, the communication must be repeated
since the receive operation was aborted. (The situation how invalid user messages are
generated explained in details in Section 3.1.3.4.) Send operation cannot be
interrupted, since it is made atomic by disabling interruption.

After each successful resumption, whenever a process executes the receive
operation, existing messages (stored in the memory at a previous checkpoint) must be
scanned through. In case the message (the process is waiting for) is found, it is
removed from the list and passed to the user code, so the receive action is simulated.
In case appropriate message is not found in the list, a real communication is executed.

3.1.3.4 Checkpoint aware communication primitives
In order to prevent communication from malfunctioning (e.g. losing messages

or duplicating message), it is necessary to prepare the communication primitives for
proper handling of the underlying message-passing subsystem.

In order to checkpoint the application, the execution of all user processes must
be interrupted. The interruption might happen at the time of executing communication

 72

and non-communicating operation. In the latter case the interruption does not cause
any problem regarding the message-passing layer.

The former case might cause faulty operation. In the PVM message-passing
system the target process is identified by a task id (TID). Whenever a process
connects, a new identifier is associated even if the process was already member of the
communicating processes previously i.e. disconnection and reconnection steps are
performed. This fact might cause an initiated receive operation to be unfinished
forever or finished with invalid message in case the target process performs a
disconnection and reconnection. Reconnection is inevitable when checkpointing or
resuming a process of a parallel application.

Figure 18 Guarded communication primitives to prevent interruption

The receive operation stores the TID of the target process and it is not possible
to modify the TID that has been passed for the communication call. In order to prevent
the application to get to this situation a process that is still executing a communication
operation (see Figure 18) must not be interrupted. The communication primitives are
therefore defined as atomic operations.

Examine the following situation: an application consists of only two processes
M and S. Process M is the master process and S is the slave process. Process S is
performing a calculation and at the same time Process M is waiting for the result i.e.
executing a receive operation. At this point a checkpoint is required which start with
the ‘interruption’ phase. Process S is successfully interrupted, but Process M is
impossible to be interrupted, since communication is atomic. Process M is waiting for
the result from Process S in an endless loop. This need to be resolved somehow,
because checkpointing may only work properly if each user process is successfully
interrupted.

Solution is based on the fact that the receive operation must be forced to be
finished. A possible way to do this is to make the receive operation accept messages
from a source different from the specified. To implement this mechanism three
requirements are needed to be fulfilled:

1. support for wildcard receive operation by the MP layer

2. existence of method for communication primitive redefinition

 73

3. existence of a different source process

For PVM based GRAPNEL applications the requirements defined above can
be fulfilled by the support of the GRAPNEL layer. The P-GRADE code generator
redefines every receive operation to act as a wildcard receive operation and inserts the
Grapnel Server's identifier as an extra possible source of the message (see Figure 19).
In this case if a process is stuck into a receive operation and no messages are in the
queue the Grapnel Server is able to force the process to continue its execution by
sending a checkpoint message to the process. Obviously, in this case, the receive
operation should be repeated after the resumption of the checkpointed process (see
Figure 19), since the process has got an invalid message from its point of view just
before the checkpoint procedure.

Figure 19 Modification of receive communication primitives to multi-receive

As a summary, there are two situations for interruption. In the first case when
the user process is in computing phase (i.e. executing non-communicating code) a
unix signal works perfectly for interruption. In the second case the user process is
executing communication method and the checkpoint message forces the process to
finish the operation. In both cases the server performs interruption and messaging in a
combined way.

The latter technique is required only when the process is receiving a message.
In case of send operation there is no need for the second technique since the send
operation must finish in a limited/short period because send operation is non-blocking
in this environment. Blocking and synchronized send operation is realised by a non-
blocking send and blocking receive communication pair where the receive operation is
waiting for an acknowledgement. The communication primitive that performs the
receiving of an acknowledgement is also implemented like it is explained above.

3.1.3.5 Interruption and consistent cut
To checkpoint a message-passing parallel application, the state of the

individual processes and the state of the communication channel must be collected.
The states of the components forms the so called ‘system state’. Whenever a system is
checkpointed, a snapshot of each component are created and stored.

 74

Components of a message-passing application in a parallel environment are
executed in a concurrent way. Each process and the message-passing subsystem are
using the same resources to perform its job. In a concurrent system where snapshot of
communicating processes is taken, key factor is the time elapsed between the
snapshots of the individual components.

The ideal approach is that the snapshot of the individual components to form
the ‘system state’ lasts exactly zero time. In practice this is not possible. Each
snapshot takes time greater than zero. To create a snapshot of the ‘system state’ i.e.
global snapshot, individual snapshots must be created for the components one after the
other. Since time – greater than zero - elapses between the snapshot of the individual
components, a ‘system state’ might be invalid, because components are changing their
state by the time the snapshot of the other components are taken. This state is invalid
because inconsistency occurs among the state of the components. The global snapshot
forms a consistent system state or consistent cut if the following conditions are
satisfied:

For example, the cut T1 (see Figure 20) is consistent, but T2 and T3 are
inconsistent. Condition C2 is not satisfied for message D in case of cut T2 and T3. At
the same time message E is also against condition C1 in case of cut T3, since the state
of process P3 shows that message E is received, but in the state of process P1 message
E is not yet sent, which is called ‘orphan’ message.

Figure 20 Consistent and inconsistent cuts in a system state

Orphan messages [49] cannot be part of a consistent system state. Messages
that are sent but not yet received are called in-transit messages which can be removed
from the system state in order to make T2 a consistent cut.

The consistent cut in the Grapnel checkpointing framework are created in a
way that both conditions defined above are satisfied. Condition C1 is satisfied by

C1. Every message that has been received has
also been sent in the state of the sender.

C2. Each message that has been sent has also
been received in the state of the receiver.

T1 T2 T3

A

B

C D

E

F

 75

using the so-called blocking coordinated checkpointing. Consistent cut is formed by
the points in the time when the notification from the GS reaches the user processes.
Whenever a process is notified, it interrupts the execution and does not continue until
all checkpoint related activities finish.

To satisfy condition C2, in-transit messages must be removed. This is realised
by an extra end-of-channel notification sent by every process to all its neighbours. In
case there is a reliable communication layer where delivering messages is done in
FIFO order, receiving the end-of-channel message means no more messages are on its
way to the receiver from the source process.

3.1.3.6 Redesigned communication algorithms
One of the key solutions in parallel checkpointing of the grapnel applications is

to update the receiver communication primitives of the GL in the user processes in a
way which provides interruptible receiver primitives on grapnel level and at the same
time it is atomic i.e. non-interruptible on PVM level. The problem and the proposed
solution is already introduced in section 3.1.3.4. The following few paragraph details
the technique how this feature is implemented in the grapnel layer.

The main communication primitives altered in the GL are:

1. asynchronous send operation

2. synchronous send operation

3. blocked receive operation

4. blocked wildcard (alternative) receive operation

The proposed solution detailed in section 3.1.3.4 redefines the primitives to
wildcard receiving operation that waits for any message. From the list above there are
three primitives requires redefinition: blocked alternative receive operation, blocked
receive operation and synchronous send operation. The former two are
straightforward, the last one requires redefinition because a synchronous send is
implemented by an asynchronous send-receive operation, where the receive operation
is to wait for an acknowledgement.

As a reference, the pseudo-like code original (checkpoint-free) algorithm
performing the receiver operation in the GRAPNEL processes is introduced below:

1 GRP_RECEIVE_FUNC_BEGIN(sendertype, source)
2 grp_set_comm_parameters() //setting communication parameters
3 grp_set_remote_tid(source) //gets tid of source process
4 exec_receive(source) //performing receive operation from the source process
5 extract_msg_from_buffer() //unpacks content of message
6 IF(sendertype==blocked)
7 send_acknowledgement() //sending acknowledgement
8 GRP_RECEIVE_FUNC_END

To enable the receiver operations of the processes to be interruptible, the
following algorithm has been designed:

 76

1 GRP_RECEIVE_FUNC_BEGIN(sendertype, source)
2 IF(chkpt_mode)
3 checkpoint_interrupt_disable()
4 grp_set_comm_parameters() //setting communication parameters
5 DO
6 chkpt_msg=NULL
7 from_queue=FALSE
8 grp_set_remote_tid(source) //gets tid of source process
9 IF(!chkpt_mode)
10 exec_receive(source) //performing receive operation from the source process
11 ELSE
12 IF (grp_chkpt_restore_stored_msg(source) < 0) //checking stored messages
13 set_receive_target(server+source) // sets matching function
14 exec_multiple_receive() // performs matching and set chkpt_msg flag
15 reset_receive_target() //resets matching function
16 ELSE
17 from_queue=TRUE;
18 IF(chkpt_msg)
19 chkpt_get_proc_list() // receiving chkpt msg, unpack and store proc list
20 IF(!chkpt_msg)
21 IF(from_queue)
22 extract_msg_from_queue() //unpacks content of message
23 ELSE
24 extract_msg_from_buffer() //unpacks content of message
25 IF(sendertype==blocked)
26 send_acknowledgement() //sending acknowledgement
27 IF(chkpt_mode&&chkpt_msg)
28 checkpoint_interrupt_enable()
29 wait_for_checkpoint_interrupt() -->checkpoint interrupt activates here
30 -->saving and restoration returns here
31 checkpoint_interrupt_disable()
32 WHILE(chkpt_mode&&chkpt_msg)
33 IF(chkpt_mode)
34 checkpoint_interrupt_enable()
35 GRP_RECEIVE_FUNC_END

The routine „grp_receive” is modified to be interruptible. The main
modifications are as follows:

• disable and enable checkpoint interruption at the enter and exit point of the
function (lines 2-3 and 33-34)

• searching for appropriate message in the message queue storing in-transit
message caught at the previous checkpoint(s); (line 12)

• performing wildcard receive operation with the server process identifier
added into the list of acceptable input sources; (line 13-14)

• receives and stores process list (part of checkpoint procedure) stored in the
checkpoint message; (line 18-19)

• in case the message is taken from the memory i.e. from the message queue,
different way of message unpack is required; (line 21-22)

• in case the message is a checkpoint message the overall receive operation
must be interrupted and checkpoint should be performed by simply letting
the checkpoint interruption to realise; (line 28-31)

In order to make the Grapnel application be interruptible at any time, the
pattern of program code – based on the solution proposed in section 3.1.3.4 and
introduced above - is built into all operations performing any receive action.

 77

3.1.4 Definition of the CPgrapnel ASM model
In this section a new ASM model called CPgrapnel is introduced, which is a

refinement [37] of the CPground ASM model. Refinement for CPgrapnel means to
elaborate a model on the basis of CPground model that is less abstract i.e. more concrete
in point of its execution. The aim of the refinement is to show that the Grapnel
checkpointing framework implements the same features and behaviour as CPground
model defines.

In CPgrapnel the following points are elaborated in a more detailed way:

• message types are introduced, messages are distinguished depending
on serve as application messages or checkpoint control messages

• interrupt of processes are elaborated based on the checkpoint control
messages

• synchronisation of message channels are modelled

• storing application messages are modelled

• static process model of the GRAPNEL application is implemented in
the model

3.1.4.1 Universes and signatures
Universes and signatures for CPgrapnel are the same as it is defined for (inherited

from) CPground. In this section the differences are detailed.

In CPgrapnel events have been redefined. First, the EVENT called interruption
has been introduced to model the interruption phase of parallel checkpointing based on
control messages. Furthermore, the event called checkpoint has been redefined in
order to distinguish message synchronisation and checkpoint saving activities.
Therefore the universe EVENT is defined as follows: EVENTS={spawn, send, receive,
terminate, interrupt, checkpoint(synch, save), resume, exit}.

In order to implement message synchronisation a function has been introduced
to mark the actual state of the synchronisation process. The function is defined in the
following way: eoch: (PROCESS × PROCESS) → {true, false}. (note: “eoch” stands
for “end of channel”). This function returns true if synchronisation among two
processes has been successfully finished, false if synchronisation is being done and
undef if it has not been started yet.

To model message handling, message types are introduced to distinguish
application and control messages. Application messages are always sent among user
defined processes and are necessary for proper operation of the processes. Control
messages are sent by the checkpointing tool and are hidden from the programmer.
Application message type is called userdefined, while control messages are defined to
mark the beginning or the end of an activity to be performed. Therefore the type is
defined as follows: type: MESSAGE → {userdefined, interrupted, endofchannel,
synchronised, saved, resumed, exiting, exited }.

In this model the universe MESSAGE contains the messages sent among the
processes. It can be considered as a message queue handled by the underlying
communication layer. Supplementary to this, a new universe (universe
MESSAGE_STORE) is introduced which stores messages, but the represented queue is
implemented in the memory of the process. Therefore, functions defined on the

 78

MESSAGE universe are also defined for the MESSAGE_STORE universe in CPground:
(from: MESSAGE_STORE→PROCESS) to represent the source, (to:
MESSAGE_STORE→PROCESS) to represent the target and (type:
MESSAGE_STORE→{userdefined, interrupted, endofchannel, synchronised, saved,
resumed, exiting, exited } to represent the type of the message.

Note, that this model follows the static process model of GRAPNEL, since
spawning new processes at runtime is not allowed in P-GRADE [1][48]. The model
uses a predefined set of processes (universe GRP_DEF_PROC_LIST) that is assumed
to be created by the P-GRADE environment at the time of compilation.

All the universes and functions that are not mentioned in the previous
paragraphs – but used in the model – are defined in sections 2.1.5.2 and 2.2.4.1,
respectively.

3.1.4.2 Initial state
Initial state of the CPgrapnel model is equivalent with the initial state of CPground

which is as follows:

∃p∈PROCESS: app(p)≠undef, phase(p)=init, role(p)=undef, master(p)=undef, startupmode(p)=undef
Detailed explanation of parameters can be found in section 2.2.4.2.

3.1.4.3 Rules

1. Rules for initialisation

Two of the three initialisation rules for CPgrapnel are equal to the ones defined for
CPground: CPgrapnel-R1a≡CPground-R1a, CPgrapnel-R1b≡CPground-R1b

Since static process model is followed by GRAPNEL, all processes must be spawned
at initialisation. These processes have been defined by the programmer
(GRP_PROC_DEF_LIST) in P-GRADE. The rule R1c is modified accordingly.

CPgrapnel-R1c (modified version of CPground-R1c)
if role(p)=coordinator & phase(p)=waiting & startupmode(p)≠undef then if startupmode(p)=normal then phase(p):=running process_to_store:={} process_to_checkpoint:={} process_to_terminate:={} process_to_resume:={}
 do forall x : x ∈ GRP_DEF_PROC_LIST extend PROCESS by child with app(child):=app(p) phase(child):=init role(child):=userdefined startupmode(child):=undef master(child):=false endextend enddo else phase(p):=resuming event(p):=resume
 endif
endif

 79

2. Rules for process spawning
Since, there is no process creation during execution – initiated by the programmer -
the corresponding rules are disabled by performing a skip operation.

CPgrapnel-R2a (modified version of CPground-R2a)
if role(p)=userdefined & phase(p)=running & event(p)=spawn then
 skip endif
CPgrapnel-R2b (modified version of CPground-R2b) if role(p)=userdefined & phase(p)=waiting &
 startupmode(p)=normal & process_to_checkpoint(p)=false then skip
endif

3. Rule for sending a message
Refinement in this rule introduces the type of messages.

CPgrapnel-R3a (modified version of CPground-R3a) if role(p)=userdefined & phase(p)=running & event(p)=send(dest) then extend MESSAGE by msg with from(msg):=p to(msg):=dest type(msg):=userdefined endextend
endif

4. Rules for receiving a message

Receiving a message in CPgrapnel model is realised by a two-phase message checking.
First, messages stored in the memory (see definition of MESSAGE_STORE in section
3.1.4.1) are checked, and then real communication is performed. In-transit messages
just before checkpointing are elements of this universe and after resumption of a
process these elements are removed whenever a receive operation is called by the user
code. Rules CPgrapnel-R4a and R4b are modified in this way.

CPgrapnel-R4a (modified version of CPground-R4a)
if role(p)=userdefined & phase(p)=running & event(p)=receive({source|any}) then
 if (∃msg∈MESSAGE_STORE):to(msg)=p & {from(msg)=source| } then MESSAGE_STORE(msg):=false
 else if (∃msg∈MESSAGE):to(msg)=p & {from(msg)=source| } then MESSAGE(msg):=false else expecting(p):={source|any} phase(p):=receive_waiting
 endif endif

 80

CPgrapnel-R4b (modified version of CPgroundR4b)
if role(p)=userdefined & phase(p)=receive_waiting then
 if (∃msg∈MESSAGE_STORE):to(msg)=p & {from(msg)=expecting(p)| } then MESSAGE_STORE(msg):=false phase(p):=running expecting(p):=undef
 else if (∃msg∈MESSAGE):to(msg)=p & {from(msg)=expecting(p)| } then MESSAGE(msg):=false phase(p):=running expecting(p):=undef
 endif
endif

5. Rules for interrupting the execution

Whenever a process gets an exit event, application checkpointing must be performed.
Only coordinator can initiate checkpointing, therefore user defined processes must
notify it in case they get the event. Notification is sending an exiting message to the
coordinator. Rule CPgrapnel-R5a realises this operation.

