Consistent, global state transfer
for message-passing parallel algorithms in
Grid environments

PhD thesis

Written by

Jozsef Kovacs
research fellow
MTA SZTAKI

Advisors:
Dr. Péter Kacsuk (MTA SZTAKI)
Dr. Laszl6 Kovacs (ME)

Leader of Doctoral School:
Dr. Tibor Téth

Computer and Automation Research Institute,
Hungarian Academy of Sciences
(MTA SZTAKI)

.-Hatvany Jozsef” Doctoral School of Information 8nte,

University of Miskolc
(ME)

Budapest, 2008

Abstract

This dissertation introduces a new way to combing @mplement existing
parallel checkpointing techniques to be applied feoftware heterogeneous
ClusterGrid infrastructure in order to provide s#m (migration) of parallel
algorithms (applications) among clusters and nodehkile existing solutions are
aiming at providing application transparency bylding special middleware, the
solution presented in this dissertation provideshbapplication and middleware
transparency for the algorithms at the same time.

This dissertation addresses the problem of migyaparallel applications
among clusters where source and target clusters noaye operated by identical
middleware components. In this case, applicatioy n@ lay on any special service
provided by the middleware running on the clusfenerefore the solution must
somehow be designed in a way that middleware otlingter is not taking part in the
checkpointing procedure and the application progneammust not be forced to touch
his/her application source code to reach this fonetity.

The solution presented in this dissertation into@sua new checkpointing
method by which transparent migration of parallgblecations can be solved. The
overall checkpointing design space is introduceduirements are defined and the
method is introduced. Two different checkpointimgnieworks — targeting different
application development methods - have been designd introduced: Grapnel and
TotalCheckpoint. Based on these results process application migration is
introduced providing middleware and applicatiomsarency.

Contents

A B S T R A C T ottt ittt ittt ettt ettt et ee e oo ete s eeeeeeeeteeeeeeet e eeseeseeasteseantentrenttenterntreneenns 2
CON T EN T S Lot itiitt ittt ittt et et et e seemeet s eee s eesee s teesseettee s teesseeseasseannaenssesstenstensannaenss 3
LIS T OF FIGUREE S it iit ittt ittt ittt eeateetseetteesteeseee s te st ee s teesteestaessaentaanssntsensenssansns 6
A B B REV AT ION S Lot itiiitit ettt i ettt e e e e s e e ee s ee e eetssee s eeeeesteeetaestaestesnsennsenaenssensrens 7
1 INTRODUGCTION. .ttt ittt e s e e sttt st e e e ettt eseeteeestetnteesssttessessaseeenaieseeenns 9
1.1 CLUSTER, GRID, CLUSTERGRID ...uituitniii it it e it et e et e et e et e e s e eae e s tne s e e e ssaneeens 10
1.2 OVERVIEW OF ROLLBACK -RECOVERY TECHNIQUEScuiitiiitiiteeieeeeeeeeeeeeeeaneeenns 12
1.2.1 LOGBASED ROLLBACK/RECOVERY.....cuiiuiitititnitnetneeneeneenseniessssssenssnsensenseneenesnns 13
1.2.2 CHECKPOINT-BASED ROLLBACK/RECOVERYctuitiitniteeneeneeneiteesiesiesesesnennennennns 14
1.2.3 CHECKPOINT BASED MIGRATIONeuuieuieaiententeeneesnsetaeeanestasseennsssssasseeenaernees 16
1.3 OVERVIEW OF CHECKPOINTING AND MIGRATION FRAMEWORKS ivviiiiiieiiieeeeneen, 17
G TR R O O = 17
T2 0] N[510] = T 18
1.3.3 FAIL-SAFEPVIM ... et e e e aeas 18
G T R B 27 N\ Y 1 1 =TT 19
L1.3.5 IMPVM (MIST) iiiiiiiiii e ettt et st a e e e e e e et ettt e e e e e e e eeenannneaaeenes 20
G T T Y1 =AY Y/ 21
L1.3.7 DAMPVM et e 21
I T O 7. = Y TR 22
G 2R T O 1N 1 = 2T 22
G TR O T Y = O 23
T 0 5 T I 1Y, 1 = 23
1.3.12 CHARMAMPI .ttt e et e e e e e n e 24
G TR T i Y/ 1 = 24
1.3.14 STARFISHMPL ... e ettt e e et e e e e e e e e e e e e e eanas 25
2 NEW CHECKPOINTING METHOD ON CLUSTERGRIDcooiie oiiiiiiieieiiiiieee 26
2.1 TRANSPARENCY CONDITIONS IN CLUSTERGRID ENVIRONMENTScceuvivniiiniieneeeneen. 27
2 N R @ V=1 =AY A1 VY 27
2.1.2 |IDENTIFICATION OF THE COMPONENTSuituittittetneetnestneseerensseneeenreneeeeeeaeeeeees 27
2 G T B £ S o X< =TT 29
2.1.4 REQUIREMENTS INCLUSTERGRIDceuiituiitniieniiaeieeite et eetestsssenn et eeaaesaaeeneenns 32
2.1.5 FORMAL DEFINITION OF THE REQUIREMENTS. .. .uuituitniieniieneieeeeeeteeteenseeennaees 33
2.1.5.1 ADSIract Stat€ MACKINESccuiiniiriitis e e et e et et e e e e e e e e reneanas 33
2.1.5.2 Basic universes, functions and relationscoveeieieeio e 34
2.1.5.3 Formal definition of the requUIremMEeNtscooeeeiiieiiiiiieeee e 35
2.1.6 ANALYSIS OF THE REQUIREMENTS. .. ctuituitniitneiteeteetteetteeteestsssennssnsssnesenssenesens 36
2.1.6.1 Existing checkpointing teChNIiQUEScoviiiiiiiiiie e 36
2.1.6.2 Classification of related WOIKSouicee e 37
2.2 THE CLUSTERGRID CHECKPOINTING METHOD ...vuiitniieniiiniiteiteeeteeiteeeteeneennenneens 41
A R © V=1 =AY A1 VY 41

2.2.2 INTRODUCTION OF THECLUSTERGRID METHOD......ccutiuiietieenieaneeineeaneeaneeeneeaneennns 41

2.2.3 FORMAL DEFINITION OF THECLUSTERGRID CHECKPOINTING METHOD.........cceveeennnns 44
2.2.4 DEFINITION OF THECP:rounp ASM MODEL ...ccvvvviiiiieieeeieetiiiea e e eee s 48
2.2.4.1 Universes and SIgNAtUIES.......c..uiieiuiieee i eee e e e e et e e e et eeeeeaeaeeeenns 48
2.2.4.2 INIIALI STALE......cciieeeeii e ermmm e 49
2.2.4.3 RUIES ... e 49
2.2.5 VALIDATION OF THE CPirount MODEL.....ciiiriiiiiiieeeieieeiiia e e e eeeesiie e e e e e e 56
3 CHECKPOINTING PVM APPLICATIONS. . .uuuutiiiiiiiiie ettt 62
3.1 THE GRAPNEL CHECKPOINTING FRAMEWORKcccttuuiiiieaiiienniiianeeeeeeennnnnn e 63
.11 OVERVIEW ..ottt sttt ettt e e e e e e e e e e et e e e e e et e e e e bb e e e e e nnnaaas 63
3.1.2 P-GRADEENVIRONMENT AND GRAPNELLANGUAGEcciieiiiiiiiiiiaeeeeeeeeeeiian e 63
3.1.3 THE GRAPNELCHECKPOINTING SOLUTION.....ctuuuieeeiiieiriiiaaeeeeeeennnins e eeeeennnnnns 66
3.1.3.1 Overview Of the SOIULION...........uuiiiiiiiieii e 66
3.1.3.2 Structure of the GRAPNEL checkpointing framework...............cccceeveiiiiiieenennn. 68
3.1.3.3 The GRAPNEL checkpointing protoCol.......... . eeeeeiareeiinieaeiiie e eeeiinee 69
3.1.3.4 Checkpoint aware communication PrimitivVesc.orieriiiiieriiiiieeeeen e 71
3.1.3.5 Interruption and CONSISTENT CULooiiieiieieee e 73
3.1.3.6 Redesigned communication algorithmsccccoooiiii i 5.7
3.1.4 DEFINITION OF THECP:rapnet ASM MODEL.cccvvviiiieieeiiieiiiiies e e e ee s 77
3.1.4.1 Universes and SIgNAtUIES.......c.uuiiiiuiie e e e e e e e e et e e e eeaeaeeeenns 77
3.1.4.2 INIAl STALE......cceeeeeeiii e e 78
3143 RUIES .. e 78
3.1.5 CORRESPONDENCE OEP:rouno AND CPsrapnet ASM MODELSoeeieviiiiiiiee e 86
3.1.5.1 NOtION Of @QUIVAIENCEciiieiii e e e e eaeanes 86
3.1.5.2 Proof of @qUIVAIENCE oo e 87
3.2 THE TOTAL CHECKPOINT FRAMEWORK ...cctiiitiiieeeeiienntiias e e e eeeeennsias e eeeenin e e 93
3.2, 1 OVERVIEW ...ttt ettt ettt e e e et e e e e e et e e e e e et e e e e b e e e e e nnnaaas 93
3.2.2 STRUCTURE AND PRINCIPLES.ccttttttttuuaaeeteeeetitia s eeeeeessaaseseeesnnnin e e eeeeennnnnnns 93
3.2.3 DESIGN ISSUES AND SOLUTIONScitttttttiuaeeeteeriiiiasaeeeeeeessiaaeseeessnnnaaeeeeeennnnes 95
3.2.3.1 Identification Of PrOCESSESuiiiieiii et eeeet e e e e eeeenns 95
3.2.3.2 DYNamiC ProCESS CrEALIONcceuuuneeeet e et e e e e et s e e eeatn e e e eeaanaeeeenn e eeennens 95
3.2.3.3 Starting the eXECULIONcoouuiii e eena e 96
3.2.3.4 Recovering the @XeCULIONoviuu e e e e e e 98
3.2.3.5 Checkpointing the application.............. oo 101
3.2.3.6 Restoring message buffers with dynamic messageafarm...............ccccooeeeeenn.e. 103
3.2.4 COMPARISON OFGRAPNELAND TCKPT CHECKPOINTING.....cvvvuuaaeerieeniininneeeenes 104
3.2.5 OVERVIEW OF THEENHANCED TCKPTcutuiiiiiiiiiiiiiii e eeree e 105
3.2.6 DEFINITION OF CPreipr ASIM MODEL ...ccvvviiieeeeeeeeieiies e e e eeeetiis e eeemnaa e eeeeennns 107
3.2.6.1 Universes, Signatures and Initial state.........ccccoooiiiiiiiiiiii e 107
3.2.6.2 RUIES ... s 108
3.2.7 RELATION OF CPerapner AND CPrcipr ASM MODELS......cvviiiiieeeieeeiiic e 1
3.2.7.1 Correctness Of refiNeMENTi it eeeeees 110
4 MIGRATION OF PVM APPLICATIONScoiiiieieeiiiiiee et 112
4.1 PROCESS MIGRATION ON CLUSTERS.t tiititrttiiiiaeeeeeeeeinias e e e e eesne e e e e e eennnnns 114
.11 OVERVIEW ...ttt ee ettt ettt e et e e e e ettt e e e et e e e et e e e e e e e nmnaaes 114
4.1.2 CONDOR....cttttttu e ettt ettt ettt ettt e e e et e e e e et e e et e e e e e enn s 114
4.1.3 SELF-COORDINATED MIGRATION IN THEGRAPNELAPPLICATION......cccvvviiaieeeneens 115
O B0 R =S 0 1 o] 115
4.1.3.2 KEY COMPONENES ...ttt ettt ettt e et e et e e et e e et e e e e e e ea e e neaeennas 115