CPgrapnel-R5a (newly introduced)
let coord=c∈PROCESS:role(c)=coordinator & app(c)=app(p) if role(p)=userdefined & phase(p)=running & event(p)=exit then if master(p)=true then
 event(coord):=exit
 else extend MESSAGE by m with from(m):=p to(m):=coord type(m):=exiting endextend
 endif endif

Whenever the coordinator gets an exiting message first time, it initiates the interrupt of
all the processes of the application by sending them an interrupt event.

CPgrapnel-R5b (newly introduced)
let allproc:={∀cp∈PROCESS:app(cp)=app(p) & cp≠p} if role(p)=coordinator &
 ((∃msg∈MESSAGE):to(msg)=p & type(msg)=exiting) then process_to_terminate(from(msg)):=true process_to_resume(from(msg)):=true MESSAGE(msg):=false if process_to_checkpoint={} then process_to_checkpoint:=allproc
 if (∀p’∈PROCESS): p’≠p & app(p’)=app(p) & process_to_checkpoint(p’)=true & phase(p’)={running|receive_waiting} then
 do forall pp∈PROCESS:process_to_checkpoint(pp)=true event(pp):=interrupt enddo
 endif
 endif endif

The next rule handles the case when the coordinator gets an exit event. It means
application-wide checkpoint and shutdown must be performed including the

 81

coordinator. Therefore all processes marked to be checkpointed and terminated and
they are all notified. Changing the phase to checkpointing indicates the need for
checkpointing the coordinator.

CPgrapnel-R5c (newly introduced)
let allproc:={(∀cp∈PROCESS):app(cp)=app(p) & cp≠p} if role(p)=coordinator & phase(p)=running & event(p)=exit then process_to_checkpoint:=allproc process_to_terminate:=allproc process_to_resume:={} process_to_store:=allproc
 if (∀p’∈PROCESS): process_to_checkpoint(p’)=true & phase(p’)={running|receive_waiting} then
 do forall pp∈PROCESS: process_to_checkpoint(pp)=true event(pp):=interrupt enddo
 endif phase(p):=checkpointing
endif

Interruption is modelled in CPgrapnel by changing its phase to checkpointing when
interrupt event is detected and coordinator is notified by an interrupted message. The
execution of the user code becomes suspended.

CPgrapnel-R5d (newly introduced)
let coord=c∈PROCESS:role(c)=coordinator & app(c)=app(p) if role(p)=userdefined & phase(p)={running|receive_waiting} & event(p)=interrupt then phase(p):=checkpointing extend MESSAGE by m with from(m):=p to(m):=coord type(m):=interrupted endextend
endif

6. Rules for message synchronisation among the processes

Message synchronisation begins when all user defined processes have been
successfully terminated. If the coordinator detects this case, it notifies all the processes
by sending a checkpoint(sync) event with the process list as parameters. The function
called eoch is also initialised to mark the beginning of the synchronisation activity.

CPgrapnel-R6a (newly introduced)
let N:=sizeof({(∀cp∈PROCESS): app(cp)=app(p) & cp≠p}) if role(p)=coordinator &
 (∃msg1,…,msgN∈MESSAGE):(∀i∈[1..N]:to(msgi)=p & type(msgi)=interrupted & process_to_checkpoint(from(msgi))=true) then
 do forall proc : proc∈PROCESS & process_to_checkpoint(proc)=true
 MESSAGE((m∈MESSAGE):from(m)=proc & type(m)=interrupted):=false event(proc):=checkpoint(synch, process_to_checkpoint) do forall p’ : process_to_checkpoint(p’)=true eoch(proc,p’):=undef enddo enddo
endif

 82

This rule ensures that each user defined process starts the message synchronisation by
sending an end-of-channel marker message to all other process.

CPgrapnel-R6b (newly introduced)
if role(p)=userdefined & phase(p)=checkpointing &
 event(p)=checkpoint(synch,proclist) &
 (∀proc∈PROCESS, proclist(proc)=true:eoch(p,proc)=undef) then
 do forall neighbour : neighbour ∈ {proclist\p} extend MESSAGE by m with from(m):=p to(m):=neighbour type(m):=endofchannel endextend
 eoch(p,neighbour):=false enddo
 eoch(p,p):=true event(p):=checkpoint(synch,proclist) endif

During message synchronisation every process read the messages from all the other
ones, until the end-of-channel marker message is detected. Userdefined messages are
stored in the memory to be part of the checkpoint image of the process.

CPgrapnel-R6c (newly introduced)
if role(p)=userdefined & phase(p)=checkpointing &
 event(p)=checkpoint(synch,proclist) &
 ((∃proc∈proclist):eoch(p,proc)≠undef) &
 ((∃msg∈MESSAGE):proclist(from(msg))=true) then if type(msg)=userdefined then extend MESSAGE_STORE by mb with from(mb):=from(msg) to(mb):=to(msg) type(mb):=userdefined
 endextend MESSAGE(msg):=false
 else if type(msg)=endofchannel then eoch(p,from(msg)):=true MESSAGE(msg):=false
 endif event(p):=checkpoint(synch,proclist) endif

A process finishes message synchronisation when it got all end-of-channel marker
messages from all the other processes. In this case, the coordinator is notified by a
synchronised message.

CPgrapnel-R6d (newly introduced)
let coord=c∈PROCESS:role(c)=coordinator & app(c)=app(p) if role(p)=userdefined & phase(p)=checkpointing &
 event(p)=checkpoint(synch,proclist) &
 (∀proc∈proclist:eoch(p,proc)=true) then extend MESSAGE by m with from(m):=p to(m):=coord type(m):=synchronised endextend endif

7. Rules for checkpoint saving of processes

 83

After message synchronisation, the next step is to save the checkpoint image.
Coordinator instructs every userdefined process one by one to save its state in case
synchronisation finished.

CPgrapnel-R7a (modified version of CPground-R5c)
if role(p)=coordinator &
 (∃msg∈MESSAGE: to(msg)=p & type(msg)=synchronised & process_to_checkpoint(from(msg))=true))
 then MESSAGE(msg):=false event(from(msg)):=checkpoint(save)
endif

Checkpoint image creation is performed by a userdefined process when it got a
checkpoint(save) event. The SINGLE_PROCESS_STATE_CHECKPOINT macro
performs the state saving operation. The internal details of this macro are irrelevant,
since this model focuses on the distributed nature of checkpointing.

CPgrapnel-R7b (modified version of CPground-R6a)
let coord=c∈PROCESS:role(c)=coordinator & app(c)=app(p) if role(p)=userdefined & phase(p)=checkpointing & event(p)=checkpoint(save) then extend IMAGE by imagefile with
 imagefileofapp(imagefile):=app(p)
 SINGLE_PROCESS_STATE_CHECKPOINT(p,imagefile) endextend extend MESSAGE by m with from(m):=p to(m):=coord type(m):=saved endextend endif

8. Rules for terminating the processes

The next rule is fired when a process successfully performed saving the checkpoint
image. In this case coordinator decides whether the process should be terminated or
must wait for further instruction.

CPgrapnel-R8a (modified version of CPground-R6a)
if role(p)=coordinator &
 ∃msg∈MESSAGE:to(msg)=p & type(msg)=saved then if process_to_terminate(from(msg))=true)) then event(from(msg)):=terminate
 else phase(from(msg)):=waiting endif MESSAGE(msg):=false
endif

Rule R8b ensures that a user defined process starts the termination phase whenever a
terminate event is delivered. In this case the coordinator is notified.

 84

CPgrapnel-R8b (modified version of CPground-R7c)
let coord=c∈PROCESS:role(c)=coordinator & app(c)=app(p) if role(p)=userdefined & phase(p)={running|checkpointing} & event(p)=terminate then
 extend MESSAGE by m with from(m):=p to(m):=coord type(m):=exited endextend
 phase(p):=terminating
endif

Next rule is fired at normal termination. The condition is evaluated to true, when every
process has exited, but no resumption is needed. In this case all checkpoint
information is removed (assuming, it is not needed if execution completed).

CPgrapnel-R8c (modified version of CPground-R7b)
if role(p)=coordinator & phase(p)=running &
 (∃msg1,…,msgN∈MESSAGE:(∀i∈[1..N]:to(msgi)=p & type(msgi)=exited & process_to_resume={} then
 do forall imagefile : imagefile∈IMAGE & imagefileofapp(imagefile)=app(p) IMAGE(imagefile):=false enddo PROCESS(p):=false endif
Next rule fires at the end of the application-wide checkpoint and shutdown operation.
When every process has exited, coordinator creates its checkpoint and exits.

CPgrapnel-R8d (modified version of CPground-R7b)
if role(p)=coordinator & phase(p)=checkpointing &
 (∃msg1,…,msgN∈MESSAGE:(∀i∈[1..N]:to(msgi)=p & type(msgi)=exited & process_to_resume={})) then
 extend IMAGE by imagefile with imagefileofapp(imagefile):=app(p)
 SINGLE_PROCESS_STATE_CHECKPOINT(p,imagefile) endextend PROCESS(p):=false
endif

This rule ensures that processes in termination phase are removed from the PROCESS
universe.

CPgrapnel-R8d (newly introduced)
if role(p)=userdefined & phase(p)=terminating then PROCESS(p):=false
endif

9. Rules for resuming the processes

The rule that ensures the resumption of the coordinator and the spawning of the
userdefined processes in CPgrapnel is equivalent to the one defined in CPground.
Therefore

CPgrapnel-R9a (≡CPground-R8a)

After a process exited and it must be resumed, a new process is created by the
coordinator. This activity is realised by the rule CPgrapnel-R9b.

 85

CPgrapnel-R9b (modified version of CPground-R8b)
if role(p)=coordinator & phase(p)=running &
 (∃msg∈MESSAGE: to(msg)=p & type(msg)=exited & process_to_resume(from(msg))=true)
 then MESSAGE(msg):=false extend PROCESS by child with app(child):=app(p) phase(child):=init role(child):=userdefined startupmode(child):=resume master(child):=false endextend
endif

When all the processes are in waiting phase, there are two alternatives. The first one is
that a normal startup of the application has been performed. In this case the phases of
processes must be changed to running to start the execution of the application. The
second alternative is that there are processes that have been created and need to be
resumed. In this case their phases are changed to resuming and an additional resume
event is sent to notify them.

CPgrapnel-R9c (modified version of CPground-R8c)
if role(p)=coordinator & phase(p)=running &
 (∀proc∈PROCESS:app(proc)=app(p) & proc≠p & phase(proc)=waiting) then if process_to_resume={} then
 do forall pp : pp∈PROCESS & app(pp)=app(p) & pp≠p phase(pp):=running enddo else
 do forall pp : pp∈PROCESS & process_to_resume(pp)=true phase(pp):=resuming event(pp):=resume
 enddo endif
endif

In resuming phase and with a resume event a process recovers its state from a
checkpoint file. When done, the coordinator is notified.

CPgrapnel-R9d (modified version of CPground-R8d)
let coord=c∈PROCESS:role(c)=coordinator & app(c)=app(p)
if role(p)=userdefined & phase(p)=resuming & event(p)=resume then
 imagefile:=x∈IMAGE:imagefileofapp(x)=app(p) SINGLE_PROCESS_STATE_RESUME(p,imagefile) extend MESSAGE by m with from(m):=p to(m):=coord type(m):=resumed endextend
endif
The next rule ensures that an application continues its execution after some of its
processes have been terminated, created and resumed i.e. migrated.

 86

CPgrapnel-R9e (newly introduced)
if role(p)=coordinator & (∃pa∈PROCESS:app(pa)=app(p) & pa≠p & phase(pa)=resuming) then
 if (∀pb∈PROCES): app(pb)=app(p) & pb≠p & (phase(pb)=waiting |
 (phase(pb)=resuming & ((∃msg∈MESSAGE):from(msg)=pb & type(msg)=resumed)))) then
 do forall pc : pc∈PROCESS & app(pc)=app(p) & pc≠p if expecting(pc)=undef then phase(pc):=running else phase(pc):=receive_waiting endif
 if (∃m∈MESSAGE):from(m)=pc & type(m)=resumed then
 MESSAGE(m):=false endif process_to_checkpoint(pc):=false process_to_terminate(pc):=false process_to_resume(pc):=false enddo endif
endif

3.1.5 Correspondence of CPground and CPgrapnel ASM models
In this section, the models CPground (defined in section 2.2.4) and CPgrapnel

(defined in section 3.1.4) are analysed and the correspondence of the two models are
justified.

3.1.5.1 Notion of equivalence
Based on the level of abstraction, many definitions of equivalence can be

created. ASMs offer a possibility to precisely define what equivalence means at a
certain case. There are two possibilities: comparison involves only the results (i.e.
final states) of the two systems or the comparison is expanded to (some of) the internal
states. In the first case equivalence can be defined based on relations among the input
and output of the analysed system. Otherwise, the definition of equivalence must rely
on comparing the series of consecutive states produced by the corresponding runs.

In CPground and CPgrapnel model, final states of a message-passing application do
not necessarily characterise all relevant attributes. Therefore, the second way of
equivalence definition is followed, which is as follows:

Definition CR1 Correctness of refinement [37]. An ASM M* is called a
correct refinement of an ASM M if and only if for each M*-run S0*, S1*, … there is a
corresponding M-run S0, S1, … and sequences i0<i1< …, j0 < j1 < … such that i0 = j0
=0 and Sik ≡ Sjk* for each k and either

• Both runs terminate and their final states are the last pair of equivalent
states, or

• Both runs and both sequences i0<i1< …, j0 < j1 < … are infinite.

In order to perform the comparison of two ASM models, the following items
must be defined:

• states

 87

• (representative) states of interests

• computational segments where each single M-step leads from one
corresponding state of interest to (usually the next) corresponding
states of interest.

Based on the definition of the previous items, a comparison can be performed
and the equivalence can be proven by applying definition CR1.

3.1.5.2 Proof of equivalence
In CPground and CPgrapnel ASM models an agent has several functions (phase,

startupmode, expecting, etc…) that may (or may not) be updated during the execution.
After an analysis, it becomes obvious that the most characterising function of the
different agents is: phase.

The operation of every process in the application basically depends on its
actual phase. Any activities performed by processes can be assigned to a certain
phase.

Figure 21 Phase-transition diagram of processes in CPgrapnel ASM model

In both (CPground and CPgrapnel) models, there are two types of processes
executed in the application that have different activities (role) to perform: coordinator,
userdefined. Since activities are strongly depending on the role of a process, it must be
part of the representative state of a process. In an application there are always exactly
one coordinator and at least one userdefined process during execution.

Definition D1: the state of a process agent is expressed by the value of phase
and role functions: S(p)={phase(p), role(p)}

RW R W I

C T

RE

Rc

REc

Wc Cc

PROC ESS
CREATE

PROC ESS
DISCARD R9c

R9e

R9c R4b

R4a

R8b

R8d

R5d

R5a,
R5b,
R5c
R5d

R8a

R3a,
R4a

R8a

R9e

R1a

R1c,
R9a, R9b

R1a R1b, R1c

R1b, R1c

R9a

R8c

R5c R8d

role(p)=coordinator (R1a)

R9d

R6a-d, R7a, R7b

role(p)=userdefined (R1a)

 88

The phase of a userdefined process can be one of the followings: init (I),
waiting (W), receive_waiting (RW), running (R), checkpointing (C), resuming (RE),
terminating (T). To analyse, how a process can change its phase during execution a
phase-transition diagram is created. For CPground model the diagram has already been
elaborated, that can be seen on Figure 13 on page 60. The same kind of diagram for
CPgrapnel can be seen on Figure 21.

On Figure 21 a directed graph can be seen, where nodes represent the different
phases of a process and arcs represent transitions between phases. Each arc has one (or
some) rule(s) assigned to it that may transfer a process from one phase to another.
Based on the value of the role function a process may traverse one (upper half) or the
other (lower half) branch of the graph. The lifetime of processes starts with creation
(box called PROCESS CREATED) and ends up with removing it (box called
PROCESS DISCARD).

The states of interest are defined to be the following ones:

• SI : the initial state of the system (One process of the application is
created [see ‘Initial state’ definition of the models])

• SR : the state of the system at point of repose (Every process is in
running phase)

• SF : the state of the system at the finishing point (No process of the
application is running i.e. every process has been terminated and
discarded)

Definition D2: SINTEREST:={SI, SR, SF}

The node SI represents (see Figure 22) the beginning and SF represents the end
of an execution, while the node SR represents an intermediate state of the execution
when all the processes are in running phase. It follows that SI and SF occur once in the
lifetime of an application, while SR can occur any number of times.

Figure 22 Computational segments in CPground and CPgrapnel models

When a state (e.g. SI, SR, SF) of a model is in relation to the state of another
model, they are called corresponding states. Computation segments represent a
sequence of steps that leads from a corresponding state of interest (SI, SR, SF are
represented by shaded nodes in Figure 22) to (usually the next) corresponding state of
interest. Computational segments therefore defined as SGMINITIALISATION ,
SGMEXECUTION and SGMTERMINATION.

Definition D3: SGMINITIALISATION contains steps that lead from the related
states SI to the related states SR, SGMEXECUTION leads from SR to SR and
SGMTERMINATION leads from SR to SF.

SGMINITIALISATION
SI SR SR SF

SI SR SR SF

CPgrapnel

CPground

SGMEXECUTION SGMTERMINATION

 89

In order to prove the correctness of the refinement, it must be shown that for
every run of CPground model there exists a corresponding run of CPgrapnel where the
states of interest are in relation. Therefore, the computation segments must be defined
to show that the corresponding segments of the two models always lead between the
corresponding states of interest as it is defined by definition D3.