4.1.3.3 Preparation of the migration procedureccooooiiiiiiiiiieiiiiieeee e 116

4.1.3.4 The migration ProCeAUIE.........coiuiii e 116
4.1.3.5 Migration among nodes under the Condor job schedule..................ccc.ooeeeeee. 117
4.1.4 IMODELLING ...iiieei ettt e ettt 120
Z.1.5 SUMMARY ..o a e e e e e e et e e e e e e oo oo oo e e oot e e e e e ettt ettt ettt e ettt ettt e bbbt nnt e b et b e e b e e s 121
4.2 APPLICATION MIGRATION ON CLUSTERGRID ... eeee 122
4.2, 1 OVERVIEW ..ettttttiuuttttittittntitiiiaa s s e s s e e e e e aeeaeeeaeeaeeeateeteeeeeeeeeeeeeeeeeennnnnns 122
4.2.2 IMOTIVATION L.uttiuiuininnini s s e e e s e e e e s e e s e aaee e e e e e e e et e eteeeeeeeeeeeeeeeeesessesesseesnnnn 122
4.2.3 DESIGN ISSUES ...ttt e e et e e et oot e e e e e e et e e e e et et et e ee e e ee e e tbb bbb bbb bnbbnneeneen 122
4.2.3.1 |Initiation of application Migrationcccooeviiii i 123
4.2.3.2 Self-checkpoint capable server processcocccceviiiiiiiiiiiiiiiee e 124
4.2.3.3 Migration of working files of the applicationc.oooviiiiiiiiiiii e, 512
4.2.4 FLOW OF MIGRATION....ccctttttttttttttteeeeteneessssessssssssssss s s s s e e s s e e e e e e e e e e e aaaeaaaaaaaeaaaas 125
4.2.5 IMODELLING ...iiitiit ettt ettt 127
4.2.6 SUMMARY ... a e et e e e e e e oo e oo oo oo e e oot e e e e ettt ettt e ettt et e ettt et et tbt b bt b b nn b b e e b e e 128

5 DISCUSSION AND CONCLUSION ..uuttttttiiiiiiiiiiiiie ittt 130
6 ACKNOWLEDGEMENT....cciiiiiiiiiiiiiieeeieeee e 132

7 REFERENGCES. .. ittt e 133

List of Figures

Figure 1 Classification of rollback-recovery algbmsccccoooiiiiiiiiiiniiinnnnnn. 12
Figure 2 Classification of checkpoint 1eVelS .o 15
Figure 3 The CoCheck checkpointing ProtoCOl. . cvevvuveieiiiiiiiiiiiiiiiiiieeeei 7.1
Figure 4 View of the Condor MW paradigm eeeeeeeeiineeeiinee e 18
Figure 5 Architecture of Fail-safe PVM ... 19
Figure 6 Architecture of the Dynamite PVM SYStemL..........ccoovvviiiiiiiiiniiiiiinieeeiinn, 20
Figure 7 The tmPVM virtual machine ... 21
Figure 8 Structure Of CLIPcoouui e e 23
Figure 9 Structure of the FT-MPI implementation.............cooociiiiiiiiiiieiiiineeceine. 24
Figure 10 Architecture of the Starfish MPI ... 25
Figure 11 Components of a checkpointing environment.............cc.oooeiieviiineeees 28
Figure 12 Structure of the proposed checkpoin@aphique............cceveveiiieeennnnnne. 44
Figure 13 Phase transition diagram of thg.gaRimodelccccccoon 60
Figure 14 Hierarchical design in the P-GRADE enm@nt............ccccoveevevnnieeennnnnn. 64
Figure 15 Relation of P-GRADE and GRAPNEL applieati...........ccccoevvvvneeeennnnne. 65
Figure 16 Structure of a GRAPNEL application getetdby P-GRADE 67
Figure 17 Structure of the Grapnel applicationheakpoint mode.................cccoees 68
Figure 18 Guarded communication primitives to previnterruption 72
Figure 19 Modification of receive communicationrpives to multi-receive 73
Figure 20 Consistent and inconsistent cuts in BAYState...........cccvvviiiiiiiieiiiineeens 74
Figure 21 Phase-transition diagram of process€PyppneASM model.................. 87
Figure 22 Computational segments ingGfRsand CRBrapneimodels........................... 88
Figure 23 Startup phase of SGMiaLisation IN CRyoung@Nd CRrapneimodels........... 89

Figure 24 Resumption phase of SeMavisation iN CRyound@Nd CRrapneimodels....90
Figure 25 Communication phase of S&turion IN CPyround@nd CRrapneimodels ..91
Figure 26 Checkpoint/Restart phase of S&Mution iN CRyound@nd CRrapneimodels

Figure 27 Termination phase of SGMwination IN CRyround@Nd CRBrapneimodels.....92
Figure 28 Shutdown phase of S@&WwvinaTion IN CRyround@Nd CRrapneimodels 92

Figure 29 Architecture of the Totalcheckpoint fravoek..............cccoooiiiiiiiiiiiiinnns 94
Figure 30 Protocol of normal startup for a SINgIegeSSvvveveieiiiiiniiiiiii e, 97
Figure 31 Protocol of normal startup for the clptdcess...........cccoooveiiiiiiiiiinnnnn. 98
Figure 32 Protocol of resumption at startup foingle process..........cccooeveevieeeennnnn. 99
Figure 33 Protocol of resumption at startup forehare application...................... 100
Figure 34 Protocol of checkpoint saving in TCKPT.......coiiiiiiiiiiiiiieeiieees 102
Figure 35 Software layers in GRAPNEL and TCKPT &peantingc....... 105
Figure 36 Comparison of structures of GRAPNEL a@KIWPT checkpointing 105
Figure 37 Evolution of the Enhanced Totalcheckpaatnework.................ccc....... 106
Figure 38 Coordinator initialisation in the Enhact@&CKPT framework................ 106
Figure 39 Structure of the Enhanced TCKPT framework..............ccoooeevvviinnnen. 107
Figure 40 Startup phase of SGMALISATION in CF’Qrapne|and CR:kpt models........... 111
Figure 41 Resume phase of SsMaLisation iN CPRyrapneiand Chyp models.......... 111
Figure 42 Migration protocol in the GRAPNEL appticancccooevviviiieeennnnnn. 117
Figure 43 Migration of GRAPNEL application amongr@dor nodes...................... 119
Figure 44 Process checkpointing and terminaticdDRgapner. vvvvvereeeiiiiiininnnnnnn. 120
Figure 45 Initialisation and resumption segmemntRyrapnel. .-« oeeeeeeereeriiieeiiiinnnnns 121
Figure 46 Phases of application migration in CILGt&l...............cccceeeeviiiiiinnenenn 126
Figure 47 Application checkpointing and terminatiorCRyrapnel««««« o ovvvreeeeeeeerrenne. 127
Figure 48 Application resumption in GRnek ...« oveverriieeeiiiiiiiiii 128

Abbreviations

APP APPlication

ASM AbstractStateMachine

CKPT CheKPointT

CP CheclPoint

CR CheckpointRestart

CRR Checkpointing andRollback-Recovery

DIWIDE Dl stributedWI ndowsDEbugger

FT Fault-Tolerant

GCA Grid CheckpointingArchitecture

GRAPNEL GRAPhicalNEtwork Language

GRED GRaphicalEDitor

GRP GRaPh (graph representation of GRAPNEL)

GUI GraphicalUserlnterface

HPC High PerformanceComputing

HTC High ThroughputComputing

ID ID entifier

1O or I/O I nputOutput

LIB LIB rary

MPE M essagéPassingEnvironment

MPI M essagdPassingl nterface

MW M asterWorker

NFS NetworkFile System

0S OperatingSystem

P-GRADE Parallel Grid Run-Time and Application Development
Environment

PVM ParallelVirtual M achine

PVMD PVM Daemon

PVMLIB PVM LIB rary

PWD PiecaVNise Deterministic

RM ResourceM anager

SCHED SCHEDuler

SGM ComputationabeGM ent

SI,SR,SF Initial State Running State Finishing State
SRC SouRCe (code)

STID SystemTaskID entifier

TCKPT TotalCheKPoinT

TID TaskID entifier

™ Turing Machine

UTID UserTaskID entifier

1 Introduction

Parallel applications are developed to utilise tmemputational power of
numerous computers to increase performance. Thgdeations consist of processes
for calculation and a message-passing framewordxthange sub results among the
processes running on different node of a supercteanpa cluster or a Grid. The
executing infrastructure is a collection of mackirsecumulating mainly processing
and storage capacity. Due to the inherently dynaamd error prone behaviour,
parallel applications must survive the loss of amgource they are using during
execution.

In order to avoid the failure of a parallel apptioca running on multi nodes,
special checkpointing techniques are required tee sthe overall state of the
application. Later, the application can be resumea different set of nodes based on
the saved state. Process migration in distribuystems is an event when a process
running on a resource is redeployed to anotherim@eway that the migration does
not influence the result of calculation. To enatiies mechanism a very strict and
coordinated cooperation of the operating systeredugler, checkpointer, message-
passing framework and the application is required.