Computational segments are defined by a sequence of states of the system.
System in this context means the application with all of its processes. The state of an
application in these models depends on the number of processes, their phases and
roles. Two states are different if any of these properties are different and two
sequences are different if at least one state is different. Practically, the number of
different sequences can be infinite since the number of processes is unlimited.
Therefore the number of processes is considered as a fix number that is low enough
that the overall state can be handled and high enough to represent all different runs.

Every application contains exactly one coordinator process and at least one
userdefined one. However, at least two of the userdefined processes are required in a
parallel application. At the same time, behaviour of processes during the
checkpointing can be divided into two representative groups: checkpoint with
termination and checkpoint without termination. Based on these considerations, state
sequences are represented by three processes: 1 coordinator and 2 userdefined
processes. A state with any number of userdefined processes can be derived from this
two processes by scaling (multiplying) them up to the required number.

Based on the phase-transition diagrams (shown in Figure 22) and the analysis
of the rules of the two ASM models, exactly two different scenarios can be defined for
each (SI, SR, SF) of the three different computational segments. Altogether, six
different computation segments can be defined where each one represents an atomic
operation in the model. Atomic since the whenever the computation segments leaves
its initial state, there is no event that could inhibit the model to reach the next state in
the sequence.

For segment SGMINITIALISATION the two scenarios are

1. Normal startup of the application and

2. Resumption of the application from checkpoint.

Figure 23 Startup phase of SGMINITIALISATION in CPground and CPgrapnel models

The states for normal startup of CPground and CPgrapnel models are shown on
Figure 23. Nodes represent the overall state of the system and directed arcs show the
next state of the system. As it can be seen both sequences start with the initial state
(SI) and end up with the running state (SR). Intermediate steps are represented by

SR SBS2 SBS3 SI SBS1

P0=I P0=Wc P0=Rc
P1=I

P0=Rc
P1=W

P0=Rc
P1=R

P0=Rc
P1=R
P2=I

P0=Rc
P1=R
P2=W

P0=Rc
P1=R
P2=R

SI SAS1 SAS2 SAS3 SAS4 SAS5 SAS6 SR

P0=I P0=Wc P0=Rc
P1=I
P2=I

P0=Rc
P1=W
P2=W

P0=Rc
P1=R
P2=R

CPground

CPgrapnel

 90

SAS1–SAS6 for CPground and SBS1–SBS3 for CPgrapnel. (Note: steps are named in a form
like “SXSY” where X can be “A” for CPground, “B” for CPgrapnel and SY means the Yth
state in the sequence)

For each state, phases of every process (P0, P1, P2) are shown above or below
the nodes in Figure 23. P0 represents the coordinator process, while P1 and P2 are the
userdefined processes. The corresponding states are shown as shaded nodes for SI and
SR and with thin grid pattern for intermediate states. Relation of a pair of states is
shown by a dotted line.

Figure 24 Resumption phase of SGMINITIALISATION in CPground and CPgrapnel models

Normal startup of the CPground assumes that the first userdefined process is
created by the coordinator the second one is spawned by the userdefined process,
since the ground model applies dynamic process creation. Contrary to that, in the
grapnel model processes cannot be spawned at run-time, therefore coordinator spawns
all userdefined processes in one step. These two scenarios are shown in Figure 23,
where the sequences of both system starts and ends up in related states (in this
computation segment), while one pair of intermediate related states (SAS1–SBS1) still
exists. Analysing the rules, one can come to a conclusion that every state can lead only
to the next state defined in the aforementioned sequences (in Figure 23) for both
models. The rules ensure that during the startup phase state of the agents are not
depending on any external event. The exception is only the spawn event sent by the
programmer, which is predefined (assumed that CPground model gets a spawn event
after the first process started) in this situation to perform comparison of the two runs.

The comparison of the resumption computation segments of CPground and
CPgrapnel (in Figure 24) shows correspondence between all the states. Both model
implements resumption of an application in the same way, i.e. by going through the
same states.

For segment SGMEXECUTION there can be two scenarios, namely

1. Communication among two processes

2. Process checkpoint and restart (i.e. migration)

Computation segment in the run of both models happens to change state to
receive_waiting only in case a process is blocked on receiving a message. Any other
communication does not result in phase change. Whenever a blocked process gets the
message it returns to running phase again. These two segments are therefore
considered to be in relation (see Figure 25).

P0=I P0=Wc P0=REc

P0=Rc
P1=I
P2=I

P0=Rc
P1=W
P2=W

P0=Rc
P1=RE
P2=RE

P0=Rc
P1=R
P2=R

SI SAR1 SAR2 SAR3 SAR4 SAR5 SR

P0=I

SI SBR1 SBR2 SBR3 SBR4

P0=Wc P0=REc

P0=Rc
P1=I
P2=I

P0=Rc

P1=W
P2=W

SBR5

P0=Rc

P1=RE
P2=RE

SR

P0=Rc

P1=R
P2=R

CPgrapnel

CPground

 91

The second computation segment in SGMEXECUTION describes a scenario where
one of the userdefined processes initiates an application-wide checkpoint due to an
exit event (assumed to be sent by the scheduler).

Figure 25 Communication phase of SGMEXECUTION in CPground and CPgrapnel models

After checkpointing the notified process terminates, restarts and resumes,
while the other is suspended. When resumption finished, application continues
execution. The computation segment for this scenario is depicted in Figure 26.

Figure 26 Checkpoint/Restart phase of SGMEXECUTION in CPground and CPgrapnel models

The third segment SGMTERMINATION leads the system state from SR to SF.
There can be two scenarios implementing it. These are

1. Normal termination

2. Shutdown (termination with checkpoint)

In case of normal termination every userdefined process finishes its work and
exits. After it, coordinator terminates, too. The sequence of states realizing this
scenario is depicted in Figure 27 for both models.

After examining the termination segment of both models, all intermediate
states are considered to be in relation.

The final segment called shutdown can be seen in Figure 28. In this scenario,
the coordinator process gets an exit event (assumed to be sent by the scheduler) which
initiates an application-wide checkpointing. When checkpointing is performed, every
userdefined and finally the coordinator processes exit, i.e. the whole application
finishes execution.

P0=Rc

P1=R
P2=RW

SR SAC1 SR

P0=Rc

P1=R
P2=R

P0=Rc

P1=R
P2=R

P0=Rc

P1=R
P2=RW

SR SBC1 SR

P0=Rc

P1=R
P2=R

P0=Rc

P1=R
P2=R CPgrapnel

CPground

CPgrapnel

P0=Rc

P1=C
P2=C

P0=Rc

P1=W
P2=T

P0=Rc

P1=W
P2=I

P0=Rc

P1=W
P2=W

P0=Rc

P1=R
P2=RE

P0=Rc

P1=R
P2=R

P0=Rc

P1=R
P2=R

SR SAM1 SAM2 SAM3 SAM4 SAM5 SR

P0=Rc

P1=R
P2=C

SR SBM1 SBM2 SBM3 SBM4 SBM5

P0=Rc

P1=C
P2=C

P0=Rc

P1=W
P2=C

P0=Rc

P1=W
P2=T

P0=Rc

P1=W
P2=I

SBM6

P0=Rc

P1=W
P2=W

P0=Rc

P1=R
P2=R

SBM7

P0=Rc

P1=W
P2=RE

SR

P0=Rc

P1=R
P2=R

CPground

 92

Figure 27 Termination phase of SGMTERMINATION in CPground and CPgrapnel models

Analysis of the state sequences shows that the main difference comes from the
fact that while in CPground model the coordinator instructs all userdefined processes to
terminate in one step (i.e. within one rule), the other model instructs them to do that
one-by-one whenever checkpointing is finished for a process.

Figure 28 Shutdown phase of SGMTERMINATION in CPground and CPgrapnel models

As a summary, the model CPgrapnel is considered to be a correct refinement of
CPground, since for every run of CPground model there is a corresponding run of CPgrapnel.
Every possible run of the models has been defined by

• showing that the model may only has three different types of computation
segments: SGMINITIALISATION , SGMEXECUTION, SGMTERMINATION

• introducing the only two possible runs for each of the three segments

CPgrapnel

CPground

SF

P0=Rc

P1=R
P2=R

SR SAT1 SAT2 SAT3

P0=Rc

P1=R
P2=T

P0=Rc

P1=T
P2=T

P0=Rc

P0=Rc

P1=R
P2=R

SR SBT1 SBT2 SBT3

P0=Rc

P1=R
P2=T

P0=Rc

P1=T
P2=T

P0=Rc

SF

CPgrapnel
SF

P0=Cc

P1=R
P2=R

SR SAA1 SAA2 SAA3

P0=Cc

P1=C
P2=C

P0=Cc

P1=T
P2=T

P0=Rc

P1=R
P2=R

P0=Cc

P1=R
P2=R

SF

P0=Cc

P1=C
P2=C

P0=Cc

P1=C
P2=T

P0=Rc

P1=R
P2=R

P0=Cc

P1=C
P0=Cc

P1=T

SR SBA1 SBA2 SBA3 SBA4 SBA5 SBA6

P0=Cc

CPground

 93

3.2 The TotalCheckpoint framework

3.2.1 Overview
As a preparation of thesis 2.2 I have designed and elaborated a checkpointing

technique for native PVM applications based on the abstract checkpointing method
defined in thesis 1.2 and as a generalisation of the method developed in thesis 2.1. I
have studied PVM applications and services. Afterwards, I have defined the structure
of the PVM application and solved the problem of interruption for communication
primitives. I have elaborated an abstract model (CPtckpt) that fits to the introduced
solution. Finally, I have elaborated a model refinement procedure to prove that the
model CPtckpt – implemented by the TotalCheckpoint (TCKPT) tool – is a correct
refinement of the CPgrapnel model. Based on the results thesis 2.2 has been appointed.

Thesis 2.2: The checkpointing technique for native PVM applications –
following a dynamic process model and realised by the TotalCheckpoint tool –
performs transparent checkpointing and its corresponding CPtckpt model is a
correct refinement of the CPgrapnel model and of the CPground model.

Related publications are [4][5][8][9].

The solution introduced in thesis 2.2 gives transparent checkpointing operation
– both for the programmer and for the middleware – for native PVM applications
which follow static or dynamic process model.

3.2.2 Structure and principles
A native PVM application cannot migrate among nodes during execution,

because some parts of the application state are communication-related. The
communication-related part of the state is hidden in the messaging layer i.e. in the
PVM environment.

Since the modification of the communication environment is undesired
(defined by Condition 3. in Section 2.1.4) the application must be modified. At the
same time only those techniques can be applied that do not require any changes in the
application source code (defined by Definition 7. in Section 2.2.2).

The basic design principles of the TotalCheckpoint framework can be
summarised by the following theses:

• PVM daemons of the virtual machines are not checkpointed.

• Migrating PVM environment is converted to shutdown and restart steps, i.e.
inner state of the PVM is lost after migration.

• Before checkpointing the processes leave PVM and during resumption they
reconnect to PVM. Processes leave PVM in order not to save such internal
state for the individual, disconnected processes showing connected status.

• After the process memory is rebuilt from checkpoint, the process is
reconnected to PVM.

• Every reconnection causes the PVM process identifier to be changed.

Based on the Conditions (defined in Section 2.1.4) and Definitions (defined in
Section 2.2.2) special techniques must be introduced that hide communication-related
changes from the user and give transparency for the user at the same time. To

 94

understand the overall solution, the proposed architecture is introduced first (see
Figure 29).

In PVM, one process daemon per node is running in the background in order to
provide a contact point for the PVM processes for communication. PVM daemons are
connected to each other forming a virtual environment where the connected user
processes can send messages to the others through the daemons [25].

In Figure 29 PVM daemons (represented by a PVM cloud) form the parallel
virtual machines and A, B, C, D are the user processes of the application. They are
connected to the daemons and exchange messages through them. Checkpoint server
[CS] stores and retrieves the checkpoint information. This information is gathered
inside the processes by a single process checkpointer library [CL] (denoted as ‘ckpt
lib’ in Figure 29) linked to the user processes.

TotalCheckpoint library [TL] (denoted as ‘tckpt lib’ in Figure 29) is linked to
each processes of the application. They are connected to the Totalcheckpoint
coordinator [TC] and execute the checkpoint related commands issued by TC.

Figure 29 Architecture of the Totalcheckpoint framework

In order to prepare the PVM application to be checkpointable, modification of

the internal behaviour of the application is needed. To avoid changes in the user code
special techniques are used, changes are transparent for the user. The main
cornerstones of the solution designed for TCKPT are as follow:

• To perform checkpoint of a single process with its internals, a checkpoint
library (CL) is dynamically loaded at startup.

Total-
checkpoint
coordinator

Proc A

Proc C

Proc B

PVM

Check
point
Server

Storage

Proc D

ckpt
lib

user code

tckpt lib

pvm lib

Node0 Node0,Node1,…

Optional

 95

• At process creation time an initialisation function is automatically invoked to
initialize the underlying checkpointing system i.e. to initialize TL.

• Using signals lets TL interrupt the user code and execute its own algorithms.

• Pre and post functions of TL are registered in CL to be called when a
checkpoint or resumption phase starts or finishes.

• Linker wrapping technique enables the modification of the behaviour of the
PVM operations. When linking the application the original PVM routines are
renamed and they are replaced by the functions of TL with the same name.
Therefore, application user code invokes the function calls defined in TL
instead of the real PVM calls. TotalCheckpoint library can invoke the real
PVM calls if necessary.

• One instance of TC is running in the background (usually on the frontend node
of the cluster) to help PVM processes in synchronising their checkpoint
activities. PVM processes get contacted to TC at startup.

3.2.3 Design issues and solutions

3.2.3.1 Identification of processes
The user code of a PVM application usually stores process (task) identifiers

(TID) and refers to them when sending or receiving messages. In case a process leaves
PVM the task identifier is discarded and when re-entering a new identifier is generated
for the process [25]. Since processes exit and enter PVM when they are checkpointed
and resumed, process identifiers change (if checkpointed at least once) during the life
of the application.

During the execution, the checkpointer continuously keeps track of process
identifiers. For transparency, real TIDS are replaced by virtual ones as returned by
PVM. Virtual process (or task) identifiers (USER TASK ID, UTID) are kept the same
during the whole lifetime of the application, while the continuously changing real ones
(SYSTEM TASK ID, STID) are mapped to them. This mapping is performed by the
checkpointer library and the checkpoint coordinator.

If an application spawns and terminates its processes frequently, it might
happen that the STID returned by the PVM system is already assigned for a process as
UTID. Since, the virtualisation algorithm prefers to use the same value for UTID as
STID, duplication can occur. Therefore, when spawning a new user process
coordinator always have to check for duplication and choose an unreserved value for
UTID if duplication is found.

In case a process is resumed and got a different process identifier it cannot be
addressed by its neighbours. Therefore the process after migration gets connected to
the coordinator and reports its new identifier which is then distributed among all the
processes of the application before coordinator let them continue their execution. In
other words the coordinator is used for a rendezvous point for identification of
processes.

3.2.3.2 Dynamic process creation
At the time of checkpoint, the Chandy-Lamport protocol is applied for saving

the in-transit messages among the processes. It requires the coordinator to have the

 96

exact list of processes. According to the list, the processes can cross-post
synchronisation messages to their neighbours.

Hence, dynamic process creation and termination requires keeping track of a
process list. As a first step all processes must be registered in the coordinator, directly
by the newly spawned process and indirectly by its parent when querying the TID of
its child process. During the process creation a checkpoint interruption is undesired, so
this operation must be defined atomic and uninterruptible.

In case of process termination there is an obvious solution. There are several
system or PVM calls that may result in process termination. Using wrapping
techniques enable the tool to redefine any call, e.g. insert notification of the
coordinator. However, there are numerous such calls and processes might terminate
even without any system call. Above all there can be situations when a process aborts
due to any unexpected event. Applications are usually prepared for child process
termination; the checkpointer tool must also handle this case. Therefore, it is not
failsafe to rely on the notifications of the modified system calls, since it has no effect
when process aborts.

To continuously track the number of processes, the coordinator needs a
mechanism to automatically detect the termination of a process. The solution used in
the TotalCheckpoint tool is based on the detection of loss of connection towards the
user process. Since at startup the user process builds up a connection to the
coordinator, process termination can easily realised by the connection loss detection
mechanism. When a process terminates the coordinator detects that the connection has
been lost and registers the assigned process as terminated and updates the actual
number of processes spawned by the application.

As a summary, in a Grapnel application the number of processes is constant
during the execution while in the native PVM version new process can be created at
any time during execution. Therefore in the latter case, registering the actual number
of processes in a continuously varying application requires careful design.

3.2.3.3 Starting the execution
In this section the normal startup (not resumed from checkpoint) of the

application is introduced. During the startup mechanism a predefined protocol
between user processes and the coordinator is executed.

Based on the situation there are 2 different ways of startup:

1. Normal startup of a single process

2. Normal startup of a child process

The following protocol (depicted in Figure 30) is executed for normal startup
of a single process:

1. The user process gets connected to the coordinator using the value stored in the
CHKPT_COORD_ADDR environment variable.

2. The user process decides on the mode of startup based on the value of the
CHKPT_RESUME environment variable that can be RUN, for normal
startup or RESUME for starting from checkpoint.

3. The user process identifies itself with the value stored in CHKPT_APPID
environment variable by sending a CHKPT_NEW_PROC message to the

 97

coordinator. The startup mode CHKPT_WM_RUN is also attached to let the
coordinator override the mode if necessary.