The goal of the research is to design and provigerallel checkpointing
technique for parallel applications and executiowi®nments, where the impact
generated by the checkpointing facility is minindZer the entities mentioned above.
In this work, a highly automated new checkpointiregnework is presented. The main
design goals are to perform programmer transpareatgptability, automation and
independence from the execution environment.

The dissertation is organised in the following w&sgction 1 is to define the
scope of the dissertation by introducing Clusténsgd and ClusterGrid in section 1.1,
by over viewing the rollback/recovery and checkpam techniques in section 1.2,
and by summarising existing solutions in sectid 1.

In section 2 the focus is on to develop a generthod. First, transparency
conditions are identified in section 2.1 and thie® tethod is defined in section 2.2.
In both cases a formal description is given basethe model framework introduced
in section 2.1.5.2. For the method, the ground rhizsdelaborated in section 2.2.4 by
defining the initial states and finally the modelalidated in section 2.2.5.

Section 3 aims at giving a concrete checkpointoigt®n applying the ground
model. The P-GRADE checkpointing and migration fearark is developed in
section 3.1, the corresponding model is introduoeskction 3.1.4 and its relation to
the ground model is detailed in section 3.1.5. T7/ercome the limitations of the
P-GRADE checkpointer, the TotalCheckpoint framewmrkiesigned and introduced
in section 3.2. Finally, the corresponding modedeseloped in section 3.2.6, and the
relation to the grapnel model is detailed in sec8®.7.

Section 4 is detailing the method of migration lbase the P-GRADE
checkpointer tool. Process migration is defined saticbduced in section 4.1, while
application migration is elaborated in section 4.2.

Finally, section 5 discusses and summarises thek vdascribed in this
dissertation and section 6 contains references.

1.1 Cluster, Grid, ClusterGrid

In order to deliver more performance, increasing nhmber of processors to
execute a job is trivial. With the increasing speédetwork components and with the
decreasing cost of single processor computersibgilcdomputer clusters in the early
90s became an efficient alternative to the differenpercomputers containing
hundreds/thousands of processors but with an egtyelnigh-cost.

A computer cluster [26] is a group of tightly coeghlcomputers that work
together closely to provide the view of a singlenpoiter. The components of a cluster
are usually, but not always, connected to eachr atineugh fast local area networks.
High-performance computing (HPC) clusters are im@eted primarily to provide
increased performance by splitting a computatioask across many different nodes
in the cluster, and are most commonly used in sienomputing.

The HPC computer cluster can be defined as follows:

1. Consists of many of the same or similar type of maes
(Heterogeneous clusters are a subtype, still mesfgrimental)

2. Machines use dedicated network connections

3. All machines share resources such as a common hdmectory
(NFS can be a problem in very large clusters.)

4. They must trust each other so that rsh or ssh doesequire a password,
otherwise you would need to do a manual start ch ezachine.

5. Must have communication software such as an MAPOM implementation
installed to allow programs to be run across nodes

Such clusters commonly run custom programs whiolre Hseen designed to
exploit the parallelism available on HPC clustétBCs are optimized for workloads
which require jobs or processes running on theragpaluster computer nodes to
communicate actively during the computation. Thessdude computations where
intermediate results from one node's calculatiorik affect future calculations on
other nodes.

The concept of Grid [28] emerged as a natural esiv@nand generalization of
distributed supercomputing or meta-computing [&Till one of the important goals of
the Grid is to provide a dynamic collection of nesmes from which applications
requiring very large computational power can selanotd use actually available
resources. In that sense Grid is a natural extersdfidghe concepts of supercomputers
and clusters towards an even more distributed gndrdic parallel program execution
platform and infrastructure. Components of such @ad Gnfrastructure include
supercomputers and clusters and hence parallelicapph programs and
programming tools of supercomputers and clusterggpected to be used in the Grid,
too.

These days there are many projects with the idextehding and generalizing
the existing parallel program development and ett@cuenvironments towards the
Grid. The current idea is that a parallel prograhattwas developed for
supercomputers and clusters should be used in tige Go. Indeed, execution of a
parallel program in the Grid does not defer sensafiyi from the execution in a
parallel computing system. The main difference corfiem the speed, reliability,
homogeneity and availability of the exploited res®s. In the traditional parallel

10

systems like supercomputers, the speed of the ggocg® communication networks,

memory access, 1/0O access are steadily high, thgaoents of the supercomputers
are homogeneous and highly reliable and statiealgilable (after allocating them by

a resource scheduler). Clusters have more or lesssame parameters as the
supercomputers though their components might berdg¢neous, they are usually
less reliable, a bit slower and the availabilitytlodéir components is less static than in
the supercomputers.

The Grid represents a significant modificationhege parameters. The Grid is
very heterogeneous, the components (resources)nugaidy change both in the
respect of their speed and availability and therea guarantee for their reliability. It
means that a parallel program that was developea fhomogeneous, high-speed,
static and reliable execution environment shouldopm satisfactorily well even in a
heterogeneous, changing-speed, dynamic and uteeéaecution environment.

In a computational Grid various resources are ctdi where one or more
broker component performs the mapping of applicatito resources based on the
application requirements and resource capabilitieshis dissertation ClusterGrid is
defined as a Grid that can contain clusters reptedeas one compound and
indivisible resource for the broker. Clusters cae mmaintained by different
organizations, so scheduling and execution polgwall as software environment of
the clusters can be different. On clusters vargagedulers can handle jobs and at the
same time the cluster might run different versioh®perating systems or message-
passing environments. Above all any kind of serviae be installed additionally to
support the requirements of the organization owind operating the cluster. These
services may differ in every cluster in the CluGted.

Technology of Grid is closely related to clustermputing. The key
differences between grids and traditional clusteesthat grids connect collections of
computers which do not fully trust each other, drehce operate more like a
computing utility than like a single computer. lhd&tion, grids typically support more
heterogeneous collections than are commonly suggantclusters.

A ClusterGrid in the context of this dissertatisrdefined as a Grid of clusters,
where each cluster is handled as an individual indvisible resource by the Grid.
Each cluster can be owned by different authorisati@refore clusters have their own
local policies regarding the handling of jobs te@&xte.

Since clusters have different policies, their mgdefire is also defined by the
local authority operating the cluster which resuita software-heterogeneous Grid of
clusters. Any job to be executed on a cluster mighe with different middleware
components on the different clusters.

After a short introduction of Clusters, Grids antlisterGrids, the focus is on
the latter one. A more precise definition of Clu&ed will follow in Section 2.1.

11

1.2 Overview of rollback-recovery techniques

In the recent decade numerous surveys, classdfitatand taxonomies have
appeared aiming at summarizing existing approadfeshe different rollback-
recovery [49][50][51] techniques. The main purpo$e¢his section is to give a short
overview of the rollback/recovery techniques basedhe available literature.

Checkpoint is defined as a designated place inogram at which normal
processing is interrupted specifically to presettve status information necessary to
allow resumption of processing at a later time [32heckpointing is the process of
saving the status information. By periodically ikirig the checkpointing process, one
can save the status of a program at regular irgerViathere is a failure one may
restart computation from the last checkpoint theraboiding repeating computation
from the beginning. The process of resuming contmutay rolling back to a saved
state is called rollback recovery.

A checkpoint can be saved on either stable stooagle volatile storage of
another process, depending on the failure scentoibe tolerated. For long-running
scientific applications, checkpointing and rollbaekovery can be used to minimize
the total execution times in the presence of fagurFor mission-critical service-
providing applications, checkpointing and rollbaelkcovery can be used to improve
service availability by providing faster recoveoyreduce service down time.

Rollback-recovery in message-passing systems igpkoated by the issue of
rollback propagation (rolling back to previous staf the application enforced by the
inconsistency of message states) due to inter psocemmunications. When the
sender of a message m rolls back to a state betording m, the receiver process
must also roll back to a state before m'’s receypierwise, the states of the two
processes would be inconsistent because they wahad that message m was not
sent but has been received, which is impossibéayncorrect failure-free execution.

rollback-recowery

message-logging checkpoirting

=== oo runi cation
induced

Figure 1 Classification of rollback-recovery algorthms

In some cases, cascading rollback propagation o&g the system to restart
from the initial state, losing all the work perfogthbefore a failure. This unbounded
rollback is called the domino effect. The posdipilbf the domino effect is highly
undesirable because all checkpoints taken mayauwthio be useless for protecting an
application against losing all useful work uporaduie.

12

In a message-passing system, if each participapngcess takes its
checkpoints independently then the system is stibtepo the domino effect. This
approach is called uncoordinated checkpointing. ®ag to avoid the domino effect
is to perform coordinated checkpointing: the prgessin a system coordinate their
checkpoints to form a system-wide consistent statstate is consistent if for every
process state it is true that 1) every messagehttsabeen received has also been sent
in the state of the sender and 2) each messagkasditeen sent has also been received
in the state of the receiver.

Such a consistent set of checkpoints can then éé tos bound the rollback
propagation. Alternatively, communication-inducéxckpointing forces each process
to take checkpoints based on some application messd receives from other
processes. This approach does not require systém-woordination and therefore
may scale better. The checkpoints are taken swathatbhonsistent state always exists,
and the domino effect cannot occur.

Systems with more than one processor are knownudtprocessor systems.
As the number of processors increase the probabitiany one processor failing is
high. It has been found in practice that over 8(%he failures in such systems are
transient and intermittent [53]. Checkpointing andback recovery are particularly
useful in such situations. Checkpointing, howeigmore difficult in multiprocessors
as compared to uniprocessors. This is due to ttteHat in multiprocessors there are
multiple streams of execution and there is no dlabzck. The absence of a global
clock makes it difficult to initiate checkpoints all the streams of execution at the
same time instance.

The aforementioned solutions rely solely on cheakso thus the name
checkpoint-based rollback-recovery. In contrasgy-based rollback-recovery uses
checkpointing and message logging (see Figurenllod-based rollback-recovery a
process can deterministically recreate its pretfailstate even if it has not been
checkpointed by logging and replaying the nondeit@stic events in their exact
original order. It is mostly used for applicatiotisat frequently interact with the
outside world.

1.2.1 Log-based rollback/recovery

Log-based rollback recovery protocols, or messagggihg protocols,
supplement normal checkpointing with a record ofsages sent by and received by
each process. If the process fails, the log camda®l to replay the progress of the
process after the most recent checkpoint in omeedonstruct its previous state. This
has the advantage that process recovery results nmore recent snapshot of the
process state than checkpointing alone can providditionally, log-based
approaches avoid the domino effect, since thedailecess can be brought forward to
the global application state rather than individpadcesses being forced to roll back
for consistency with the failed process.

Log-based recovery protocols rely on the piecewisgrministic assumption
(PWD). This assumption dictates that the system thas ability to detect the
nondeterministic events that transition to the nstdte interval. Furthermore, the
system must be able to record information aboutetrents such that the important
aspects of the event can be recreated in a reaetistr of the process state [57].

An orphan process p is a process that does npbtailwhose state depends on
a nondeterministic event that was not recordedables storage and the determinant of

13

which was not recorded on p. Such a process therefannot be restored to a
consistent state because the information requiredplay an event has been lost [49].

There are three main techniques (see Figure 1) bgddg-based recovery
protocols to guarantee that all processes candmeesd to a consistent state in the
event of a failure: Pessimistic, optimistic, andsa. Each of the three approaches has
its own tradeoffs for performance, ease of processvery, and ability to roll back
processes that did not fail.

Pessimistic logging techniques, sometimes calledl®pnous logging, record
the determinant of each event to stable storagaddie event is allowed to affect the
computation. This ensures that the system willlgdse able to recover from the
failure of any process occurring at any time, beeanp process can be affected by an
event that has not been logged. Pessimistic loggasytwo key advantages. First, in
the event of a failure, processes that did notdarn never become orphans and need
not take any special actions. This greatly simgdifthe recovery algorithm. Second,
garbage collection of message logs and checkp@rgsnple - only one checkpoint
must be maintained for each process, and messgg®lder than that checkpoint can
be discarded [49].

Optimistic or asynchronous, logging techniques reédogs to volatile storage,
which is then periodically written to stable stagad@ his substantially reduces the
performance overhead on the application becaus®eas not need to block while
waiting for each message to be written to disk.ddinately, recovery of the system
in the event of a failure is much more complex.c8imessages recorded in volatile
memory will be lost in the event of a process f&|yrocesses can become orphans.
In addition to the recovery of the failed processbe surviving processes must be
rolled back to a state that does not depend orasbynessages [57].

Causal logging protocols maintain the advantagesath optimistic and
pessimistic logging, but at the expense have remuimuch more complex recovery
techniques. The low overhead of optimistic loggisgattained by saving logs to
volatile storage, similar to optimistic logging [f®].

1.2.2 Checkpoint-based rollback/recovery

Checkpoint-based rollback/recovery techniques canclassified into three
groups based on the abstraction level: kernel-JdNeary-level and application-level,
where the library- and kernel- level checkpointim@lso called jointly as system-level
checkpointing (see Figure 2).

The kernel-level[54] checkpoint support is implemented by a kermeldule
part of the operating system. Any executed procassbe checkpointed in this way,
since no changes in the executable are requiregl.iftarnals of a process are text,
data, dynamically allocated data, shared librargack, processor registers, signal
handlers and the signal masks, open files and dhassurces. A kernel module can
easily access the state of theses internals totecraacheckpoint. Later the
reconstruction of the process is also done by therating system. This technique
produces checkpoint file with binary data (e.g.ycopthe memory), so it can be used
on computational nodes of a cluster with the salaggom.

The library-level checkpointing usually requires the applicatiorbéorelinked
with a special library performing the state savargl resumption procedure. In this
case special techniques are used to access thesprimternals. Similarly to kernel-

14

level the checkpoint information contains bits thanhstitute the state of the process.
Sometimes it is problematic to patch the operasygjem to support checkpointing, so
the main advantage of this approach is to avoidntbéification of the OS. Tools
implementing this approach are for example Conda}, [Libckpt[31] and Ckpt[29].

The third alternative isapplication-level [55] checkpointing, where
applications provide their own checkpointing cotlee application is written so that it
correctly restarts from various positions in theedy storing certain information to a
restart file. The programmer needs to save datedover the program state. The
advantage is that the checkpoint information canpb®duced in a way that the
application is able to checkpoint and restart amnodes with different platforms.
The disadvantage of this approach is that it cazapdis the coding of the application
program. Sometimes adding this type of checkpaippert to a parallel application is
a comparable task with developing the whole apptioa

lewel of checkpoint
application lewd
library-[user-] lewesl kernd -l ewel

Figure 2 Classification of checkpoint levels

Beyond the previous three directions, two additi@spects (independent from
the abstraction levels) are distinguished in pafatheckpointing on how parallel
processes are instructed when checkpointing isopeed. The three aspects are:
coordinated, uncoordinated, communication-inducee Figure 1).

In uncoordinatedcheckpointing each process of the application sare its
state at any time independently from the neighlmgunrocesses. Checkpointing
action is not taking the consistency of messagdee eccount, so it can be
implemented and executed easily. The problem mawyroat restart phase. First, each
process reloads its state from the latest check@md then they check whether the
application has consistent state [56] regardingsagss. Consistency exists if neither
duplicated nor lost messages is detected. If thestlacheckpoints do not form a
consistent state of the application, based on #gpertdencies of messages rollback
propagation is executed. Due to the domino eftecan easily happen that rollback is
repeated until the application reaches its ingi@iht i.e. the application is started from
the beginning.

Contrary to the previous onepordinatedcheckpointing creates a consistent
state of the application at the time of checkpsating instead of trying to create it at
resumption phase. Whenever an application must beckpointed, a global
coordination protocol, implemented by exchangingcsgd marker messages, is used
to coordinate the state saving of the individualgeisses by creating a consistent state
for the application. A global snapshot is takemfravhich the computation can be
restarted. In this case a distinguished processsponsible to initiate and execute the
checkpoint saving protocol. The Chandy-Lamport [&&]Jorithm is the most well-
known protocol for this purpose.

15

Communication-induced(or quasi-asynchronous) checkpointing provides
resilience to the domino effect without requirindplzpl coordination across all
checkpoints. Each process takes checkpoints Igcadly in uncoordinated
checkpointing. However, such protocols allow fooqesses to be forced to take a
checkpoint in order generate a global checkpoistate that will not cause domino
effect. Each message passed between processessamta protocol information
that allows the recipient to determine for it whestlor not it should take a forced
checkpoint [49].

1.2.3 Checkpoint based migration

Process migration in distributed systems is a speanient when a process
running on a particular resource is moved to amothe in such a way that the
migration does not cause any change in the proeerssution. It means that the
process is not restarted instead; its executiotemsporarily suspended and then
resumed on the new resource. In order to provide dépability migration usually
relies on some checkpointing techniques to savesttdte of the target process and to
reconstruct it on the target machine.

Such migration mechanism can be used in severahasos. First, in
supercomputing applications load-balancing is @iatussue. Migration can solve the
problem of unbalanced parallel sites of the GrichcBsses on overloaded machines
can migrate to underloaded machines without terimgathe entire application.
Similarly, load-balancing can be ensured among#fit sites of the Grid, i.e., when a
site becomes overloaded complete applications dgrata to other sites. Third, the
migration module can be used for providing fauletance capability for long-running
applications if machines are corrupted or needesysmaintenance during the
execution. Fourth, migration can be driven by resewneeds, i.e., processes can be
moved to a remote site in order to access speni@buable resources. For example,
processes may need to use special equipments erdatigbases existing on dedicated
machines in the Grid.

During migration a tool suspends the executiorhefpirocess, collects all the
internal status information necessary for resummpéind terminates the process. Later
it creates a new process and all the collectedrmdtion is restored for the process to
continue its execution from where it was suspended.

16

1.3 Overview of checkpointing and migration frameworks

In this section an overview is given on variousteys in the field of parallel
(mostly PVM and MPI) checkpointing. There are nuowsr systems, but without
giving an endless list, the most significant tamtsthis field are introduced.

1.3.1 CoCheck

CoCheck is a research project which aims at progidiConsistent
Checkpointing for various parallel programming @omments both PVM and MPI.
CoCheck implements a coordinated, consistent cluackpg of parallel applications.

In PVM version of CoCheck [64][72] a special progesalled Resource
Manager (RM) is dedicated to perform decision ok tallocation whenever a new
task is spawned. When checkpointing, it notifies tlisks by sending signal-message
pairs to all the processes to interrupt them asstidtep. After successful interruption
it synchronizes the messages in order to avoidnigain-transit messages in the
messaging layer at the time of checkpointing.

Synchronisation phase | Checkpoint phase |
Pl Send rc:..'r.e’;\ -
A e ssages . -i| 4‘ .-r
| Signeil : o .- -
P oS E Sk 4 5
KM '[task list | T o >
i v SN & 1
P i i S
Si il . '. T
Lrglz:n _JI 1 l-I| — e 5 ;
P2 vy Send recidy | o s 2
- ll. messuges | 4 ¢ -
- | i W _.‘ " :
E_ST.S'J]LHIJ . - a ". .
P3 ‘l‘! r-SL'J]u'I r:cr..'r..l';\lr;d -4 -..___
MESSLEEs -

Figure 3 The CoCheck checkpointing protocol

When all the messages have been flushed, the pexcdstach and finally the
process memory is saved (see Figure 3). The rastartparallel job is steered by a
modified startup routine (crt0.0) that belongs hie bperating system. This tool was
developed in the mid of 90’s and it has no moreecodintenance, but it became a
basic reference work for all parallel checkpointaygtems.

To create the MPI version of CoCheck [71] a new NtRplementation has
been developed, called tuMPI. To add checkpoinsimgport for tuMPI, the central
instance of CoCheck (RM in the PVM version) wasegnated as an additional
component in the daemon processes of tuMPI. Cemistate of the application
processes was ensured by the same algorithm asnudedPVM version. Finally, the
tool was optimised for migration of tasks, by tfensng checkpoint information to a
skeleton process of the migrating one.

One of the main well-known features of CoChecktsscheckpoint protocol,
which makes sure in-transit messages are flustmd the message-passing layer.
This protocol is derived from Chandy-Lamport algfom.

17

1.3.2 Condor

The goal of the Condor Project [33] is to developplement, deploy, and
evaluate mechanisms and policies that support Highughput Computing (HTC) on
large collections of distributively owned computiresources. Condor is a specialized
workload management system for compute-intensis. jdike other full-featured
batch systems, Condor provides a job queuing méamaischeduling policy, priority
scheme, resource monitoring, and resource managebsers submit their serial or
parallel jobs to Condor, Condor places them intuaue, chooses when and where to
run the jobs based upon a policy, carefully mosittreir progress, and ultimately
informs the user upon completion.

Condor is able to execute and schedule differgpé¢gyof applications (e.g.
sequential, PVM, MPI, Java, etc.) and for PVM tlm@yoduced the CoCheck protocol
in 1996. Later it became unsupported, so the Cordwsions in the last few years
changed direction regarding PVM checkpointing.