4. Coordinator informs the user process with a message CHKPT_CKPT_INFO
storing the information about the location (CKPT_SERVER) and about the
name (CKPT_ID) of the checkpoint data.

5. Coordinator checks the conditions for performing a RUN startup mode and
acknowledges it with the CHKPT_RUN message.

Figure 30 Protocol of normal startup for a single process

6. The user process sets the checkpoint related parameters and initiates the PVM
subsystem.

7. The coordinator checks the TID values against duplication sent by the user
process (CHKPT_PROC_TID) and updates (CHKPT_PROC_TID) if
necessary.
The last two steps of the protocol are executed when all process initialisation

of user processes have reach this point. The last two steps therefore are executed
simultaneously among the user process when the coordinator decides to continue the
execution of the entire application.

8. Coordinator updates the process table of the user process by the message called
CHKPT_PROC_TIDS. This message contains USER_TID, SYSTEM_TID
pairs of every process of the application.

9. Coordinator lets the user process start execution by a CHKPT_CONTINUE
message.
User process starts execution and coordinator switches to standby mode i.e.

waits for checkpoint related events to happen.

Coordinator PVM
process

STID=pvm_mytid()

UTID=check_dup(UTID,STID)

connect(CHKPT_COORD_ADDR)

CHKPT_NEW_PROC
(CHKPT_APPID,CHKPT_WM_RUN)

CHKPT_WM_RUN

CHKPT_CKPT_INFO

CHKPT_CONTINUE

CHKPT_PROC_TIDS

CHKPT_PROC_TID(UTID=STID,STID)

CHKPT_PROC_TID(UTID,STID)

Environment variables:
CHKPT_COORD=<string>
default: checkpoint disabled
CHKPT_APPID=<string>
default: randomly generated
CHKPT_WM=RUN | RESUME
(WM= working mode)
default: RUN

checking WM, checking
environment and update

if necessary

Protocol 1.
(single process, normal startup)

 98

The following protocol (depicted in Figure 31) is executed for normal startup
of a child process:

1. Parent process spawns the child and sends a request (CHKPT_CHILDTID) to
the coordinator to get the UTID, STID pairs for the child process.

2. Coordinator adds the request to a waiting queue until the TID values are
decided.

3. Overlapped with the first two steps, the child process executes protocol 1.
4. After the startup protocol of the child process finished, coordinator informs

(CHKPT_CHILDTID) the parent process about the TID values of the child
process.

Figure 31 Protocol of normal startup for the child process

Based on the previously defined two protocols, the application can be rebuild
with checkpoint support in a seamless way as these protocols are hidden from the user.
To rebuild the application two additional protocols are defined and introduced in the
next section.

3.2.3.4 Recovering the execution
In case the application execution is resumed from checkpoints, the recovering

protocol needs to be changed accordingly.

Based on the resumption alternatives, there are two different startup
mechanisms distinguished. These are the followings:

1. Resumption of a single process

2. Resumption of a child process or the entire application

The protocol of resumed startup for a single process (depicted in Figure 32) is
defined in the following way:

Coordinator child
process

parent
process

STID=pvm_spawn()

CHKPT_CHILDTID(UTID?,STID)

CHKPT_CHILDTID(UTID,STID)

Execution of protocol 1.

Adding parent process to
queue to wait for the child
process TID

Protocol 2.
(child process, normal startup)

Checking waiting
queue and send TID to
parent process

Environment variables to be
propagated:
CHKPT_COORD=<string>
CHKPT_APPID=<string>
CHKPT_WM=RUN | RESUME

 99

1. The user process gets connected to the coordinator using the value stored in the
CHKPT_COORD_ADDR environment variable.

2. The user process decides on the mode of startup based on the value of the
CHKPT_RESUME environment variable that can be RUN, for normal
startup or RESUME for starting from checkpoint.

Figure 32 Protocol of resumption at startup for a single process

3. The user process identifies itself with the value stored in CHKPT_APPID
environment variable by sending a CHKPT_NEW_PROC message to the
coordinator. The startup mode CHKPT_WM_RESUME is also attached to let
the coordinator override the mode if necessary.

4. Coordinator informs the user process with a message CHKPT_CKPT_INFO
storing the information about the location (CKPT_SERVER) and about the
name (CKPT_ID) of the checkpoint data to be used for resumption.

5. Coordinator checks the conditions for performing a RESUME startup mode
and acknowledges it with the CHKPT_RESUME message.

6. The user process sets the checkpoint related parameters and initiates the
resumption of the internal state based on the checkpoint information addressed
by the coordinator. Now, the process memory is overwritten, protocol is
continued with the initialisation of the PVM system.

7. The coordinator checks the TID values against duplication sent by the user
process (CHKPT_PROC_TID) and updates (CHKPT_PROC_TID) if
necessary.

Coordinator PVM
process

UTID=stored at checkpoint

UTID=check_dup(UTID,STID)

connect(CHKPT_COORD_ADDR)

CHKPT_NEW_PROC
(CHKPT_APPID,CHKPT_WM_RESUME)

CHKPT_WM_RESUME

CHKPT_CKPT_INFO

CHKPT_CONTINUE

CHKPT_PROC_TIDS

CHKPT_PROC_TID(UTID,STID)

CHKPT_PROC_TID(UTID,STID)

Environment variables:
CHKPT_COORD=<string>
default: checkpoint disabled
CHKPT_APPID=<string>
default: randomly generated
CHKPT_WM=RUN | RESUME
(WM= working mode)
default: RUN

resume(CHKPT_CKPT_INFO)
STID=pvm_mytid()

Protocol 3.
(single process, resumption at startup)

checking WM,
checking environment,

update if necessary

 100

The last two steps of the protocol is executed only if all process initialisation of
user processes have reach this point. The last two steps therefore are executed
simultaneously when the coordinator decides to continue the execution of the entire
application.

8. Coordinator updates the process table of the user process by the message called
CHKPT_PROC_TIDS. This message contains USER_TID, SYSTEM_TID
pairs of every process of the application.

9. Coordinator lets the user process start execution by a CHKPT_CONTINUE
message.

Figure 33 Protocol of resumption at startup for the entire application

The next protocol (Protocol 4) is used for starting the whole application from
checkpoints. By forcing the parent processes to spawn their children, the relationship

Coordinator Parent
process

UTID=stored at checkpoint

UTID=check_dup(UTID,STID)

connect(CHKPT_COORD_ADDR)

CHKPT_NEW_PROC
(CHKPT_APPID,CHKPT_WM_RESUME)

CHKPT_WM_RESUME

CHKPT_CKPT_INFO

CHKPT_PROC_TID(UTID,STID)

CHKPT_PROC_TID(UTID,STID)

Environment variables:
CHKPT_COORD=
<string>
default: checkpoint
disabled
CHKPT_APPID=
<string>
default: randomly
generated
CHKPT_WM=RUN |
RESUME
(WM= working mode)
default: RUN

checking WM,
checking environment,

update if necessary

resume(CHKPT_CKPT_INFO)
STID=pvm_mytid()

Protocol 4.
(entire application, resumption at startup)

CHKPT_SPAWN
STID=pvm_spawn()

Child
process

Execution of protocol 3.

Repeat spawn if necessary

CHKPT_CONTINUE

CHKPT_PROC_TIDS

 101

of the processes in the application is preserved. The spawning operation is repeated
until the whole application is resumed. The protocol (depicted in Figure 33) is as
follows:

1. The first block (until the message CHKPT_SPAWN) of steps defined for the
parent process in this protocol is equal with the ones defined by Protocol 3
without the last two steps. It means that the protocol of resuming a new child
process is executed after the parent process has successfully finished its
protocol and is waiting for the coordinator to continue the execution.

2. In case a new child process is about to be spawned, based on the relationship
of the processes at checkpoint time, coordinator selects the parent process and
instructs it to spawn a child by sending a CHKPT_SPAWN message to it.

3. When a child process resumes it executes Protocol 3.
4. Coordinator repeats this step until the entire application is built. Spawning

operations are executed overlapped in time.
5. When the last process has successfully resumed, coordinator updates the TID

table of the processes by sending a CHKPT_PROC_TIDS message to all of
them.

6. After all the processes are aware of the identifiers, coordinator instructs them
to continue the execution with a CHKPT_CONTINUE message.

Based on the protocols defined in this section, the processes of the application
can be started in 4 different ways.

3.2.3.5 Checkpointing the application
In this section the overall application state saving mechanism i.e.

checkpointing is introduced. The solution is derived from the previously mentioned
Chandy-Lamport algorithm. The main steps of the flow of checkpoint (depicted in
Figure 34) are the followings:

1. Checkpointing of the application is started by an interruption of the processes.
Each process reports this fact to the coordinator with a
CHKPT_SYNC_START message.

2. When the coordinator gets this notification from all the processes of the
application, synchronisation is started with a CHKPT_SYNC_TIDS message
containing the TIDs of the processes performing the checkpoint.

3. In the next step processes are performing a cross-messaging and turn into a
message receiving mode i.e. saves all incoming messages appear in the
channel until a CHKPT_SYNC_MSG is taken.

4. Saving the in-transit messages is signalled to the coordinator by a
CKPT_SYNC_FINISHED to which responding with a
CHKPT_SAVE_START initiates the checkpoint of the individual processes.

5. Checkpointing of the individual process means to leave message-passing layer
i.e. PVM and perform the real internal state saving (i.e. copying the whole
memory) of the process internals. The operation is finished with a
CHKPT_SAVE_FINSIHED message to the coordinator and after enrolling
again to PVM the new identifier is reported by a CHKPT_PROC_TID
message. Leaving and re-entering the PVM is required to reset the state of the
PVM library contained by the process itself, otherwise the internals of the
PVM library of a resumed process represents connected state which is not true,
since reconnection must be perform after resumption.

 102

6. When all the processes have finished the previous steps coordinator distributes
the new identifiers (message CHKPT_PROC_TIDS) and let the processes
continue (CHKPT_CONTINUE) their execution.

Figure 34 Protocol of checkpoint saving in TCKPT

The introduced protocol is responsible to perform a checkpoint of the whole
application i.e. all processes must take part. However, it can happen that only some of
them interrupted, since it is decided by the scheduler. The processes that have not been
interrupted by the scheduler are interrupted by any other suspended process.

Coordinator
PVM

process B
PVM

process A

CHKPT_SYNC_START

CHKPT_SYNC_TIDS

CHKPT_SYNC_MSG

CHKPT_SYNC_START

Checkpoint
interrupt

Checkpoint
interrupt

CHKPT_SYNC_TIDS

CHKPT_SYNC_MSG

CHKPT_SYNC_FINISHED

CHKPT_SYNC_FINISHED

CHKPT_SAVE_START
CHKPT_SAVE_START

pvm_exit()
checkpoint()

CHKPT_PROC_TID(UTID,STID)

CHKPT_SAVE_FINISHED

CHKPT_SAVE_FINISHED

STID=pvm_mytid()

pvm_exit()
checkpoint()

STID=pvm_mytid()

CHKPT_PROC_TID(UTID,STID)

CHKPT_CONTINUE
CHKPT_CONTINUE

CHKPT_PROC_TIDS
CHKPT_PROC_TIDS

 103

3.2.3.6 Restoring message buffers with dynamic message format
In case the processes execute the synchronisation of the in-transit messages in

the checkpoint saving protocol the following requirement must be fulfilled:

• PVM offers filtering of messages by type (called tag) and by partner. During
receiving incoming messages, filtering of messages by type must not be
applied; any type of incoming messages must be received, read and saved.
Otherwise filtered messages are lost.

• Each process must possess the identifier of the other processes that are
included in the procedure of message synchronisation.

• The receiver process must be able to save any incoming message stored in a
message buffer. Saving a PVM message buffer requires the knowledge of the
message format which is not part of the message or the buffer.

To fulfil the third requirement the checkpoint library must recognize the
protocol i.e. the format of the message. Since it is implicitly coded in the user
algorithm, the only possible way is to add extra information to the message through
redefinition of the message creation/packaging calls. Redefinition is demonstrated in
the next block of pseudo code.

Messaging in the application with TCKPT:

elementA :element with user type A
TA :element type A
elementT :element for storing a type
TT :element type for describing a type

Sender side:

Function packing(TA,elementA,messagebufferX)
Begin
 packing(TT, TA, messagebufferX)
 packing(TA, elementA, messagebufferX)
End function

Receiver side:

Function unpacking(TA, elementA, messagebufferY)
Begin
 unpacking(TT, elementT, messagebufferY) ;ommiting type information
 unpacking(TA, elementA, messagebufferY)
End function

Whenever the user adds a new element to a buffer through a packaging

method, the method inserts the format (type and length) into the buffer before the real
user data. This extra information has a fixed message format and is inserted before
every user message element. With this extension the checkpoint facility is able to
unpack the appropriate format of data elements from the buffers. On the receiver side,
format information is automatically omitted by the corresponding message handling
calls if the message is read by the user code.

Saving the content of a message buffer is also required for created-but-not-sent
buffers at the time of checkpointing. Since any number of message buffers can be
created in PVM by the programmer, saving and restoring these buffers are also

 104

inevitable tasks for the checkpointing facility. To save the content of these types of
buffers the previously introduced method can also be applicable.

Last, but not least virtualisation of the PVM buffer identifiers similarly to the
PVM task identifiers (TID) must be applied. PVM buffers have discrete identifiers and
the buffers with their identifiers together are also removed in case of detaching from
the PVM environment. When re-entering PVM the resumption mechanism must take
care of the initialisation of all the buffers existed at the time of checkpoint. New
buffers are created, their identifiers are assigned to the original ones and their content
is also added. When the user code refers to a message buffer after resumption a
mapping of the original and new identifier is performed by the checkpointing layer.

3.2.4 Comparison of GRAPNEL and TCKPT checkpointing
In the following few paragraphs an overview of the GRAPNEL and TCKPT

checkpointing tool is given in order to reveal the differences between these two
solutions and in order to show the motivation for the final design step in TCKPT.

The basic difference is that GRAPNEL version is aimed at supporting
checkpointing of applications developed in a high level graphical environment,
TCKPT is a design for native PVM applications. However, TCKPT could be utilised
for checkpointing GRAPNEL applications, several advantages and extra assistance
offered by the GRAPNEL layer would not be exploited by TCKPT.

In GRAPNEL application the GRAPNEL layer itself introduces several
restrictions regarding the topology. A significant restriction is that the topology of a
GRAPNEL application is fixed, the layout is static. No creation of additional child
processes is possible in the PGRADE environment. This feature enables the
GRAPNEL checkpointing support to simplify its internal process management
mechanism.

The essential support provided by the GRAPNEL layer can be summarised by
the following points:

• Process topology is known by the GRAPNEL server process that gives
significant help in the process management mechanism of the
checkpointer

• Virtualisation of the process identifiers is already implemented with
GRP identifiers, so this functionality is not required from the
checkpointer

• Message format is static in the sense the protocols of the channels
connecting two processes must be defined in advance and no changing
is possible. Therefore the information of the message format is
available for the checkpointer to unpack and save messages in the
memory while executing the synchronisation of messages

The previously defined restrictions and supports given by the GRAPNEL layer
confirms the need for both GRAPNEL and TCKPT checkpointer since for GRAPNEL
application a general native PVM checkpointer like TCKPT is not efficient enough
while GRAPNEL checkpointer is not able to work on non-PGRADE applications.

During the design of TCKPT several services provided by the GRAPNEL
layer had to be replaced and the layering is also modified (depicted in Figure 35)
according to that.

 105

In the software layers (see Figure 35) designed for TCKPT a virtual PVM API
is inserted (replacing the functionality of the GRAPNEL layer) in order to enable the
modification of the behaviour of the PVM calls serving transparent checkpointing for
the programmer. This insertion is automatically done at the time of linking the
application and no modification of the source code is required.

Figure 35 Software layers in GRAPNEL and TCKPT checkpointing

However, most of the required services of the GRAPNEL checkpointing are
successfully substituted in the TotalCheckpoint tool, one critical difference in the
current design is that the coordinator is a standalone, independent, background process
usually running on the front-end node of the cluster while coordination in the
GRAPNEL version is part of the application as shown in Figure 36.

Figure 36 Comparison of structures of GRAPNEL and TCKPT checkpointing

The original version of TCKPT has been designed for Hungarian ClusterGrid
[85] where each cluster has the coordinator as a deployed service. Since the current
work aims at designing and developing a checkpointer tool with application and
middleware transparency, coordinator must be somehow integrated into the
application. Otherwise it causes the application to depend on a surrounding grid
middleware environment which results in failing to fulfil the requirement defined by
Condition 4. defined in Section 2.1.4.

3.2.5 Overview of the Enhanced TCKPT
In order to reach the desired architecture of the TCKPT and make it an

application and middleware transparent and ClusterGrid compliant checkpointer tool
the coordinator must be integrated with the application. The main advantages of the

USER code

virtual PVM api

Checkpoint support

Information on message format
and topology in GRAPNEL layer
GRAPNEL checkpointing

PVM api

USER code

GRAPNEL api

Checkpoint support

PVM api

Information on message format
and topology is missing
TCKPT checkpointing

The coordination process is
part of the application

The coordination process is
an external process

master

workers

master

workers coordination

coordination

application
application

 106

introduced tools and the resulted enhancement is summarised and depicted on Figure
37.

Figure 37 Evolution of the Enhanced Totalcheckpoint framework

In Figure 37 a classification of the two introduced tools is depicted. There are
four aspects, namely: GRAPNEL relation, process model, and message format and
coordination type. Features are bold representing the desired ones for the enhanced
version.

The weaknesses of the GRAPNEL solution are the dependence on the
graphical language, the static process model that the designed application follows and
the static message format which must be defined in advance without the possibility to
modify it during the execution. In the TotalCheckpoint tool these points have been
fixed in order to make the tool independent of the graphical language, to handle
dynamic process creation in the application and to support message formats compiled
on the fly. However, the built-in coordination is still missing from the final (enhanced)
version that is a strong point of the GRAPNEL version.

In order to integrate the coordination into the application a special technique is
used. The coordinator functionality is transformed into a procedure and compiled into
a static library. This library then linked to the application at compile time as part of the
checkpointing library. Creation of the coordinator is the responsibility of the first
instance of processes (master) when starting up the application as depicted in Figure
38.

Figure 38 Coordinator initialisation in the Enhanced TCKPT framework

When the first process (master in Figure 38) is created at startup, it forks or
spawns the coordinator process before any user code is executed. When the

coordinator

master

worker

2.
fork or
spawn

4.spawn

3.connect

5. connect

1.submit

• GRAPNEL dependence
• static process model
• static message format
• built-in coordination

GRAPNEL checkpointing TCKPT checkpointing
• GRAPNEL in-dependence
• dynamic process model
• dynamic message format
• external coordination

Enhanced TCKPT checkpointing system
• GRAPNEL in-dependence
• dynamic process model
• dynamic message format
• built-in coordination

 107

coordinator is started, master gets connected and all the start-up protocol defined in
section 3.2.3.3 and 3.2.3.4. is executed

Figure 39 Structure of the Enhanced TCKPT framework

After applying the mechanism introduced in the previous paragraph the layout
or structure of the application changes in the way depicted in Figure 39.

In the Enhanced TCKPT framework the coordination became a child of the
Master process of the application. The lifetime of the coordination starts when the
Master creates it and ends up with the event when all its connections to the user
processes (A, B, C, D, E in Figure 39) break. Coordinator in this context also serves as
a checkpoint server storing and retrieving the checkpoint information of the user
processes.

3.2.6 Definition of CPtckpt ASM model
In order to verify the proper behaviour of the TotalCheckpoint framework, a

CPtckpt model is elaborated and its relationship to the CPground model is analysed. The
following section introduces the CPtckpt model.

3.2.6.1 Universes, Signatures and Initial state
The universes and signatures used by CPtckpt are inherited from CPgrapnel with

only one modification and the initial state is also the same as in CPgrapnel model. The
exact definition can be found in section 3.1.4.1 and 3.1.4.2, respectively.

The one and only modification is related to the message type. Since in this
model processes can only be spawned by user defined processes, the coordinator must
be able to control their spawning. This ability is required at resumption of the
application. New message type called “spawn” is introduced, so the definition is as

Process B

Process D

Process C

PVM

Coordinator
& optional

chkpt server

Storage/
Working dir

tckpt lib

tckpt lib

tckpt lib

Terminal

Process E

user code

tckpt lib

pvm lib

Process A
(master)

tckpt lib

fork()

spawn()

 108

follows: type: MESSAGE → {userdefined, interrupted, endofchannel, synchronised,
saved, resumed, exiting, exited, spawn}.

3.2.6.2 Rules

1. Rules for initialisation

The very first process (that is the master process of the application) has the task of
creating the coordinator as it is introduced in section 3.2.5. Other details are the same
as it was defined in CPgrapnel.

CPgrapnel-R1a (modified version of CPgrapnel-R1a)
if phase(p)=init then
 if role(p)=undef then role(p)=userdefined extend PROCESS by c with app(c):=app(p) phase(c):=init role(c):=coordinator startupmode(c):=undef master(c):=false endextend
 else phase(p):=WAITING
 endif
 if master(p)=undef then master(p)=true endif
endif

CPtckpt-R1b (≡CPgrapnel-R1b)
Comparing to CPground or CPgrapnel models, in rule CPtckpt-R1c no process spawning
needs to be performed since by the time coordinator starts one userdefined (master)
process is already created.

CPtckpt-R1c (modified version of CPgrapnel-R1c)
if role(p)=coordinator & phase(p)=waiting & startupmode(p)≠undef then
 if startupmode(p)=normal then phase(p):=running process_to_store:={} process_to_checkpoint:={} process_to_terminate:={} process_to_resume:={} else phase(p):=resuming event(p):=resume
 endif endif

2. Rules for process spawning

CPtckpt-R2a
if role(p)=userdefined & phase(p)=running & event(p)=spawn then extend PROCESS by child with app(child):=app(p) phase(child):=init role(child):=userdefined startupmode(child):=normal master(child):=false endextend
endif

 109

Dynamic process creation during execution is supported similarly to the CPground
model. The rule CPtckpt-R2a ensures the process to be created, while the rule
CPtckpt-R2b ensures the process to start its execution.

CPtckpt-R2b
if role(p)=userdefined & phase(p)=waiting &
 startupmode(p)=normal & process_to_checkpoint(p)=false then phase(p):=running
endif

3. Rule for sending a message
CPtckpt-R3a (≡CPgrapnel-R3a)

4. Rules for receiving a message
CPtckpt-R4a (≡CPgrapnel-R4a)
CPtckpt-R4b (≡CPgrapnel-R4b)

5. Rules for interrupting the execution
CPtckpt-R5a (≡CPgrapnel-R5a)
CPtckpt-R5b (≡CPgrapnel-R5b)
CPtckpt-R5c (≡CPgrapnel-R5c)
CPtckpt-R5d (≡CPgrapnel-R5d)

6. Rules for message synchronisation among the processes
CPtckpt-R6a (≡CPgrapnel-R6a)
CPtckpt-R6b (≡CPgrapnel-R6b)
CPtckpt-R6c (≡CPgrapnel-R6c)
CPtckpt-R6d (≡CPgrapnel-R6d)

7. Rules for checkpoint saving of processes
CPtckpt-R7a (≡CPgrapnel-R7a)
CPtckpt-R7b (≡CPgrapnel-R7b)

8. Rules for terminating the processes
CPtckpt-R8a (≡CPgrapnel-R8a)
CPtckpt-R8b (≡CPgrapnel-R8b)
CPtckpt-R8c (≡CPgrapnel-R8c)
CPtckpt-R8d (≡CPgrapnel-R8d)
CPtckpt-R8e (≡CPgrapnel-R8e)

9. Rules for resuming the processes

CPtckpt-R9a (modified version of CPgrapnel-R8a)
let allproc=((∀rp∈PROCESS):app(rp)=app(p) & rp≠p)
let master=((m∈PROCESS):app(m)=app(p) & master(m)=true if role(p)=coordinator & phase(p)=resuming & event(p)=resume then
 imagefile ∈ IMAGE: imagefileofapp(imagefile)=app(p) SINGLE_PROCESS_STATE_RESUME(p,imagefile) do forall child : process_to_store(child)=true &
 master(child)=false extend MESSAGE by msg with from(msg):=p to(msg):=master type(msg):=spawn endextend
 enddo
 process_to_checkpoint:={} process_to_terminate:={}
 process_to_resume:=process_to_store
 phase(p):=running endif

 110

At resumption every userdefined process must be created – except the master one
since it is already created – to resume them. It is done by notifying the master to make
it on behalf of the coordinator which is realised by the rule CPtckpt-R9a.

CPtckpt-R9b (≡CPgrapnel-R9b)
CPtckpt-R9c (≡CPgrapnel-R9c)
CPtckpt-R9d (≡CPgrapnel-R9d)
CPtckpt-R9e (≡CPgrapnel-R9e)

The rule CPtckpt-R9f makes spawning possible by the userdefined processes on behalf
of the coordinator process. When receiving a “spawn” message, process creation is
performed.
CPtckpt-R9f
let coord=c∈PROCESS:role(c)=coordinator & app(c)=app(p) if role(p)=userdefined &
 (∃msg∈MESSAGE: from(msg)=c & to(msg)=p & type(msg)=spawn) then extend PROCESS by child with app(child):=app(p) phase(child):=init role(child):=userdefined startupmode(child):=undef master(child):=false endextend MESSAGE(msg):=false
endif

3.2.7 Relation of CPgrapnel and CPtckpt ASM models
In this section, CPtckpt is examined in order to show the relation to CPground

model. Based on the definition of the rules, it is obvious that CPtckpt is more similar to
CPgrapnel model than to CPground. Since CPgrapnel is a correct refinement, the models
CPgrapnel (defined in section 3.1.4) and CPtckpt (defined in section 3.2.6) are analysed to
see whether CPtckpt is a correct refinement of CPgrapnel and of CPground at the same time.

3.2.7.1 Correctness of refinement
In order to examine the equivalence, first the differences between CPtckpt and CPgrapnel
are identified based on the definition of the rules:

1. Initialisation rules are different, since the startup mechanism of the
coordinator is changed.

2. Resumption rules are different, due to the difference in the startup
mechanism.

3. New message type is introduced, but is has no effect on the states of the
models

4. Dynamic process creation is introduced compared to CPgrapnel

Proving the correspondence (i.e. one is a correct refinement of the other) of
CPtckpt and CPgrapnel can be carried out in the same way as in section 3.1.5.2. The
definition of the state, states of interest and the three computational segments
(SGMINITIALISATION , SGMEXECUTION, SGMTERMINATION) are exactly the same in this
case at it was introduced in section 3.1.5.2. Based on the differences listed above, only
SINITIALISATION computational segment is required to be justified in CPtckpt by showing
the sequences of states for normal startup and for resumption. For normal startup, a
comparison of the state sequences can be seen in Figure 40.

 111

Any run of a normal startup of CPtckpt always leads from SI to SR which can be
derived from the logic of the rules. A startup sequence is atomic, since the logic of the
rules only depends on internal parameters set by the rules themselves i.e. cannot be
interrupted by any event.

Figure 40 Startup phase of SGMINITIALISATION in CPgrapnel and CPtckpt models

An alternative computational segment for initialisation is the resumption (i.e.
startup based on checkpoints), which can be seen on Figure 41.

Resumption of an application is always a sequence from SI to SR. Looking at
the sequences there is a slight difference at state SI in CPtckpt. The state of the process
is marked with ”P1=I”, while for CPgrapnel SI is represented by ”P0=I”. The difference
is only syntactical, since both models have the same initial state (defined in section
3.1.4.2) which says that there is exactly one process with INIT state, by the role is set
to undefined. Therefore, the correct expression for SI would be “P=I” in both models.
Indices are introduced in only to express which role the created process will get in the
forthcoming steps of sequences.

Figure 41 Resume phase of SGMINITIALISATION in CPgrapnel and CPtckpt models

As a summary, CPtckpt is considered to be a correct refinement of CPground and
CPgrapnel since all computation segments have been defined and it has been shown that
every segment leads to a corresponding state of interest between the models. In this
case only SGMINITIALISATION segments were shown because the other two segments are
equivalent in every state, since the related rules were inherited from CPgrapnel.

P0=I P0=Wc P0=Rc

P1=I
P2=I

P0=Rc

P1=W
P2=W

P0=Rc

P1=R
P2=R

SBS2 SBS3 SI SBS1

P1=I

P0=I
P1=W

P0=Wc

P1=W
P0=Rc
P1=W

P0=Rc

P1=R

P0=Rc

P1=R
P2=I

P0=Rc

P1=R
P2=W

P0=Rc

P1=R
P2=R

SI SCS1 SCS2 SCS3 SCS4 SCS5 SCS6 SR

SR
CPtckpt

CPgrapnel

P0=I P0=Wc P0=REc

P0=Rc

P1=I
P2=I

P0=Rc

P1=W
P2=W

P0=Rc

P1=RE
P2=RE

P0=Rc

P1=R
P2=R

SI SBR1 SBR2 SBR3 SBR4 SBR5 SR

P1=I

SI SCR1 SCR2 SCR4 SCR5

P0=I
P1=W

P0=Wc

P1=W

P0=Rc

P1=W
P2=I

P0=Rc

P1=W
P2=W

SCR6

P0=Rc

P1=RE
P2=RE

SR

P0=Rc

P1=R
P2=R

CPgrapnel

P0=REc

P1=W

SCR3

CPtckpt

 112

4 Migration of PVM applications

Process migration in distributed systems is a special event when a process or
application running on one or several resource(s) is redeployed to other one(s) in a
way that the migration is transparent for the process execution. The migration
mechanism can be advantageously used in several cases like load-balancing,
preemption, fault-tolerance or providing special resource needs.

Depending on the complexity and level two approaches are defined from
migration point of view in this work:

1. Process migration: process migration in a parallel application refers to the
event when the execution of the application is paused, some processes are
terminated and restarted (i.e. migrated) on a different machine and finally the
application continues the execution. The number of migrating processes (m) in
an application (consisting n processes) must be 0 < m < n. The process that
never migrates is the built-in checkpoint coordination process (e.g. GS in a
Grapnel application).

2. Application migration : application migration in a parallel application in the
current context refers to the event when the execution of the application is
paused, an application-wide checkpoint is performed and all processes -
including the checkpoint coordination process - are terminated. The broker or
the user then resubmits the application to a different cluster after all the files
(executable, input, output and checkpoint) have been moved to the target
cluster. After resubmission the application reloads the previous state from the
checkpoint files and continues the execution.

Process migration is typically used inside a cluster among nodes where

• not all the resources (nodes executing the processes) of the application are
revoked by the schedule

• the master process of the application is not terminated but continuously
running

• revoked resources are replaced within a relatively short period of time

• the processes of the application are notified about the revoking of the
resource

• the application is not removed from the queue of the scheduler

• the master process is not checkpointed

Application migration is typically used inside a Grid among Clusters where

• all the resources of the application are removed

• the master process of the application must be terminated, it cannot continue
execution

• the revoked resources are not replaced within a short period of time

• the processes of the application are not notified individually about the
removal of the resource, the migration is initiated through/by the master
process

 113

• the application is removed from the queue of the scheduler in order to be
restarted on a different cluster

• master/coordination process performs its own checkpoint

 114

4.1 Process migration on Clusters

4.1.1 Overview
After the theoretical background elaborated in the first group of theses and the

concrete checkpointing solution developed in the second group of theses, the goal of
the third group of theses is to justify that transparent migration – based on the previous
solutions – can be realised in ClusterGrid environment. There are two options:
migration of certain processes of the application among the resources of the hosting
cluster and migration of the entire application among clusters. To demonstrate the
elaborated techniques the well-known job scheduler called Condor has been selected.

Thesis 3.1 focuses on transparent process migration by analysing the
interaction between the GRAPNEL application – integrating the transparent
checkpointing facility developed in thesis 2.1 – and Condor maintaining the resources
of a cluster. In this thesis after short overview of Condor, I define the basic conditions
of operation, the components and I determine the steps of migration mechanism. The
theory of this mechanism is justified by the analysis of state-transition diagram
derived from the CPgrapnel model and by mapping the flow of migration procedure into
the state-transition diagram. Based on the introduced results I have stated thesis 3.1.

Thesis 3.1: The migration of processes of the GRAPNEL applications –
developed in P-GRADE – is realised in a transparent way for the schedulers
and the elaborated solution adapts itself to the internal rules of the CPgrapnel
ASM model.

Related publications are [10][11][12][14][20]

In the introduced solution transparency is ensured from several aspects, since
the migration does not require any modification in Condor, nor in PVM, nor in any
components of the operating system and nor in the source code of the application.

4.1.2 Condor
Condor is a specialized workload management system for compute-intensive

jobs [33][34]. Condor provides a job queuing mechanism, scheduling policy, priority
scheme, resource monitoring, and resource management. Users submit their serial or
parallel jobs to Condor, Condor places them into a queue, chooses when and where to
run the jobs based upon a policy, carefully monitors their progress, and ultimately
informs the user upon completion.

The aim of Condor is to exploit the unused computing cycles of the nodes
under its control. Condor continuously monitors the usage of the machines and jobs
are started on idle nodes. When the machine becomes non-idle (some processes are
executed by the owner of the machine), the execution of condor job is suspended to
deliver the whole performance for the owner of the machine.

Condor defines different execution environments as universes. When
submitting the job, a submit file must be created that usually contains the name of the
executable and the universe, the name of files to store standard output, error and log
and parameters if needed. Job requirements can also be defined by ClassAds that is
taken into account by condor when searching for appropriate resource.

 115

Each machine might define its own policy detailing how, when and what kind
of jobs can be accepted and executed through the ClassAds mechanism. Based on the
rules of the machine and the requirements of the jobs Condor performs matchmaking.

When submitting a PVM job, Condor searches and allocates the minimum
number of available nodes defined in the submit file. Condor usually allocates only
one process per computing resource i.e. processor. When all the nodes are ready to
execute job, the job is started on the master node where the master process of the job
is expected to spawn the required number of PVM processes defined in the submit
file.

Starting a new PVM process on a remote node requires the initialisation of the
PVM daemons. Condor is integrated into PVM in order to perform resource related
activities on behalf of the PVM environment. When a PVM process terminates its
node is cleaned up and the master process is expected to spawn new ones if necessary.
In case a node becomes unavailable because - for example - its owner starts using it,
PVM process running on it is notified to terminate.

When the job has finished its execution, every allocated node is deallocated
and the output of the job is available in its working directory.

This short overview is required to understand how the migration mechanism of
GRAPNEL application works under the Condor job-scheduling system.