MW Driver
s i
| Tasks To-Do List
| Glabal
| dia

— Ruming tasks,
Rc:tﬂs | matched with werkers
T

The Master The Workers
Figure 4 View of the Condor MW paradigm

The new model they introduced is a fault-tolerawceition for Master-Worker

(MW) type applications [73]. For Condor, there isoal for making a master-worker
style application that works in the distributedpogunistic environment of Condor.
MW applications use Condor as a resource managetoehtand can use either
Condor-PVM or MW-File a file-based, remote /O stleefor message passing. The
user must define the code for the Master prochesMorker processes and the system
will distribute the works automatically among thenkers in a way defined by the
programmer. When a worker process aborts or f@ts)dor automatically spawns a
new worker with the same workpackage, the failedkeroowned.

In the Condor job-scheduler tool there is no rdaakpointing of parallel
application, but fault-tolerant execution of PVM péipations are supported in a
limited way. However, Condor is able to checkpaetjuential jobs; therefore it is
sometimes reused by parallel checkpointing toide, CoCheck.

1.3.3 Fail-safe PVYM

Fail-safe PVM [65] has been designed and implendeite the Carnegie
Mellon University. The main purpose of the framek@ to provide a fault-tolerant
PVM environment regarding single-node failures.

18

Fail-safe PVM uses checkpoint and rollback to recovom such failures.
Both checkpoints and rollbacks are transparertt@éapplication. The system does not
rely on shared stable storage and does not requardifications to the operating
system. The main goals and advantages of thismyate application independence,
application transparency, compatibility and miniroaérhead.

Application

PVM Fail-Safe

| l TCP/IP,UDP

Y

UNIX

Figure 5 Architecture of Fail-safe PVM

Fail-safe PVM is an enhanced version of PVM, i&e tdesign and
implementation has been done in a way that PVMmatis are modified in order to
fulfil the goals.

The main strengths of the system is the capaltditgetect failed-nodes and to
migrate application processes from the failed nadeke failure-free ones. The PVM
daemons are modified in order to synchronize ameagh other to prepare the
application for checkpointing. At recovery the dasm are able to rollback
themselves to create a consistent state of thellgdavartual machine. After the
daemons are rolled back, they initiate the appticato start recovering itself. To do
this the application processes are reordered artfungerror-free PVM daemons to
take the work from the failed one. The checkpoiribrimation is distributed among
the daemons. After the application has successfalifarted from the last consistent
state, it is instructed to continue the execution.

As a summary, FPVM is strongly focusing on migratgupport of the PVM
processes, where the migration is driven in a wayprovide fault-recovery of the
application.

1.3.4 Dynamite

Dynamite [66] aims to provide a complete integragelition for dynamic load
balancing of parallel jobs on networks of workstas. It contains an integrated load-
balancing and checkpointing support for PVM appices.

Dynamite provides dynamic load-balancing for PVMplagations running

under Linux and Solaris. It supports migration mdividual tasks between nodes in a
manner transparent both to the application programand to the user, implemented
entirely in user space. Dynamically linked execldsalare supported, as are tasks with
open files and with direct PVM connections. In Dyni, a monitor process is started
on every node of the PVM virtual machine. This nboncommunicates with the local
PVM daemon and collects information on the resowsage and availability of the
nodes.

19

The architecture of Dynamite is modular. It is poigsto use just the dynamic
loader of Dynamite and get checkpoint/restart it@esl for sequential jobs that do not
use PVM. Even when using PVM, it is not required use the Dynamite
monitor/scheduler: the user can migrate tasks mignfuam the PVM console (using
the new move command) or from custom programs gusie new pvm_move
function call). This gives Dynamite extra flexibyi and makes its components
reusable for different projects.

Dynamite run-time system

Echeduler /decider Load monitor

kpplicaticn | Capacity per nods |

Deco =]

[. N
,./| Initial placement

1
| Flace }‘ ’/ Capacity per nods |

I | New
placement
Fun .fi
-1
I

Figure 6 Architecture of the Dynamite PVM system

The system focuses on migrating individual PVM gsses. To provide this
capability, Dynamite replaces the dynamic loadel thve whole PVM implementation
for the daemons.

1.3.5 MPVM (MIST)

In MPVM [67], the interface between the PVM daemdpsmd) and the
Resource Manager has been extended to accommaed&tentgration, allowing the
MPVM Resource Manager to use dynamic schedulingipsl

In order to support task migration, both the pvmd BVM library (pvmlib) is
modified. The modifications made were also driventhe goals of source code
compatibility, portability, and migration transpacy. To ensure source code
compatibility, the modifications maintain the sarfnction calls, parameters and
semantics, as provided by PVM. To maximize poriigbithe migration mechanism is
implemented at user-level, using facilities avd#éathrough standard Unix library
routines and system calls. Migration transparea@ddressed by modifying the pvmd
and pvmlib such that the migration could occur withnotifying the application code
and by providing "wrapper” functions to certain ®a calls.

To avoid explicit modification of the source codetloee PVM application for
installing the signal handler, the (m)pvmlib defnits own main() function which
executes the necessary initialization and thens callfunction called Main(). A
Migration Transparent Version of PVM linked withethpvmlib, the resulting
executable will have the pvmlib's main() as theepbint, allowing execution of the
migration initialization code prior to the executiof the application's code.

An important component of the migration protocolwhat is collectively
called Control Messages. These control messagédlsrare special system messages
added to the pvmds and the pvmlib for the primawppse of managing task

20

migration. Just like other system messages, theseat messages are invisible to the
application code.

The medium for the state transfer is TCP connedtietveen the source pvm
task and the destination migrated task. MPVM ukesajpproach of transferring the
entire virtual address space of a process at nograime. That is mainly the reason
why MPVM does not support fault-tolerance.

The protocol implemented in MPVM is designed in wthat after the
migration the task has the same task identifiertranslation tables are not needed.
However, there is a need for routing tables inR&1 daemons.

1.3.6 tmPVM

The tmPVM [68] system aims to provide efficient naigon of PVM tasks. It
does not create application wide checkpointing,ii.does not support fault-tolerant,
the application does not have a stored consistehabstate.

least loaded node

Node |

overloaded node

Node i
PVMd PVMd

L Do)

PVMd PVM daemon —= Load Information

"M Resource Manager —® Migration Protocol

Load Moniter

Figure 7 The tmPVM virtual machine

A task to be migrated creates a checkpoint filespawning an external
extractor to scan the /proc file system. This tashts until the task is restarted on the
destination node, and in the mean time forwardsraagsages that it receives to the
destination (new) instance. The destination insgaimas a new PVM task identifier
after the migration, so a special TID alias diregttmapping table) is maintained in
the PVM daemons to translate between the origindlcarrent task identifier.

A load monitor module is spawned on each node tieatolocal load
information. In tmpPVM, a centralized resource ngaragathers and maintains local
information for each participating node. All loadnitor modules are assumed to be
active till the shutdown of the tmPVM virtual maehi Users are required to include
an initialisation call (named TCP_TM_init()) befoamy statement. The routine will
install the necessary mechanism, data structur@shatification to the load monitor
modules.

1.3.7 DAMPVM

DAMPVM [69] (Dynamic Allocation and Migration Patal Virtual Machine)
is an extension to the PVM environment. DAMPVM #&acthe changes of some

21

parameters on the machines in the virtual machike hodes loads, other users
activities, measures the speeds of the nodes tdaogkhow how much processing
power is available on the nodes.

The programs can be written analogously to PVM dm#sthe programmer
must use the library supported by DAMPVM insteadPdMM. This library offers
communication and creation functions analogoush®RVM ones plus some extra
connected with process instrumentation. DAMPVM késn(one on each machine)
start processes on the appropriate machines. DAMBVMregular PVM application
so there are processes - kernels (one on eachmaaeamd additionally the DAMPVM
library.

The goal of DAMPVM is to minimize the total exeautitime of the whole
application (all the processes started by the asBXAMPVM) - DAMPVM performs
dynamic allocation of processes. Heterogeneousatiogr is possible because it is
performed on the code level. A programmer must sdpwo functions for packing
and unpacking the state of a process to enable DAWRernels to migrate a process.
Dynamic allocation and migration is performed awtically by DAMPVM.

1.3.8 Charm

Charm [70] is a checkpoint/restart system, wheréd/R)lls are wrapped in
order to modify the behaviour of the calls and upmort checkpointing. To preserve
communication it uses a similar version indepengenotocol to the one defined in
CoCheck, but it is optimised for faster migratiamce message flushing is only
performed for migrating tasks. The messages serihdomigrating processes are
stored in a delaying buffer and when the migrati@s finished the content of the
delaying buffer is forwarded to the new destinatibhe key advantage of this system
is that no modification of PVM is performed. Thesm has a C-manager that is
responsible for performing the proper protocol agtie processes of the application.

C-manager is implemented as a PVM task. Users #tartcharm system
(cmanager), then cmanager spawns the user's PVM {fasalso reads in the
checkpointing-related .rc files. By this technigine application will know, the Task
ID of the C-manager and will be able to cooperaith it in order to perform
checkpointing.

With the slight modification of the start-up meclsan of the PVM
application, Charm is able to migrate PVM proces#¢ghe same time this system
does not provide application wide checkpoint, iLeés not possible to checkpoint the
whole application, shutdown all the running compdneand to restart the
checkpointed application on a different cluster.

1.3.9 CLIP

CLIP [74] (Checkpoint Libraries for Intel Paragoiy a semi-transparent
checkpointer for the Intel Paragon. CLIP can cheakpprograms written in either
NX or MPI. The conceptual structure of CLIP is d#pd in Figure 8. In
checkpointing mode, CLIP code acts as middlewared®n the user's application and
the Paragon libraries.

To use CLIP, a user must link the CLIP library witle application program.
Additionally, the user must place one or more subne calls in the code specifying
when checkpoints can occur. When the code is eedcuCLIP takes periodic
checkpoints of the program's state to disk. Ifdome reason (hardware or software

22

failure) the program is terminated prematurely, miay be restarted from the
checkpoint file.

Without checkpointing With checkpointing
User
" Lll.ser. Application
pplication ibokpt] i
— = — = -
NX/MPI PFS M| e | Gue |
Library Library NX/MPI PFS
| To Ta
To other nodes 110 nodes To other nodes D nodes
-— e —— e ——

Figure 8 Structure of CLIP

1.3.10 ZapC

ZapC [75] is a novel system for transparent co@tdid checkpoint-restart of
distributed network applications on commodity ctust ZapC provides a thin
virtualization layer on top of the operating systéhat decouples a distributed
application from dependencies on the cluster nodeshich it is executing.