4.1.3 Self-coordinated migration in the GRAPNEL application

4.1.3.1 Assumptions
Assumptions for the self-coordinated migration are the following ones:

1. Resource management related operations (e.g. pvm_addhost) of PVM is
correctly handled and served by the job scheduler.

2. Node vacation in case of resource removal is realised by soft termination of the
user processes issued by the job scheduler. Soft termination lets the process
handle the event and execute any procedure before exit.

These assumptions are required for the migration procedure to be executed in a
correct way. Since these assumptions are fulfilled by the previously introduced
Condor job-scheduler, in the rest of the section the Condor system is considered to
demonstrate the process migration mechanism.

4.1.3.2 Key components
Naturally, the migration procedure is based on the support of the GRAPNEL

checkpointing framework integrated in the application developed using the PGRADE
programming environment. The migration mechanism is based on the active
participation of four elements. They are introduced briefly, details can be found in
section 3.1.3.2:

• GRAPNEL Server (GS): Since this component is managing the state of the
processes and coordinates the checkpointing procedure, the migration is also
coordinated by this component.

• GRAPNEL library (GL) with the checkpoint extension: checkpoint extension
of this library performs checkpointing and resumption of the migrating user process.

 116

• Dynamic checkpoint library (CL): loaded at process start-up and activated by
receiving a checkpoint event, reads the process memory image and passes this
information to the Checkpoint Server

• Checkpoint Server (CS): a logical component (can be part of GS) that
receives checkpoint data via a communication channel, stores it into a file or vice
versa.

4.1.3.3 Preparation of the migration procedure
First an instance of the Checkpoint Server (CS) is initiated in order to transfer

checkpoint files to/from the dynamic checkpoint libraries (CL) linked to each
processes of the application. After starting the application, each process of the
application automatically loads CL at start-up that checks the existence of a previous
checkpoint file of the process by connecting to CS. If it finds appropriate checkpoint
file for the process, the resumption of the process is automatically initiated by
restoring the process image from the checkpoint file otherwise, it starts from the
beginning.

When the application is launched, the first process that starts is the GRAPNEL
Server (GS) performing the coordination of the client processes. It starts spawning the
client processes to create the topology of the parallel application. Whenever a process
becomes alive, it first initiates its integrated checkpointing support, checks for
checkpoint file and gets contacted to GS in order to download parameters, settings,
etc. When each process has performed its initialisation, GS instructs them to start
execution and hence, the application is running.

4.1.3.4 The migration procedure
Figure 42 shows the main steps of the migration protocol applied between the

clients and the GS. The migration protocol is overlapped with the checkpointing
protocol since the latter one is part of the first one.

While the application is running and the processes are doing their tasks the
migration mechanism is inactive. Migration is activated when a client process detects
that it is about to be killed (‘Termination’ for client A in Figure 42). The client process
immediately informs GS (REQUEST_for_chkpt) that in turn initiates the
checkpointing of all the client processes of the application. Time for executing this
protocol is assumed to be ensured by Condor through its configurable properties.

For a client process checkpointing is initialised either by a signal or by a
checkpoint message (DO_chkpt) sent by GS in order to make sure that all processes
are notified regardless of performing calculation or communication. Details of this
interruption are described in sections 3.1.3.4, 3.1.3.5 and 3.1.3.6. When notified
processes are prepared for checkpointing (READY_to_chkpt), they are instructed by
GS to initiate synchronisation (DO_sync) of messages. The synchronisation ends up
with all the in-transit messages stored in memory of the client processes. Finally,
client processes send their memory image to the checkpoint server to store.

Then all checkpointed processes wait (DONE_chkpt) for further instruction
from GS whether to terminate or to continue its execution. GS terminates the clients to
be migrated by the appropriate (DO_exit) message (Client A in Figure 42) and then
GS initiates new node allocation through PVM for each terminated processes.

 117

When host allocation is performed, a new instance of the terminated processes
is spawned on the newly allocated nodes. Each migrated process automatically loads
CL that checks for the existence of checkpoint file of the process by connecting to CS.
This time the migrated processes will find their checkpoint file and hence their
resumption is automatically initiated by restoring the process image from the
checkpoint file.

The migrated processes execute post-checkpoint instructions before resuming
the real user code. The post-checkpoint instructions serve for initialising the message-
passing layer and for registering at GS (DONE_restoration). When all the
checkpointed and migrated processes are ready to run, GS allows them to continue
their execution (DO_continue).

Figure 42 Migration protocol in the GRAPNEL application

4.1.3.5 Migration among nodes under the Condor job scheduler
The GRAPNEL checkpointing system has been integrated with PVM as it is

detailed in section 3.1. The original purpose/motivation of this work is to make
GRAPNEL applications capable of migrating its processes from one host to another
relying only on PVM support where a native PVM environment is built on the nodes
of a cluster.

Termination REQUEST for chkpt..

DO chkpt

DO chkpt

SYNC messages

SAVE

SAVE DONE chkpt + need exit
DONE chkpt

DO exit

SPAWN

RESTORE

DONE restoration

DO continue

DO continue

Grapnel server/Coordinator Client A
Client B

DO sync

DO sync

READY to chkpt
READY to chkpt

READY to save
READY to save

DO save

DO save

 118

Since jobs and resources in a cluster are supervised by a local job-scheduler
the flow of migration integrated in the GRAPNEL application must be able to operate
in a transparent way.

In the Condor job-scheduling system the execution of PVM applications is
performed as a Master-Worker (MW) mechanism [73]. The basic principle of the
Condor MW model is that the master process spawns workers to perform the
calculation and continuously checks whether the workers successfully finish their
calculation. In case of a failure the master process simply spawns new workers passing
them the unfinished work.

The situation when a client process fails to finish its calculation usually comes
from the fact that Condor removes the task because the assigned node is no longer
available. This action is called vacation of the client process. In this case the master
node receives a notification message through PVM indicating that a particular node
has been removed from the PVM machine. As an answer the master process tries to
add new PVM host(s) to the virtual machine with the help of Condor, and gets notified
when host inclusion is done successfully. At this time it spawns new worker(s).

For running a GRAPNEL application, the application continuously requires the
minimum amount of nodes to execute the processes. Whenever the number of the
nodes drops below the minimum, the GRAPNEL Server (GS) tries to extend the
number of PVM machines above the critical level. It means that the GS process
behaves exactly the same way as the master process does in the Condor MW system.

Under Condor the master PVM process is always started on the submit
machine (Step 1 on Figure 43) and is running until the application is finished. It is not
shut down by Condor, even if the submit machine becomes overloaded. Condor
assumes that the master process of the submitted PVM application is designed as a
work distributor. The functionality of the GRAPNEL server process fully meets this
requirement, so GRAPNEL applications can be executed under Condor without any
structural modification and the GS can act as the coordinator of the checkpointing and
migration mechanisms as it was described previously.

Whenever a process is to be killed (Step 2 on Figure 43) (e.g. because its node
is being vacated), an application-wide checkpoint must be performed and the exited
process should be resumed on another node. The application-wide checkpointing is
driven by GS, but it can be initiated by any client process which detects that Condor
tries to kill it. In this case the client process notifies GS to perform a checkpoint. After
this notification GS instructs every process to perform checkpointing (Step 3 on
Figure 43). After checkpointing, all the client processes wait for further instruction
from the server whether to terminate or continue the execution. GS sends a terminate
notification to those processes that must migrate.

At this point GS waits for the decision of Condor that tries to find underloaded
nodes (Step 4 on Figure 43) either in the home Condor pool of the submit machine or
in a friendly Condor pool. Friendly Condor pool of a pool is the one from which or to
which the pool accepts/sends jobs. This is called flocking [33]. Flocking can be uni- or
bi-directional depending on the friendliness relation. When two pools are flocked to
each other it means that they share resources and jobs. In Figure 43 migrations is
done to a friendly pool. However, migration to a node of a local or friendly pool does
not differ technically.

 119

The resume phase is performed only when the PVM master process (GS)
receives a notification from Condor about new host(s) connected to the PVM virtual
machine. When every terminated process is migrated to a new node allocated by
Condor, the application can continue its execution.

This working mode enables the PVM application to continuously adapt itself
to the changing PVM virtual machine by migrating processes from the machines being
vacated to some new ones that have just been added. Figure 43 shows the main steps
of the migration between friendly Condor pools. Notice that the GRAPNEL Server
and Checkpoint Server processes remain on the submit machine of the home pool
even if every client process of the application migrate to another pool.

Figure 43 Migration of GRAPNEL application among Condor nodes

It should be noticed that Condor does not provide checkpointing for any kind
of PVM applications it only provides application level support for fault-tolerant
execution of MW type PVM applications as it is detailed in section 1.3.2 and 2.1.6.2.

Condor

GS

CS A B

P P

Condor

C

P

addhost
spawn C

checkpoint read

reconnect

allocate node

spawn

synchronising messages

Condor

GS

CS A B C

P P P

vacate terminate notify
ABC

Condor

GS

CS A B C

P P P

vacate

checkpoint write

spawn ABC

client nodes

Condor

GS

CS A B C

P P P

submit node

spawn spawn spawn

GS: Grapnel Server
CS: Checkpoint Server
P: PVM daemon
A,B,C: User processes

Step 1.

Step 2.

Step 3.

Step 4.

Step 1: Starting the application
Step 2: A node to vacate
Step 3: Checkpointing the app.
Step 4: Migration to a friendly pool

 120

4.1.4 Modelling
Process migration introduced in section 4.1 is explicitly part of all the three

elaborated (CPground, CPgrapnel and CPtckpt) models. The corresponding ASM rules make
sure that the migrating processes are going through the necessary phases in the model.
Migration of a process consists of two execution segments: termination and
resumption. Termination segment ensures that the process is checkpointed and
terminated while resumption segment starts a new process and rebuild its previous
state. Each process must be driven by the coordinator through the two segments when
migration happens. The corresponding way of process migration is highlighted in
Figure 44.

Figure 44 Process checkpointing and termination in CPgrapnel

Initially a process is in Running (R) phase (see Figure 44). When notification
for migration arrives, interruption and checkpointing is performed causing the process
to change its phase to Checkpointing (C). Rules R5* perform the proper interruption
of the userdefined processes, while rules R6* and R7a, R7b performs the correct
saving of the internals. After the process saved its internals successfully, it simply
changes its phase to Terminating (T) in order to indicate the end of checkpointing for
the coordinator. Finally, the rule R8d ensures that the process is discarded.

Similarly to the procedure, the corresponding way of process initialisation is
highlighted with thick lines in Figure 45. Process creation leads the process to
Initialisation (I) then Waiting (W) phases through R1* rules. The process is then
instructed by the coordinator to perform resumption (RE) with rule R9c. When all the
processes have successfully performed resumption, coordinator instruct them to
continue running (R).

RW R W I

C T

RE

Rc

REc

Wc Cc

PROC ESS
CREATE

PROC ESS
DISCARD R9c

R9e

R9c R4b

R4a

R8b

R8d

R5d

R5a,
R5b,
R5c
R5d

R8a

R3a,
R4a

R8a

R9e

R1a

R1c,
R9a, R9b

R1a R1b, R1c

R1b, R1c

R9a

R8c

R5c R8d

role(p)=coordinator (R1a)

R9d

R6a-d, R7a, R7b

role(p)=userdefined (R1a)

 121

The migration mechanism realised by the CPgrapnel ASM model is also analysed
in section 3.1.5.2, where the relevant phases of the migrating processes are discussed
and compared to the original CPground model.

Figure 45 Initialisation and resumption segment in CPgrapnel

4.1.5 Summary
Since Condor supports only fault-tolerant execution of MW applications

without checkpointing support the resulted mechanism of the combined Grapnel-
PVM-Condor triumvirate enables Condor to provide execution with fault-tolerant and
migration support for PVM applications developed by P-GRADE programming
environment.

The most significant features of the migration solution demonstrated in this
section are as follow:

• automatic detection of resource loss
• automatic checkpointing in case of resource loss
• allocation of resources on demand
• automatic resumption of terminated processes

Based on the features above the Grapnel application in the Condor
environment is able to provide the following novelties:

• automatic self-healing in case a process aborts
• automatic self-adoption for the continuously changing resource availability
• process migration transparently for the cluster middleware
• process migration transparently for the programmer

RW R W I

C T

RE

Rc

REc

Wc Cc

PROC ESS
CREATE

PROC ESS
DISCARD R9c

R9e

R9c R4b

R4a

R8b

R8d

R5d

R5a,
R5b,
R5c
R5d

R8a

R3a,
R4a

R8a

R9e

R1a

R1c,
R9a, R9b

R1a R1b, R1c

R1b, R1c

R9a

R8c

R5c R8d

role(p)=coordinator (R1a)

R9d

R6a-d, R7a, R7b

role(p)=userdefined (R1a)

 122

4.2 Application migration on ClusterGrid

4.2.1 Overview
In the migration solution presented in thesis 3.1 the procedure is driven by a

special coordinator process – integrated in the GRAPNEL application – where the
termination of this process causes the entire application to be shutdown. However, this
coordination process must be terminated during the application migration since link
between the clusters in a ClusterGrid are usually not exists. To eliminate this problem
I elaborated an application migration solution and then I mapped it to the CPgrapnel
model. Based on the results thesis 3.2 is stated.

Thesis 3.2: The GRAPNEL application implements a consistent, global state-
space migration for message-passing parallel applications by saving and
restoring the integrated coordination process. It enables the migration of the
entire application among independent (not using each others’ resources)
clusters. In addition, the elaborated solution adapts itself to the internal rules
of the CPgrapnel ASM model.

Related publications are [1][10][13][15].

4.2.2 Motivation
Process migration in distributed computational environments can solve the

problem of balancing the load of the nodes within a cluster, or removing a process of a
parallel job from a node. However, process migration is not enough to move processes
among clusters since in some cases the application may suffer from weak resource
supply within a cluster. To overcome this limitation application migration is needed.

In that special cases when the whole ClusterGrid is built based on Condor job-
manager it is possible to allocate the migrating task to another cluster in case the two
pools are flocked to each other. This is a special case when migration of the whole
application is not necessary. Running a Grapnel application under Condor and
migrating client processes among nodes can be performed by tight cooperation of the
Grapnel Server and the checkpoint library. While the application is using only the
resources that are under the authorisation of the executor Condor pool and friendly
Condor pools, Grapnel Server can coordinate everything from the submit machine.

However, Condor flocking cannot be applied in generic Grid systems where
the pools (clusters) are separated by firewalls and hence global Grid job managers
should be used.

In such systems if the cluster is overloaded, i.e., the local job manager cannot
allocate nodes to replace the vacated nodes; the whole application should migrate to
another less loaded cluster of the Grid. It means that not only the client process but
even the Grapnel Server should leave the overloaded cluster. This kind of migration is
called application migration opposing the process migration where the Grapnel Server
does not migrate.

4.2.3 Design issues
In order to leave the pool - i.e. migrate the whole application to another pool –

some extra capabilities are needed for the GRAPNEL application. These are as follow:

• Deciding when to initiate application migration

 123

• Performing self checkpointing of the GRAPNEL server process

• Performing checkpointing of opened file descriptors

The migration among the clusters is mapped to checkpointing, termination,
resubmission and recovery steps which are detailed in the next few sections. In order
to resubmit the application an external Grid component (e.g. broker) must contribute
to the file movement and resubmission procedure since the application is not running.
The following issues must be addressed in order to realise the support of application
migration:

• Deciding whether to initiate resubmission

• Performing automatic resubmission by Grid Application Manager

4.2.3.1 Initiation of application migration
Based on the reason for application migration, two different initiation methods

are distinguished:

• Explicit initiation, when external participant notifies the application to
perform shutdown with application wide checkpointing

• Implicit initiation, when the application decides so under predefined
circumstances

As it has been detailed in section 4.1 process migration is initiated by the local
scheduler by a terminate notification when the node is about to be vacated. Since the
master process – GRAPNEL server in this case – is performing the checkpoint
coordination, termination of this component implicitly causes the whole application to
be shut down. Based on the concept, application migration can be initiated by
terminate notification sent to the master process of the GRAPNEL application. This
way of initiation is called the explicit service request.

Alternatively, an implicit service request can be automatically generated by the
GRAPNEL server itself. Decision on automatic application migration is based on the
available and required resources provided by the job-scheduler for the application.
GRAPNEL server continuously monitors the state of its user processes. When
available nodes drop below the minimum required by the application, some of the
processes are checkpointed and shutdown by the coordinator, application suspends its
execution and the coordinator is waiting for new machines to be allocated for its
pending processes. In case the application is suspended for a predefined time, the
coordinator decides to shutdown all its processes and exit. This way of initiation is
called the implicit service request.

In case explicit service request is performed, the initiator of application
migration is usually the Grid Broker component (detailed below) of the ClusterGrid.

 In a computational Grid various resources are collected where typically one
Grid Broker component coordinates the utilisation of the underlying resources i.e.
clusters. Grid Broker usually monitors the aggregated performance and availability of
the clusters and performs the mapping of applications to resources based on the
application requirements and the actually measured performance. The broker selects
the cluster which the application must be assigned to or removed from. In case of
dynamic resource allocation policy the broker may decide to remove a job from its

 124

cluster and resubmit it to another one due to resource availability conditions in the
clusters.

The Grid Broker in this context is not aware of the checkpointing capability of
the application, so removing the application and resubmitting is the same as a restart
of the job. However, based on the automatic application-wide checkpointing and
restart support integrated into GRAPNEL application, execution is going to be
continued from the point where it was terminated. The integrated support can be
considered as an optimisation for execution.

4.2.3.2 Self-checkpoint capable server process
In order to support application migration the basic requirement for the

application is to produce a consistent, global checkpoint. For a GRAPNEL
application, checkpointing of the user processes is done as it is described in section
4.1. To leave the cluster, the server process of the application must be checkpointed
additionally.

The server process coordinates the creation of user processes and
communication links among them i.e. the topology. It also manages file operations of
the user processes and the whole checkpoint mechanism. Therefore it has all the
required knowledge to rebuild the application at resumption phase once the server has
come to life. The one and only issue to be addressed is how to checkpoint the
coordinator (server) process.

When the initiation of application migration happens, all the user processes are
checkpointed and shutdown. In this state:

• there are no pending messages among the processes, since the last
message from the user processes towards the server is the notification
about the termination

• there are no communication links, since only one server process
remained in the application

• consistent checkpoint information for all user processes is stored

The coordinator at this point performs the following steps:

• disconnects the message-passing layer i.e. exits from PVM

• as a standalone process, stores the status of the open file descriptors
and closes them

• finally, activates the checkpointing library to create a checkpoint of the
server process and then exits

In case the application is submitted, the first process to come alive is always
the server one. This is ensured by the application itself. The first instance of process
checks whether it is the first one and invokes the entry procedure of the server code if
that is the case.

After resubmission to a new cluster, when the server code is started to be
executed, it first checks for checkpoint information. If it is found, reopening working
files and re-enrolling into PVM is performed. At this point server process is in the
same state as it was on that cluster where user processes finished checkpointing and
shutdown.

 125

Based on the previous mechanism, the migration of server process of the
parallel application is converted to the migration of a single standalone process.
Checkpointing and resumption of user processes are performed before and after the
migration of the server process, respectively.

4.2.3.3 Migration of working files of the application
In the GRAPNEL application files are handled by the GRAPNEL server

process. Whenever a user process is about to open a file, a service is redirected for the
server process which then performs the actual opening of the files and returns a
reference number. Similarly, reading, writing and closing are also realised in a central
way.

While process migration does not affect the handling of opened files, for
correct migration of the entire application, migration of the working files are also
necessary since the server also exits upon application migration. This mechanism
requires the following steps to be elaborated:

• checkpointing of the opened file descriptors at the time of server
shutdown

• mapping of referenced full file names to actual file names

• reopening of working files

Checkpointing of the opened file descriptors does not require saving the
content of the files since no rollback of the execution is realised. In GRAPNEL server,
since all opened files are registered by the server process, a file table is managed. For
each user process opened file descriptors are stored in the memory of the server. When
saving the states of the opened files only the file table must be archived with file
position information added as an extra parameter.

Mapping of full file names referred by the user code to file names created by
the program is required for the case when working directory differs on the new cluster
after migration performed. When a job is submitted to a cluster the job-scheduler
allocates a working directory for it and executes the job. Opening a file can be realised
by using absolute or relative names. In the former one, the process usually queries the
pathname of the working directory once at its initial phase. Using the same directory
name after a migration would cause the job to be aborted. To resolve this conflict the
GRAPNEL server performs the mapping of the directory names and the filenames as
well.

Reopening working files are done at the resumption phase of the GRAPNEL
server. When the application is resubmitted to a new cluster and the GRAPNEL server
process is recovering itself, reopening the files and reassignment of their file
descriptors are done as a final step in its own resumption phase, but before resumption
of any user process. Reopening working files can be realised by system calls, the
required parameters are stored by the file table of the GRAPNEL server process.

4.2.4 Flow of migration
The central Grid Broker component of a ClusterGrid has access to the clusters

and takes care of the execution of the parallel application. The Broker tries to optimize
the execution time of the application and the throughput of the ClusterGrid
presumably. In order to support this optimisation application migration can be a
solution.

 126

The Broker must be able to detect the need for application migration to submit
and re-submit the application, to force the application to checkpoint itself, to identify
working files and to transfer them among the different clusters as shown in Figure 46.
In case of application migration the following scenario is executed:

1. User submits his/her application
2. Grid Broker allocates a target cluster
3. Grid Broker generates submit file for the cluster

Submit file for an application stores the definition of executable, input- and
output files, parameters and resource requirements among others. The format
of the submit file depends on the actual cluster job-scheduler the application is
about to be submitted.

Figure 46 Phases of application migration in ClusterGrid

4. Grid Broker submits the application to the target cluster
5. Grid Broker decides to perform total migration (Step 1 on Figure 46)

The Broker component continuously monitors the status of the cluster and
initiates application migration in case the load of the cluster is inadequate (i.e.
overloaded or underloaded).

6. Termination of the application is initiated by the Broker (Step 2 on Figure 46)
Broker notifies the local scheduler to terminate the job and the local scheduler
notifies the application by sending a terminate notification to the server
process.

7. Grid Broker stores the content of the working directory of the application
8. Grid Broker reassigns the application to a new cluster
9. Copying the content of the working directory to the newly allocated cluster is

performed by the Broker (Step 3 on Figure 46)
Working directory contains the collection of all checkpoint files, application
working files and executable. The files represent a consistent state with the
application at this point.

10. Grid Broker regenerates the submit file for the new cluster
11. Resubmission is done (Step 4 on Figure 46)

5. Auto self-recovery
of GRAPNEL application

4. Submission of
application to the queue

3. Transfer binaries,
checkpoint files, working
files

1. Detection of low
resources on cluster

2. Removal of application
from the queue

GRAPNEL
Application

↓

Grid Broker

Cluster B Cluster A

 127

Broker submits the job for execution to the job-scheduler of the newly
allocated cluster.

12. At this point, GRAPNEL application recovers its execution from the point
where it was terminated last time (Step 5 on Figure 46)

Based on the scenario of application migration, it can be seen that only
minimum effort is needed by the Grid Broker to utilise the service provided by the
integrated GRAPNEL checkpointing and migration framework.

4.2.5 Modelling
Application migration introduced in section 4.2 is explicitly part of all the

three elaborated (CPground, CPgrapnel and CPtckpt) models. The corresponding ASM rules
make sure that the each of the application processes (including the coordinator) are
going through the necessary phases in the model. Migration of an application consists
of two execution segments: termination and resumption. Termination segment ensures
that the application is checkpointed and terminated while resumption segment starts a
new process, it becomes coordinator, rebuilds itself, respawns and rebuilds all
userdefined processes. Each userdefined process must be driven by the coordinator
through the two segments when migration happens. The corresponding way of
application migration is highlighted in Figure 47.

Figure 47 Application checkpointing and termination in CPgrapnel

Initially each process of the application is in Running (R) phase (see Figure
47). When decision for migration happens, coordinator instructs each process to
checkpoint and to terminate itself similarly to the case when process migration
happens (see section 4.1.4). When userdefined processes are all discarded, coordinator

RW R W I

C T

RE

Rc

REc

Wc Cc

PROC ESS
CREATE

PROC ESS
DISCARD R9c

R9e

R9c R4b

R4a

R8b

R8d

R5d

R5a,
R5b,
R5c
R5d

R8a

R3a,
R4a

R8a

R9e

R1a

R1c,
R9a, R9b

R1a R1b, R1c

R1b, R1c

R9a

R8c

R5c R8d

role(p)=coordinator (R1a)

R9d

R6a-d, R7a, R7b

role(p)=userdefined (R1a)

 128

initiates its self-saving mechanism by changing to the phase Checkpointing (Cc) and
discards itself.

Figure 48 Application resumption in CPgrapnel

Initialisation of coordinator ensured when the application is started by the
scheduler next time. Coordinator is lead through the phases called Initialisation (I) and
Waiting (Wc) by the rules R9* and R1* (see Figure 48). Coordinator resumes itself
(REc) through rules R1* and finally, respawns and rebuilds userdefined processes
similarly to the initialisation procedure in case of process migration (see section
4.1.4). When ready, it continues in normal mode (Rc).

4.2.6 Summary
In this section the final result of the work is presented, since application

migration mechanism described and demonstrated in this section is defined as one of
the main goals of the whole dissertation.

Looking into the Use Cases defined in section 2.1.3, one of the most
significant scenarios in a ClusterGrid environment is the migration of the entire
parallel application from one cluster to another without active participation of the
middleware components of the source and target clusters. The outcome of the work
presented in this section is that middleware and application transparency is achieved,
since the whole migration fits in the normal operation of the local job-schedulers and
the user is neither forced to alter the source code of the algorithm.

As the scenario shows, to utilise application migration Grid Brokers must be
slightly adjusted, since the Broker must be aware of the checkpointing capability of
the application. However, it was not among the goals of this dissertation.

RW R W I

C T

RE

Rc

REc

Wc Cc

PROC ESS
CREATE

PROC ESS
DISCARD R9c

R9e

R9c R4b

R4a

R8b

R8d

R5d

R5a,
R5b,
R5c
R5d

R8a

R3a,
R4a

R8a

R9e

R1a

R1c,
R9a, R9b

R1a R1b, R1c

R1b, R1c

R9a

R8c

R5c R8d

role(p)=coordinator (R1a)

R9d

R6a-d, R7a, R7b

role(p)=userdefined (R1a)

 129

The main features of the application migration can be summarised by the
following points:

• built-in coordinator checkpoints its processes when being terminated
• self-checkpoint of the coordinator is performed
• built-in coordinator discovers the existence of checkpoint information
• application rebuilds its global state by itself with the help of a built-in

coordinator
The novelties of the solution presented in this section can be summarised by

the following points:

• automatic self-checkpoint and recovery mechanism derived from library-

level parallel checkpointing
• generation of checkpoint information by the application itself derived from

application-level parallel checkpointing
• built-in checkpointing service migrates among Grid sites, i.e. clusters

As a summary, the required use cases defined in section 2.1.3 are supported

successfully in a way that no modification of the migrating algorithm and no
modification of the cluster components are required.

 130

5 Discussion and Conclusion

Implementation status

The process migration mechanism introduced in the dissertation has been
developed for both P-GRADE and TotalCheckpoint tools. The P-GRADE version was
also demonstrated in several events like EuroPar'2003 conference (Klagenfurt,
Austria) [16], Hungarian Grid Day (Budapest, Hungary), SuperComputing’2003
(Phoenix, USA), and the IEEE Cluster Computing’2003 (Hong-Kong, China)
[14][15].

In these demos, three clusters were connected (MTA SZTAKI, Technical
University of Budapest, and University of Westminster) to provide a friendly Condor
pool system. A parallel urban traffic simulation application was submitted on the
SZTAKI cluster. Then the cluster was artificially overloaded P-GRADE migrated all
the processes except the Grapnel Server to Westminster. After resuming the
application at Westminster, the procedure was repeated and the application migrated
to the cluster in Technical University of Budapest. Since the migration framework, the
Mercury Grid monitor [1] and the PROVE visualization tool [1] were integrated into
the P-GRADE Grid run-time environment, the migration of the application was on-
line monitored and visualized.

For application migration mechanism prototypes has also been implemented
for P-GRADE and TCKPT, by which successful removal and resubmission of a
parallel application were performed on Condor clusters. The enhanced version of
TCKPT only reached the design phase.

Performance

Regarding the performance of checkpointing, the tasks of migration are
checkpoint writing, reading, allocation of new resources and some coordination
overhead. The time spent for writing or reading the checkpoint information through a
TCP/IP connection definitely depends on the size of the process to be checkpointed
and the bandwidth of the connection between the nodes. However, writing and reading
checkpoint files can be done locally and the files can be spread among the nodes
through a networked file system.

The overall migration time of a process includes the responding time of the
resource scheduling system e.g. while Condor vacates a machine, the matchmaking
mechanism finds a new resource, allocates it, initialises PVM daemons and notifies
the application. Finally, cost of synchronisation of messages among the processes and
some cost used for coordination are both negligible, since it is measured to be less
than one or two percent(s) of the overall migration time.

Future work

There are two main directions that have been already considered. The first one
is to apply the introduced methods and techniques on MPI applications. The main
challenges are comes from the lack of support for dynamic process creation,
termination and signalling. While the specification for MPI-2 contains dynamic
process creation, there is still no widely accepted implementation (like MPICH for
MPI-1). Another future direction is to integrate P-GRADE and TCKPT checkpointer
into a Grid Checkpointing Architecture (GCA) developed by PSNC (Poznan

 131

Supercomputing and Networking Center) through standardised interfaces. There are
already some steps done towards this direction [6][7][22][23][23].

Conclusion

The work described in this dissertation aims at providing a solution for
consistent, global state transfer of message-passing parallel algorithms in Grid
environments.

The initial steps of the dissertation aim at defining the environment
(components), applications and their features. After the proposed environment is
detailed definition of some use cases is introduced. These use cases determine what
services are intended to be supported by the forthcoming work described in this
dissertation.

Subsequently the compatibility and integrity conditions are defined to be
fulfilled by the checkpoint and migration service in order to reach middleware
transparency. Conditions are formalised by using Abstract State Machines (ASM) in
order to give a precise definition. An analysis of the related work is performed to
compare the various checkpointing and migration tools. Analysis concluded that none
of the examined works satisfy every condition at the same time.

A new ClusterGrid checkpointing method is introduced that defines the most
important design criteria in order to provide consistent, global state transfer of
unmodified algorithms in a Grid environment without any additionally required
support on cluster level. The CPground ASM model has been elaborated by defining
universes, signatures, initial state and the corresponding rules. This model has been
validated against the definitions of the ClusterGrid checkpointing method to show that
the defined CPground is a correct model of the method.

As a proof of the concept, two different tools are introduced. The first one is
the GRAPNEL checkpointing and migration framework which is an integrated tool
that resides in parallel applications developed by the P-GRADE. The main principles,
structures of the framework and the flow of checkpointing have been introduced. The
CPgrapnel ASM model has been elaborated. As a next step, it has been shown that
CPgrapnel model is a correct refinement of the CPground model.

As a second solution, the TotalCheckpoint checkpointing framework is
introduced that is independent from the P-GRADE programming environment and
supports native PVM applications. Similarly to the previous model, CPtckpt has also
been elaborated and the equivalence to CPgrapnel has been shown, too.

Finally, based on the GRAPNEL checkpointing framework process and
application migration is elaborated.

 132

6 Acknowledgement

The work behind in this dissertation covers approximately a decade in my life.
During this time I was working with numerous people in lots of national and
international projects to whom I am really grateful for their cooperation, support and
help. Without giving an endless list of people I would like to express my thanks to
several of them who contributed the most to my dissertation.

First of all, I would like to thank my advisor, Péter Kacsuk, for offering me a
research position first in MTA KFKI-MSZKI and later in MTA SZTAKI. His
guidance and support has helped me to become a researcher. He taught me to be able
to express and write down my thoughts. During the last decade, he always found the
way how to motivate me when required. As a leader of the laboratory, he ensured the
background for my research and encouraged me to publish and to work on new
solutions.

I would like express my thanks to Zsolt Németh, my colleague, who gave
important support in elaborating the theoretical background of my dissertation.
Without his support, it would have taken twice as much time as it took me to reach the
end of the dissertation. He continuously stayed behind me as a consultant and he was
the one who led me into the secrets of modelling by Abstract State Machines (ASM).
He continuously revised my papers, my thoughts and ideas. I am really grateful to him
for listening to me and commenting my ideas even when he could hardly keep the
deadline of his actual work.

I would like to thank all the members of the Laboratory of Parallel and
Distributed Systems in MTA SZTAKI to their ideas and comments, support and
cooperation. Special thanks to Róbert Lovas, Norbert Podhorszki, Gábor Dózsa,
Dániel Drótos who devoted huge amount of time to develop the P-GRADE parallel
programming environment and to Zoltán Farkas, Attila Csaba Marosi, Gábor Gombás
who helped me developing the TotalCheckpoint system. Several years of research and
development ensured that the work presented in this dissertation works in practice as
well.

My father and my mother contributed far most for this dissertation. Supporting
my life and my studies for more than 20 years is something for which I will always be
grateful in my life. Giving a safe background let me focus on my studies and later on
my work in computer science.

Finally, I would like to thank my wife, Andrea Kovácsné Szabó. She gave me
a stable background by surrounding me with a loving family including with three kids.
Here I have to mention that ensuring calmness and silence with three quick and smart
little children is not an easy task. She continuously encouraged me and was patient
when necessary. Without her support I would not be able to achieve my PhD.

 133

7 References

[1] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton and G. Gombás: “P-GRADE:

a Grid Programming Environment”, Journal of Grid Computing Vol. 1. No. 2, pp. 171-197. 2004.

[2] Kovács, J., Kacsuk, P.: “The DIWIDE Distributed Debugger”, Quality of Parallel and Distributed
Programs and Systems, special issue of Journal of Parallel and Distributed Computing Practices,
PDCP Vol.4, No. 4, Eds: P.Kacsuk, G.Kotsis, pp. 331-347, 2001

[3] J. Kovacs: "Transparent Parallel Checkpointing and Migration in Clusters and ClusterGrids",
International Journal of Computational Science and Engineering, IJCSE, 2006, (to appear)

[4] József Kovács, Peter Kacsuk, Radoslaw Januszewski, Gracjan Jankowski: "Application and
Middleware Transparent Checkpointing with TCKPT on ClusterGrid", Future Generation
Computer Systems, selected papers of DAPSYS2006, (accepted)

[5] J. Kovacs, R. Mikolajczak, R. Januszewski, G. Jankowski: "Application and middleware
transparent checkpointing with TCKPT on Clustergrid", Proceedings of 6th Austrian-Hungarian
Workshop on Distributed And Parallel Systems, DAPSYS 2006, Innsbruck, Austria, September 21-
23, 2006, pp. 179-189.