This decoupling is done by introducing a PrOcesm@ia (POD) abstraction.
POD enables ZapC to checkpoint an entire distribafgplication across all nodes in a
coordinated manner such that it can be restarted the checkpoint on a different set
of cluster nodes at a later time.

ZapC is designed to support migration of unmodifegghcy applications while
minimizing changes to existing operating systentss s done by leveraging loadable
kernel module functionality in commodity operatisgstems that allows ZapC to
intercept system calls as needed for virtualization

1.3.11 LAM/MPI

LAM/MPI [76] is a high performance implementatiohtbe Message Passing
Interface (MPI) standard. LAM/MPI provides a Syst&warvices Interface (SSI), a
modular component system that allows easy extdigitn new environments. One of
these services is designed to provide a transpaskaetkpointing and rollback
recovery (CRR) with high portability.

The CRR framework implements most management of rdioated
checkpointing and rollback recovery for MPI parbipplications. MPI applications
running under LAM/MPI can be checkpointed to disid aestarted at a later time.
LAM requires a 3rd party single-process checkpostart toolkit for actually
checkpointing and restarting a single MPI proces®\M takes care of the parallel
coordination.

Currently, the Berkeley Labs Checkpoint/Restartkpge (BLCR) [77] is
supported which is a kernel-level single-proces®kGBol for Linux. It works as a
dynamically loadable kernel module, so it is nairaversal tool for different Linux
versions and platforms.

LAM/MPI allows new back-end checkpointing systerossle "plugged-in"
simply by providing a new CR SSI module. An examplereplace kernel-level

23

checkpointing of LAM/MPI with user-level checkpoiahd recovery is introduced by
[78] where BLCR is replaced with libcsm. New CR mta$ are designed and the tool
is modified to provide the needed APIs. Because MM supposes checkpointing is
thread-based and implements the framework on g8samption, its workflow had to
be modified to integrate the library.

1.3.12 Charm4MPI

ChaRM4MPI [84] is a Checkpoint-based Rollback Recgpv(CRR) and
Migration System for Message Passing Interfacegiape designed and implemented
for Linux Clusters. It is based on coordinated &pemting protocol, synchronized
rollback recovery to provide process migration.

In ChaRM4MPI users can migrate MPI processes mgnfram one node to
another for load balance or system maintenances bl is implemented in a user-
transparent way and uses the techniques employdétdipt [31] and CoCheck [72].
The whole implementation is based on MPICHP4 [7@fhich is an MPI
implementation developed at Mississippi State Umitg and Argonne National
Laboratories that employs P4 [79] library as theickelayer.

Regarding the architecture, one management pro@adled manager, is
implemented as the coordinator of parallel CRR pmtess migration. It can operate
users’ checkpoint or migration commands receiveaudh a GUI. The source code of
P4 listener is altered to perform signal interroptof computing processes in case
commands received from the coordinator. The starprocedure of MPICHP4 is
modified, so all MPI processes will register thelwmsg to the coordinator. In this way,
the latter can maintain a global process-info-tablmanage the whole system.

1.3.13 FT-MPI

The aim of FT-MPI [80] is to build a fault toleraMPI implementation that
can survive failures. The system offers a widegeaof recovery options for the
application developer other than just returningame previous checkpoints. FT-MPI
is built on the HARNESS [81] meta-computing system.

C-F Interface handling

Attribute / data structures and communicator state handling

Derived Types Buffer Management

Failure handler

Collective Library P2P driver

OS support layer
(process control / naming /
failure detection)

MultiThreaded SNIPE Lite
Comms Library

HARNESS
g_hcore

TCP/UDP

GM/BIP

VIA

Shmem ‘ PVM 34 ‘

Figure 9 Structure of the FT-MPI implementation

FT-MPI extends the MPI communicator states withitamithl states (e.g. ok,
detected, recover, recovered, failed). A commuoicehanges its state when either an
MPI process changes its state, or a communicatidnnathat communicator fails for
some reason. By allowing the communicator to beain intermediate state the
application has the ability to decide how to alter communicator and its behaviour.

24

The current implementation is built as a numbeagérs and integrates a wide
variety of underlying services to provide faulte@nce (see Figure 9). Different
services provide FT-MPI with notification of failes from communications libraries
as well as the OS support layer.

Since FT-MPI provides fault-tolerance by reportifgjlures through e.g.
modification of communicator states, the respotigjbio handle the undesirable
situations is still remains a duty of the applicatprogrammer. The typical usage of
FT-MPI would be in the form of an error check ahdrt some corrective action such
as rebuilding a communicator and so on.

1.3.14 Starfish MPI

Starfish [82] MPI is a daemon based implementasipproach for MPI. Each
host of a cluster must have a Starfish daemon fsgare 10) forming a parallel
computer over the cluster. Application processesardy be migrated within the so-
called parallel computer i.e. where a starfish da®ia running.

Lightweight EEdpoint Modules
= Application
@ Module
GC A ,
Handler| | cR E:ﬂi
. .) Module | 2
Lightweight Membership = Module
O |MPI Module
Management Module 1
VNI Module !
Group Communication e
(Ensemble) Module
Starfish Daemon Myrinet

(one per machine)
Figure 10 Architecture of the Starfish MPI

Starfish uses its own distributed system to providdt in checkpointing.
Starfish MPI handles communication and state chengleich are built upon the
Ensemble system [83] and managed by strict atomoaggcommunication protocols
among the daemons.

25

2 New checkpointing method on ClusterGrid

26

2.1 Transparency conditions in ClusterGrid environments

2.1.1 Overview

Checkpointing of message-passing based paralleridighs or applications
can be realised using various techniques and meth&dconcrete solution must
always face the requirements imposed by the Gratleware. The goal of the first
group of thesis is to identify the requirements andditions towards the checkpoint
and migration techniques imposed by the Cluster@&nironment and to elaborate a
new (abstract) technique which fulfils the alreaaiyntified requirements.

As a preparation of thesis 1.1, | have definedrt@n characteristics of the
ClusterGrid environments and several desirable cases for state migration
mechanism. As a next step, | have identified thestek components which may
influence the internal operation of a checkpointagygtem and then | determined the
requirements in 4+1 points. By using the ASM forifinamework for modelling | have
developed the model of the cluster components lagid most relevant characteristics,
and then based on this model | have elaborated ramafodescription of the
requirements and conditions for checkpointing temnes. Finally, based on these
criteria | have analysed, evaluated and classiffe existing solutions and stated
thesis 1.1.

Thesis 1.1:In a cluster environment a formal framework of riegonents can
be defined for message-passing parallel algorithwisch enables transparent
checkpointing of the algorithms for the scenariefirted in the dissertation. In
addition, currently there are no checkpointing angjration facilities fulfilling
the defined requirements in a cluster environmenttfe defined scenarios.

Related publications are [3][4][19].

2.1.2 ldentification of the components

Based on the abstraction levels and coordinatipagyboth defined in Section
1.2), checkpointing of a parallel application canitmplemented in several ways. In
this section the most relevant components are iftgehtvhich contribute to the whole
checkpoint and restart procedure. The followingjilal) components are identified as
possible contributors to the checkpoint or regtestedure (see Figure 11) in a cluster
environment:

1. Operating system (“OS”)

Scheduler (“sched”)

Source code of the application (“src”)

Linked libraries of the application (“lib”)
Message-passing layer (“message-passing system”)

o o s~ Wb

External coordination process (“Coord.”)

An application is shown (see Figure 11) with thpe®cesses ("ProcA",
"ProcB", "ProcC") running on three nodes of a @dusProcesses - from logical point
of view - contain user written code ("src") anddibes linked ("lib") to the code of the
processes. The distinction is introduced to distisiy between library or application
level checkpointing.

27

In case of application level checkpointing #wairce codé€depicted as "src" in
Figure 11) must be prepared by the programmerlassibeen detailed in section 1.2.

If automatic library (system) level checkpointirggsupported, a specidrary
(depicted as "lib" in Figure 11) is linked to thegess. The library is usually activated
during execution; it scans through all the memaosgce of the process and saves the
information into a temporary storage for later wsa§aving results into a binary file
includes all memory segments, registers, signalssaron.

T * T
< - < b <~

~ 1| lib | b | b
Coord. . | ProcA | | ProcB ProcC
Sre Ssrc | Ssrc

E~@ -

Figure 11 Components of a checkpointing environment

The message-passing syste(MP) (see Figure 11) is running in the
background to transport messages among the precésseertain solutions (e.g. Fail-
safe PVM [65], Dynamite [66], MPVM [67], etc.) thlayer is modified to support
checkpointing of the messages and of the links @npoacesses. This support usually
means cooperation with the application to be pegp&or checkpointing in a way that
consistency of in-transit messages and connecaionpreserved.

In order to facilitate theoordinationof checkpoint among the processes of the
application an external checkpoint coordinationcess (depicted as "Coord." in
Figure 11) can be connected to each process @ptpkcation. This auxiliary process
usually performs coordination of checkpoint saviagchange of checkpoint related
information or identifiers among the applicationopesses. Furthermore, it can
manage open files and play a central role in teamgption procedure, too.

Checkpoint support in scheduletmn be an integrated part. Most of the
schedulers for clusters (depicted as "sched" imreid.1) perform checkpointing up to
some extent (e.g. Dynamite [66]). Checkpointinganfindividual process is usually
fully supported by these schedulers, which meareigioint/restart mechanism is
integrated. The Scheduler decides (usually basedioad of the nodes) when
checkpoint must be carried out and shutdown a psoce

Last, but not least another component where checkmupport might be
implemented is theperating systerfdepicted as "OS" in Figure 11) in case of kernel-
level checkpointing as it has been described itiged.2.

28

To summarize, the list of components/modules/paetsied above represents
potential/possible modification points that exigticsheckpoint frameworks usually
exploit. Based on the type of checkpointing, déf@rcombination of the components
are added, replaced or modified. As a consequete@ending on the components
modified by the checkpointing system, differenteisvof compatibility can be reached
among the clusters in case of a ClusterGrid.

2.1.3 Use cases

This section is aimed at defining some of the usges that are typical in a
ClusterGrid system concerning a job life-cycle wtthg submission, fault-related
events, checkpointing and migration. Before definuse cases it is necessary to
determine some basic key features of the Grid systed the critical characteristics of
the jobs to be submitted in order to understandptitential behaviour of the entire

system.