[6] G. Jankowski, J. Kovacs, R. Mikolajczak, R. Januszewski, N. Meyer: "Towards Checkpointing
Grid Architecture", Parallel Processing and Applied Mathematics – Conference on Parallel
Processing and Applied Mathematics, PPAM2005, Poznan, Poland, Lecture Notes in Computer
Science, Vol. 3911/2006, pp. 659-666, Springer, 2006, ISBN 978-3-540-34141-3

[7] G. Jankowski, R. Januszewski, J. Kovacs, N. Meyer, R. Mikolajczak: "Grid Checkpointing
Architecture - a revised proposal", Proc. of the 1st CoreGRID Integration Workshop, pp. 287-296,
Pisa, 28-30, November, 2005

[8] Kovács József, Farkas Zoltán, Marosi Attila: "Ellenırzıpont támogatás PVM alkalmazások
számára a magyar ClusterGriden", Networkshop, Szeged, 2005

[9] Jozsef Kovacs: “Making PVM applications checkpointable for the Grid” Proc. of the Microcad
2005 Conference, Section N, Miskolc, 2005, pp. 223-228

[10] József Kovács: „Process Migration in Clusters and Cluster Grids”, Distributed and Parallel
Systems: Cluster and Grid Computing, Kluwer International Series in engineering and Computer
Science, Vol. 777, Dapsys 2004, Budapest, Hungary, pp. 103-110.

[11] József Kovács, Péter Kacsuk: “A migration framework for executing parallel programs in the
Grid”, In: Grid Computing – Second European AcrossGrids Conference, AxGrids 2004, Nicosia,
Cyprus, Lecture Notes in Computer Science, Vol. 3165, pp. 80-89, Springer-Verlag, 2004

[12] József Kovács, Péter Kacsuk: ”Improving fault-tolerant execution for parallel applications under
Condor”, microCAD International Scientific Conference, University of Miskolc, Miskolc,
Hungary, March 18-19, 2004, pp. 251-256

[13] József Kovács, Péter Kacsuk: ”Párhuzamos programok vándorlása a Grid-en”, University of
Miskolc, Doktoranduszok fóruma, Gépészmérnöki kar szekciókiadványa, 2003, pp. 158-164

[14] R. Lovas, J. Kovács, G. Gombás, N. Podhorszki, Z. Balaton, P. Kacsuk, I. Szeberényi, T. Delaitre,
A. Gourgoulis: ”Migration and Monitoring of P-GRADE Parallel Jobs in the Grid”, IEEE
International Conference on Cluster Computing, Hong Kong, 2003. pp 8-11.

[15] P. Kacsuk, R. Lovas, J. Kovács, G. Dózsa, N. Podhorszki: “Metacomputing support by P-
GRADE”, GGF8 Workshop on Grid Applications and Programming Tools, 2003

[16] P. Kacsuk, R. Lovas, J. Kovács, F. Szalai, G. Gombás, N. Podhorszki, A. Horváth, A. Horányi, I.
Szeberényi, T. Delaitre, A. Terstyánszky, A. Gourgoulis: “Demonstration of P-GRADE job-mode
for the Grid”, EuroPar 2003 Parallel Processing, Lecture Notes in Computer Science, Springer-
Verlag, LNCS 2790, pp 1281-1286, Klagenfurt, Austria, 2003

[17] Jozsef Kovacs, Peter Kacsuk: “Server based migration of parallel applications”, 4th DAPSYS
Conference, Linz, Austria, 29th September-2nd October 2002, pp: 30-37

[18] József Kovács: “Párhuzamos programok checkpointolása és migrációja klasztereken”,
Networkshop’2002, Eger, Eszterházy Károly Fıiskola, 26th-28th March 2002

[19] Jozsef Kovacs: "Formal analysis of existing checkpointing systems and introduction of a novel
approach", CSCS 2006, Szeged, Hungary, June 2006 (honored with Best Talk Award)

 134

[20] Jozsef Kovacs: "PVM & Condor checkpointing", Condor Week 2004, April 14-16, 2004,
University of Wisconsin, Madison

[21] G. Jankowski, R. Januszewski, R. Mikolajczak, J. Kovacs: "Scalable multilevel checkpointing for
distributed applications - on the integration possibility of TCKPT and psncLibCkpt”, CoreGRID
Technical Report, TR-0019, March 2006

[22] G. Jankowski, R. Januszewski, R. Mikolajczak, J. Kovacs: "Scalable multilevel checkpointing for
distributed applications - on the possibility of integrating Total Checkpoint and AltixC/R",
CoreGRID Technical Report, TR-0035, May 2006

[23] G. Jankowski, R. Januszewski, R. Mikolajczak, J. Kovacs: "Grid Checkpointing Architecture - a
revised proposal", CoreGRID Technical Report, TR-0036, May 2006

[24] V. S. Sunderam: ”PVM: A Framework for Parallel Distributed Computing”, Concurrency: Practice
and Experience, 2, 4, pp.:315-339, December, 1990.

[25] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek and V. Sunderam, ”PVM: Parallel
Virtual Machine – a User’s Guide and Tutorial for Network Parallel Computing.” MIT Press,
Cambridge, MA, 1994.

[26] D.A. Bader and R. Pennington, ”Cluster Computing: Applications'', The International Journal of
High Performance Computing, 15(2):181-185, May 2001.

[27] C. Catlett and L. Smarr, Metacomputing, Communications of the ACM, 35 (1992), pp. 44{52.

[28] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid. Enabling Scalable Virtual
Organizations”, International Journal of Supercomputer Applications, 15(3), 2001

[29] Vic Zandy’s checkpointer: www.cs.wisc.edu/~zandy/ckpt

[30] The esky checkpointing tool by David Gibson: http://esky.sourceforge.net

[31] J.S. Plank, M.Beck, G. Kingsley, and K.Li, “Libckpt: Transparent checkpointing under Unix”, In
Proc. of Usenix Technical Conference 1995, New Orleans, LA, Jan. 1995

[32] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny, “Checkpoint and Migration of UNIX
Processes in the Condor Distributed Processing System”, Technical Report #1346, Computer
Sciences Department, University of Wisconsin, April 1997

[33] D. Thain, T. Tannenbaum, and M. Livny, "Condor and the Grid", in Fran Berman, Anthony J.G.
Hey, Geoffrey Fox, editors, Grid Computing: Making The Global Infrastructure a Reality, John
Wiley, 2003

[34] Condor homepage: http://www.cs.wisc.edu/condor

[35] D. Drótos, G. Dózsa, and P. Kacsuk, “GRAPNEL to C Translation in the GRADE Environment”,
Parallel Program Development for Cluster Comp. Methodology, Tools and Integrated
Environments, Nova Science Publishers, Inc. pp. 249-263, 2001

[36] E. Börger, “High level system design and analysis using abstract state machines”, ASM Workshop,
Magdeburg, September 1998

[37] E. Börger, “High Level System Design and Analysis using Abstract State Machines”, in D. Hutter
et al. (eds.), Current Trends in Applied Formal Methods (FM-Trends 98), LNCS 1641, Springer,
pp. 1–43, 1999.

[38] E. Börger, “Why use evolving algebras for hardware and software engineering?”, SOFSEM’95,
LNCS, 1995

[39] Y.Gurevich, “Evolving algebras 1993: Lipari guide”, E.Börger, editor, Specification and Validation
Methods, pages 9-36, Oxford University Press, 1995

[40] Y.Gurevich, “Abstract state machines captues sequential algorithms”, Technical Report MSR-TR-
99-65, Microsoft Research, 1999

[41] E. Börger and D. Rosenzweig, “The WAM – definition and compiler correctness”, Logic
Programming: Formal Methods and Practical Applications, 1994

[42] E. Börger and I. Durdanovic, “Correctness of compiling occam to transputer code”, Computer
Journal, 39(1):52-92, 1996

[43] E. Börger and W. Schulte, “Programmer friendly modular definition of the semantics of java”,
Formal Syntax and Semantics of Java, LNCS, Springer, 1998

 135

[44] E. Börger and U. Glasser, “A formal specification of the pvm architecture”, B. Pehrson and I.
Simon, editors, IFIP 13th World Computer Congress, volume1, pages 402-409, 1994

[45] Y. Gurevich, “May 1997 draft of the asm guide”, Technical Report CSE-TR-336-97, University of
Michigan, EECS Department, 1997

[46] Y. Gurevich, “Evolving algebras: An attempt to discover semantics”, G.Rozenberg and A.Salomaa,
editors, Current Trends in Theoretical Computer Science, pages 266-292, World Scientific, 1993

[47] Egon Börger and Robert Stärk, “Abstract State Machines: A Method for High-Level System
Design and Analysis”, Springer-Verlag, 2003.

[48] P-GRADE Parallel Program Development Environment, http://www.lpds.sztaki.hu/pgrade

[49] Elnozahy, E. N., Alvisi, L., Wang, Y., and Johnson, D. B. 2002. A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. Surv. 34, 3 (Sep. 2002), 375-408. DOI=
http://doi.acm.org/10.1145/568522.568525

[50] S.Kalaiselvi and V.Rajaraman, A Survey of Checkpointing Algorithms for Parallel and Distributed
Computers, Sadhana, Vol.25, Part 5, October 2000, pp.489-510

[51] M. Treaster. A Survey of Fault-Tolerance and Fault-Recovery Techniques in Parallel Systems.
ACM Computing Research Repository (CoRR), (cs.DC/ 0501002), January 2005.
http://citeseer.ist.psu.edu/treaster05survey.html

[52] Zomaya A Y H 1996 Parallel and distributed computing handbook (New York: McGraw-Hill)

[53] Ralston A, Reily E D 1993 Encyclopedia of computer science 3rd edn (New York: IEEE Press)

[54] Gracjan Jankowski, Rafal Mikolajczak and Radoslaw Januszewski ”Checkpoint restart mechanism
for multiprocess applications implemented under SGIGrid project.” In Proceedings of the
CGW2004, 2004.

[55] A. Beguelin, E. Seligman, and P. Stephan. ”Application level fault tolerance in heterogeneous
networks of workstations.” Journal of Parallel and Distributed Computing, 43(2):147155, 1997.

[56] K.M. Chandy and L. Lamport. ”Distributed snapshots: Determining global states of distributed
systems”, ACM Transactions on Computer Systems, 3(1):63-75, February 1985.

[57] R. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM Transactions on
Computing Systems, 3(3):204–226, 1985.

[58] L. Alvisi. Understanding the message logging paradigm for masking process crashes. PhD thesis,
Cornell University, Department of Computer Science, 1996.

[59] E. N. Elnozahy and W. Zwaenepoel. Manetho: fault tolerance in distributed systems using
rollback-recovery and process replication. PhD thesis, Rice University, Department of Computer
Science, 1994.

[60] Bhargava B, Lian S-R, Leu P-J 1990 Experimental evaluation of concurrent checkpointing and
rollback-recovery algorithms. Proc. IEEE 6th Int. Conf. on Data Eng. pp 182-189

[61] Elnozahy E N, Zwaenepoel W 1992 Manetho: Transparent rollback recovery with low overhead,
limited rollback and fast output commit. IEEE Trans. Comput. 41: 526-531

[62] William Gropp, Ewing Lusk, and Anthony Skjellum: ”Using MPI”, 2nd Edition, MIT Press, ISBN
0-262-57132-3

[63] Al Geist, Ewing Lusk, William Gropp, William Saphir, Steve Huss-Lederman, Tony Skjellum,
Andrew Lumsdaine, and Marc Snir.: ”MPI-2: Extending the Message-Passing Interface”, In
EuroPar96, February 1996

[64] George Stellner, ”Consistent Checkpoints of PVM Applications”, In Proc. 1st Euro. PVM Users
Group Meeting, 1994

[65] J. Leon, A. L. Fisher, and P. Steenkiste, ”Fail-safe PVM: a portable package for distributed
programming with transparent recovery”. CMU-CS-93-124. February, 1993

[66] Iskra, K. A., van der Linden, F., Hendrikse, Z. W., Overeinder, B. J., van Albada, G. D., and Sloot,
P. M. 2000. The implementation of dynamite: an environment for migrating PVM tasks. SIGOPS
Oper. Syst. Rev. 34, 3 (Jul. 2000), 40-55. DOI= http://doi.acm.org/10.1145/506117.506123

[67] J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and J. Walpole, ”MPVM: A Migration
Transparent Version of PVM”, Technical Report CSE-95-002, 1, 1995

 136

[68] C.P.Tan, W.F. Wong, and C.K. Yuen, ”tmPVM - Task Migratable PVM”, In Proceedings of the
2nd Merged Symposium IPPS/SPDP, pp. 196-202, 1999.

[69] Pawel Czarnul: ”Programming, Tuning and Automatic Parallelization of Irregular Divide-and-
Conquer Applications in DAMPVM/DAC” in International Journal of High Performance
Computing Applications, 2003, Vol.17, No.1

[70] Dan Pei, Wang Dongsheng, Zhang Youhui, Shen Meiming, ”Quasi-asynchronous Migration: A
Novel Migration Protocol for PVM Tasks.” ACM SIGOPS Operating Systems Review, 33(2): 5-15
(April 1999).

[71] Georg Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Proceedings of the
International Parallel Processing Symposium, pages 526--531, Honolulu, HI, April 1996. IEEE
Computer Society Press, 10662 Los Vaqueros Circle, P.O. Box 3014, Los Alamitos, CA 90720-
1264. http://citeseer.ist.psu.edu/stellner96cocheck.html

[72] Georg Stellner and Jim Pruyne. Resource Management and Checkpointing for PVM. Proc
EuroPVM95, pp. 130-136, Hermes, Paris, 1995. http://citeseer.ist.psu.edu/stellner95resource.html

[73] Goux, J., Kulkarni, S., Yoder, M., and Linderoth, J. 2000. An Enabling Framework for Master-
Worker Applications on the Computational Grid. In Proceedings of the Ninth IEEE international
Symposium on High Performance Distributed Computing (Hpdc'00) (August 01 - 04, 2000).
HPDC. IEEE Computer Society, Washington, DC, 43.

[74] Chen, Y., Plank, J. S., and Li, K. 1997. CLIP: a checkpointing tool for message-passing parallel
programs. In Proceedings of the 1997 ACM/IEEE Conference on Supercomputing (Cdrom) (San
Jose, CA, November 15 - 21, 1997). Supercomputing '97. ACM Press, New York, NY, 1-11. DOI=
http://doi.acm.org/10.1145/509593.509626

[75] Osman, S., Subhraveti, D., Su, G., and Nieh, J. 2002. The design and implementation of Zap: a
system for migrating computing environments. SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 361-
376. DOI= http://doi.acm.org/10.1145/844128.844162

[76] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Andrew Lumsdaine, Jason Duell, Paul
Hargrove, and Eric Roman. The LAM/MPI Checkpoint/Restart Framework: System-Initiated
Checkpointing. In LACSI Symposium, October 2003.

[77] J. Duell, P Hargrove, snd E. Roman. The Design and Implementation of Berkeley Lab's Linux
Checkpoint/Restart, 2002.

[78] Zhang, Y., Wong, D., and Zheng, W. 2005. User-level checkpoint and recovery for LAM/MPI.
SIGOPS Oper. Syst. Rev. 39, 3 (Jul. 2005), 72-81. DOI=
http://doi.acm.org/10.1145/1075395.1075402

[79] Gropp, W., Lusk, E., Doss, N., Skjellum, A., "A High-Performance, Portable Implementation of
the MPI Message Passing Interface Standard", Parallel Computing, North-Holland, vol. 22, pp.
789-828, 1996. http://citeseer.ist.psu.edu/gropp96highperformance.html

[80] G.F.Fagg and J.J.Dongarra, "FT-MPI:FaultTolerant MPI Supporting Dynamic Applications in a
Dynamic World", EuroPVM/MPI User's Group Meeting 2000, Springer-Verlag, Berlin, Germany,
2000, pp.346-353. http://citeseer.ist.psu.edu/fagg00ftmpi.html

[81] Beck, Dongarra, Fagg, Geist, Gray, Kohl, Migliardi, K. Moore, T. Moore, P. Papadopoulous, S.
Scott, V. Sunderam, "HARNESS: a next generation distributed virtual machine", Journal of Future
Generation Computer Systems, (15), Elsevier Science B.V., 1999.

[82] Starfish: Fault-Tolerant Dynamic MPI Programs on Clusters of Workstations. Adnan Agbaria and
Roy Friedman. In the 8th IEEE International Symposium on High Performance Distributed
Computing, 1999.

[83] Graham E. Fagg, Keith Moore, Jack J. Dongarra, "Scalable networked information processing
environment (SNIPE)", Journal of Future Generation Computer Systems, (15), pp. 571-582,
Elsevier Science B.V., 1999.

[84] Zhang Youhui, Wang Dongsheng, Zheng Weimin, "Checkpointing and Migration of parallel
processes based on Message Passing Interface", The 3rd Linux Clusters Institute (LCI) Conference,
St. Petersburg, Florida, October 23-25, 2002.

[85] NIIF ClusterGrid Project, http://www.clustergrid.niif.hu

[86] G. Coulouris, J. Dollimore and T. Kindberg, Distributed Systems: Concepts and Design. Addison-
Wesley, Pearson Education, 2001.