In the current context the execution of the suladitipplication is realised in a
Clustergrid containing numerous clusters independeneach other. The main
expectations towards these clusters are definéuollaws:

Assumptions for the proposed ClusterGAsihpCl3:

AsmpCls1. Each node of every cluster in the Grid is compatdil OS level to
each other. It is necessary that the binary ofstifemitted application can
be executed on any node of any cluster. In a rear@ment it is not
always true. In that case we consider the biggebset of the Grid
consisting OS compatible nodes as the ClusterGniaament.

AsmpCls2. Each node of every cluster must have the samedy/peessage-
passing system installed, i.e. each must have MIPMd/ or both.

AsmpCls3. The scheduler is able to allocate a process ofifiiication to
any node of the supervised cluster.

AsmpCls4. Every node (except the front-end node) in a cluateridentical
regarding software environment.

Assumptions for the applicatioA$mpApp

AsmpApp 1. The application uses PVM or MPI as message-passyay.

AsmpApp 2. The physical requirements (memory size, disk capaetc.) of
the application fit to the capabilities of the ¢krs and nodes.

AsmpApp 3. The application is authorised to be executed oncdiige clusters
in the Grid. In a real environment it is not alwayse. In that case we
consider the biggest subset of the ClusterGridagh@ication is authorised
nodes as the ClusterGrid environment.

Points (degree) of freedom for the proposed Cl@sidr(FreeClu:

FreeClul. Clusters of the Grid are not expected to have acifspe
checkpointing service installed on their nodes.iflen on installed services
is made by the local policy of the cluster.

FreeClu 2. Clusters of the Grid are not expected to have lingtahe same
version of the message-passing software, but stilst accomplish the
assumptions defined ismpCls2zand AsmpCls3

29

FreeClu 3. Clusters of the Grid are not expected to operatprealefined
scheduler. Decision on scheduler to be used oustetlis made by the local
policy.

FreeClu 4. Clusters of the Grid are not expected to apply edglined OS
version installed on their nodes, but still mustamplish the assumptions
defined inAsmpClIsl

FreeClu5. Clusters of the Grid are not expected to perform @kernel
related updates to support checkpointing.

FreeClu 6. Clusters of the Grid are not expected to assigofatheir nodes to
one application. A cluster might serve for exeautaf multiple (parallel)
applications at the same time. Decision on schedules to be applied on a
cluster is made by the local policy.

The proposed assumptions (AsmpClu, AsmpApp) andothiets of freedom
(FreeClu) in the middleware of the clusters detaamihe potential behaviour and
interaction among the clusters in the entire Ch@tie.

Several scenarios are now defined to be suppomteidgdthe execution of
application performed by the middleware of cluster.

Scenarios for process and application migration:

Scenariol. Immediate process migration to free resources

This scenario defines a simple case when one ofptloeesses of the
application (job) migrates from its source nodestmther (target) one. The reason is
that the source node is about to be pre-emptebebiptal scheduler.

1.1. User submits job containing k processes

1.2.Job is scheduled to Cluster A having n nodes wheke

1.3.Job is executed on Cluster A on nodes 1..k andsk€e..n are free
1.4. Scheduler initiates termination of process runmmngiode i, where<i<k
1.5. Scheduler assigns new node j for the job, whererk<j

1.6.Process from node i is migrated to node |

1.7.Job continues execution

1.8.Job finishes

1.9. User gets results

Scenario 2. Delayed process migration to free resources

This scenario defines a simple case when one ofptloeesses of the
application is removed from its node, but the ntigra cannot be realised due to
unavailable free resource.

2.1.User submits job containing k processes

2.2.Job is scheduled to Cluster A having n nodes wheke

2.3.Job is executed on Cluster A at nodes 1..k andskée..n are reserved
2.4.Scheduler initiates termination of process runmngnode i, where<li<k
2.5.No resource is available, process is waiting fee fnode

2.6.Node j becomes free, where kgj

2.7.Scheduler assigns node j for the job

2.8.Process from node i is recovered on node |

2.9.Job continues execution

30

2.10. Job finishes
2.11. User gets results

Scenario 3. Application migration among clusters

This scenario defines a case when the whole apiplicas pre-empted by the
scheduler to vacate all the nodes of the clustertduhe request originated from the
Central Broker of the ClusterGrid. Central Brokerthhe component that manages a
gueue of jobs submitted to the Grid and assigngtigeto the clusters for execution.

3.1.User submits job containing k processes

3.2.Job is scheduled to Cluster A having n nodes wheke

3.3.Job is executed on Cluster A on nodes 1..k

3.4.Central broker initiates pre-emption of the enaéipplication through the local
scheduler

3.5.Scheduler initiates vacation of all the nodes th@ieation is using

3.6. Application is removed

3.7.Central broker reschedules the job to Cluster Brigpat least k available free
nodes

3.8. Application processes are recovered on Cluster B

3.9. Application continues execution

3.10. Job finishes

3.11. User gets results

Scenario4. Process and application migration among clusters

This scenario defines a simple case when some @fptbhcesses of the
application are removed from their nodes, but tlgraion cannot be realised due to
unavailable free resources. Job removal is indlidethe local scheduler.

4.1.User submits job containing k processes

4.2.Job is scheduled to Cluster A

4.3.Job is executed on Cluster A

4.4. Scheduler initiates vacation of processes on sdrtieeaodes of the cluster

4.5.Processes are removed and application is waitinfyde resources

4.6. All the remaining nodes in Cluster A are resentbdrefore after a timeout
the scheduler initiates removal of the job from ¢thester

4.7.Central Broker reschedules the job to Cluster B

4.8. Application is recovered on Cluster B

4.9.Job continues execution

4.10. Job finishes

4.11. User gets results

Scenario 5. Application initiated application migration amoniysters

This scenario defines a simple case when some efptiocesses of the
application are removed from their nodes, but tlgraion cannot be realised due to
unavailable free resources. Job removal is intlidethe application itself.

5.1.User submits job

5.2.Job is scheduled to Cluster A

5.3.Job is executed on Cluster A

5.4.Scheduler initiates removal of some of the processe

5.5. Processes are removed and application is waitinfyée resources

31

5.6. After a timeout the application initiates self témation (this point is the main
difference comparing to Scenario 4)

5.7.Central broker realises the preemption of job a&stihedules it to Cluster B

5.8. Application processes are recovered on Cluster B

5.9.Job continues execution

5.10. Job finishes

5.11. User gets results

As the various scenarios show, basically two dfiértypes of migration are
required in order for a job to perform its calcidat in a Grid system. Without
checkpointing and/or migration the whole applicatghould be re-executed from its
initial point.

In the following sections the focus is on the meldhre components. Detailed
analysis reveals the requirements of the middleware

2.1.4 Requirements in ClusterGrid

In case of ClusterGrid infrastructure where clustan have different software
components installed, the relevant design goalsremuirements of a parallel
checkpoint tool arecompatibility (with the surrounding software components) and
integrity (of the checkpoint information of the applicationyVhile the first goal
ensures the seamless operation of checkpointetugters with various middleware
components, the second one is a basis for applicatigration among clusters.

In order to fulfil the compatibility requirementeHollowing conditions must
be taken into consideration:

Condition 1. Operating system does not provide checkpointingitiac
Condition 2. Solution does not rely on checkpoint support ofjtiemanager
Condition 3. Solution relies on the native version of messagsipg system
Condition 4. Dependence from external auxiliary process doegxist

The four conditions correspond to compatible opemabf checkpointing
frameworks. Following these conditions an applaratican be checkpointed in
software heterogeneous ClusterGrid environmentunder the control of any cluster
environment (consist of the components definedeictiSn 2.1.2).

Checkpointing can support fault-tolerance (restomatfrom a previous
checkpoint is done due to middleware error cauajpgjication abort) and migration
(restoration is done on another cluster) of a parapplication. Migration and fault-
tolerance requires different support from the toslisce migration itself does not
require checkpointing the state of the entire @apibn (e.g. process migration) while
supporting fault-tolerance requires.

Migration facilities in some of the cases tempdyarstore checkpoint
information (e.g. in memory) about the checkpoihtagrating processes only. Since
in a ClusterGrid infrastructure application may betallowed to reach nodes that are
part of another cluster, this type of migrationhi@ique would fail.

Therefore only those checkpointing and migratiochtéques are usable that
creates a correct set of checkpoints of the eapidication. It is called the integrity of
checkpoints.

32

Based on the previous explanation a new requiremmerst be defined as a
complementary one to the previous four. It is chllgegrity requirement. In order to
fulfil it the following condition must be satisfied

Condition 5. Application-wide (included all processes) checkpaaving is
performed

The five conditions together form a framework inietha checkpoint tool
must fit in order to provide parallel applicatioheckpoint/restart support on a general
ClusterGrid infrastructure. By accomplishing thesenditions applications can be
migrated among the different nodes of a clusteraandng the clusters.

2.1.5 Formal definition of the requirements

2.1.5.1Abstract State Machines

Abstract State Machines represent a mathematieadly founded framework
for system design and analysis [36] [38] introdubgdGurevich as evolving algebras
[39]. The motivation for defining such a methodaisite similar to that of Turing
machines (TM). However, while TMs are aimed at falimng the notion of
computable functions, ASMs are for the notion oégfgential) algorithms [40].
Furthermore, TMs can be considered as a fixedemdly low level of abstraction
essentially working on bits, whereas ASMs exhilgfreat flexibility in supporting any
degree of abstraction.

In every state based systems the computationaleguve is realized by
transitions among states. In contrast with othstesys, an ASM state is not a single
entity or a set of values but ASMs states are sgmed as (modified) logician's
structures, i.e. basic sets (universes) with femstiand relations interpreted on them.
Experience showed that any kind of static mathema#tlity can be represented as a
first-order structure [40]. These structures araified in ASM so that dynamics is
added to them in a sense that they can be transtbrm

Applying a step of ASMM to state (structuré) will produce another stai®'
on the same set of function names. If the functiames and arities are fixed, the only
way of transforming a structure is changing theugabf some functions for some
arguments. The transformation can depend on soméitmm. Therefore, the most
general structure transformation (ASM rule) is arged destructive assignment to
functions at given arguments [36].

ASMs are especially good at three levels of syslesign [36]. First, they help
elaborating a ground model at an arbitrary levelabstraction that sufficiently
rigorous yet easy to understand, defines the sydatures semantically and
independent of further design or implementationisiens. Then the ground model
can be refined towards implementation, possiblpugh several intermediate models
in a controlled way. Third, they help to separatstam components. ASM is not a
paper theory but it has been applied in variousistrtal and scientific projects like
verification of Prolog [41] and Occam [42] comp#8edava virtual machine [43], PVM
specification [44], 1SO Prolog standardization, idaling various security and
authentication protocols, VLSI circuits, and mangren The definition of ASMs is
written in [39] and [45] and a tutorial can be fdun [46]. A short overview is here as
follows.

33

A vocabulary (or signature) is a finite set of ftion names, each of fixed arity
furthermore, the symbolsue, false undef =, the usual Boolean operators and the
unary function Bool. A staté of vocabulary? is a nonempty seX together with
interpretations of function names ¥onX. X is called the super-universe Af An r-
ary function name is interpreted as a function féétnto X, a basic function oA. A
O-ary function name is interpreted as an elemeit of

In some situations the state can be viewed as d &mmemory. Some
applications may require additional space durirgyrttun therefore, theeserveof a
state is the (infinite) source where new elemeatshe imported inside the state.

A location ofA (can be seen like the address of a memory celpairl=(f, a),
wheref is a function name of arittyin vocabulary? anda is an r-tuple of elements of
X. The element(a) is the content of location

An update is a paia=(l,b), wherel is a location and is an element okX.
Firing a at stateA means puttind into the location while other locations remain
intact. The resulting state is the sequelPoflt means that the interpretation of a
function f at argumenta has been modified resulting in a new state. Thisviaw
transition among states can be realized. An updetas simply a set of consistent
updates that can be executed simultaneously.

2.1.5.2Basic universes, functions and relations

An application (element of universe APPLICATION)aemprised of several
processes (elements of universe PROCESS) that @eper some way. Their
relationship is represented by the functepp: PROCESS-> APPLICATIONthat
identifies the application the process belongsRmcesses are running on nodes
(elements of universe NODE) which belong to a eugtuniverse CLUSTER). Their
relationship is represented by the functduoster: NODE— CLUSTER.However,
processes might exist that do not belong to anyiagn on the clusterapp is
evaluated taundefineq.

A process is logically divided into user defineddeo(universe CODE) and
libraries linked to the code (universe LIBS). EaBlROCESS element has a
corresponding element from CODE and LIBS universée. relationships are defined
by functionscode: PROCESS> CODEandlibs: PROCESS- LIBS

A node can have: an operating system (universe @S3jcheduler logical
component (universe SCHED) and a service for hagdihessage-passing activities
of any process running on the node (universe MPE@. relationships are defined by
the functionsos: NODE— OS sched: NODE— SCHEDandmpe: NODE— MPE
The assignment of any components and nodes aneedelfiy the functioomapped:
{PROCESS, OS, SCHED, MPE} NODE

In the checkpointing and resumption activities talty two different features
are distinguished. A component (e.g. OS, SCHED, MP@DE, LIBS) may perform
the checkpoint saving and resumption activity orymperform checkpoint
coordination. Relationship is represented by tmetionckpt: {CODE, LIBS, SCHED,
MPE, OS}— {true, false} The existence of the coordination activity is regsed by
the relatiorcoord: {CODE, LIBS, SCHED, MPE, OS} {true, false}

Every application has its momentary internal s(at@verse STATE) which
represents a running application. Result of a gbeick activity is one or more image
(universe IMAGE) belonging to a PROCESS. This fiefethip is represented by the

34

functionimage: PROCESS» IMAGE, and multiple images are represented by the
universel MAGESe IMAGE",

Checkpointing of an application is basically degegdon the checkpointing
technique the actual cluster is applying. So, theckpointing activity maps the state
of an application on a specific cluster to a cartaiage set. Resume is doing the same
to the opposite direction. Accordingly, there i tfunction calledcheckpoint:
{CLUSTER x STATE}~ IMAGES and the other calledesume: {CLUSTER x
IMAGES}— STATE

2.1.5.3Formal definition of the requirements

Based on the representation of the logical compisneéaking part in a
checkpointing procedure, this section is aimediang a formal description of the
requirements defined in section 2.1.4. The follayvotescription uses the symbols
defined in section 2.1.5.

Condition 1. Operating system does not provide checkpointingitiac
VC € CLUSTERVYnNn e NODE,cluster(n) = C: ckpt(ogn)) = false

The expression denotes that no checkpoint suppastsein the operating
system of each node n belonging to a given clGter

Condition 2. Solution does not rely on checkpoint support ofjtiemanager
VC e CLUSTERVYNn € NODE,cluster(n) = C : ckpt(schedn)) = false

The expression denotes that no checkpoint supp@tisan the scheduler (or
job manager) running on each node n belonginggiwen cluster C.

Condition 3. Solution relies on the native version of messagsipg system
Native version means a version with no checkpaippsrt added.

VC e CLUSTERVNne NODE,cluster(n) = C: ckpt{mpégn)) = false

The expression denotes that no checkpoint suppastsein the message
passing system (or layer) running on each nodelangmg to a given cluster
C.

Condition 4. No dependence exists from external auxiliary preeges

Assume we have an application (A) running on atelugC). We must ensure
that any process (P) which does not belong to apyication, but running on
the cluster does not contain any checkpoint relatectionality.

VC e CLUSTERVA< APPLICATION,
Vp e PROCESSpp(p) # A clustefmappedp)) =C:
ckpt(p) = false

Condition 5. Application-wide (including all processes) checkpgaaving is
performed

The fifth condition ensures that all informatiorr i@suming all processes of
the application is available. So let us defma&s an image set belonging to an
application on a given cluster (C) which contaimages for each process of
the application.

35

VC € CLUSTERVAe APPLICATIN,Vp e PROCES&pp(p) = A:
dme IMAGEScheckpant(C, statg A)) = m,resum¢C, m) = statd A) =
imaggp) cm

2.1.6 Analysis of the requirements

2.1.6.1EXxisting checkpointing techniques

Based on the five conditions defined in sectionfdn analysis is carried out
on the existing PVM checkpointing and migrationteyss. The goal of the analysis is
to summarize the solutions used by the variousst@rid to check against the
conditions defined in section 2.1.4 to examinedtweformity of the tools.

In the list below the most commonly used prograngmiechniques and
methods are summarized used by existing PVM [llckgbeinting and migration
systems. The identification of these techniqueseisessary since they have a great
impact whether they can be used in ClusterGrid ot for transparent. The
programming techniques and methods listed belowh&renost common ones and at
the same time unfortunately they cannot accomphshconditions defined in section
2.1.4. They are as follows:

A. Replaced PVM Resource Manager

In the PVM environment the scheduling functionaliiglongs to a special
process named Resource Manager (RM) [25]. Thistiumality can be dynamically
reassigned to another PVM process, which then besdhe new RM coordinating
the assignment of the newly spawned processessomalchines. Checkpoint solutions
replacing the PYM RM may fail to coordinate morarthone application at a time
since only one RM is allowed to be assigned onst inder PVM. Another problem
may occur when the scheduler of the cluster alreadigles in PVM as RM. In this
case registering the checkpointer as RM leadscmnélict between the scheduler and
the checkpointer components.

This checkpointing technique violates Conditione3ircked in section 2.1.4.
B. Modified PVYM daemon

In the PVM environment daemons running on each name forming the
virtual machine. To provide checkpointing functibtyafor PVM application daemons
are often patched to handle checkpointing of comeatiion. Since these daemons
(obviously) cannot be replaced dynamically, duting migration the application may
be unable to resume in case the target clustercamaent does not contain the
daemon with the same patch or another versiorstallad. This checkpoint technique
is not compatible with the different software epwiments in case special
modification is required in one of the installedfte@re components part of the
middleware.

This checkpointing technique violates Conditione3irtked in section 2.1.4.
C. OS level modification

In order to provide checkpoint/restart functionabome tools offer a solution
kernel level checkpointing. Since, the homogeneitysoftware environment of the

36

various clusters in a ClusterGrid cannot be defineda requirement; this approach
cannot fulfil the compatibility requirement.

This checkpointing technique violates Conditionefirked in section 2.1.4.
D. Auxiliary process

There are solutions using external coordinatiorc@ss or daemon running in
the background continuously on (usually the masimie of) the clusters. These
auxiliary processes may vary from cluster to clustea ClusterGrid infrastructure.
The internal protocol and behaviour of the coordomaprocesses are not compatible
among the different checkpoint/restart tools, se mhigrated application looses its
checkpoint support in case the target cluster doefiave the very same coordination
process. The checkpointer tool must be preparedifi@rent software environment in
order to be compatible with the existing tools ragron a cluster.

This checkpointing technique violates Conditionefirted in section 2.1.4.
E. Partial checkpoint of the application

Checkpoint tools usually provide an optimized vemsof migrating a process
of the application from one node to another withirtluster (e.g. tmPVM [68]) by
storing the checkpoint information in memory. Ifast and uses only a low amount of
resources on the nodes. When the migration is mapgpenternal data are copied
directly from the memory of the source processhrmemory of the target one. This
solution cannot be used in case the applicationt rigrate from one cluster to
another since connection does not exist among trkewr nodes of different clusters.
A parallel checkpoint/restart solution must takie fact into account.

This checkpointing technique violates Conditiodedined in section 2.1.4.

2.1.6.2Classification of related works

After introducing the most commonly used checkpomtechniques for PVM
checkpoint/restart tools, Table 1 summarizes thesaientioned solutions used by the
various existing checkpointing tools. Each techaigepresents a category signed by
letters (A-E) used in section 2.1.6.1 and the teples of the analysed tools are
classified into these categories.

In Table 1 those techniques and methods are letddthose are relevant in
the context of ClusterGrid. The listed technique& Avertical columns of Table 1)
make any checkpointing tool unable to fulfil thengmatibility (column A-D) and
integrity (column E) requirements for a ClusterGiifrastructure. In the next
paragraphs a summary of the tools are given usiegdrbidden techniques in their
design or implementation.

CoCheck [64] is a research project that aims atvigimg Consistent
Checkpointing for various parallel programming eomments like PVM and MPI
based on Chandy-Lamport [56] algorithm. The checkpestart capability of this
tool is lying on the replacement of the default Pv&$ource manager which belongs
to category A and it is using a single checkpoatiool requiring the update of the
process startup mechanism at OS level belongicgtegory C.

The goal of the Condor [32] Project is to developplement, deploy, and
evaluate mechanisms and policies that support Highughput Computing (HTC) on
large collections of distributively owned computirgsources. The model they follow
is a fault-tolerant execution of Master-Worker (M{VB] type applications therefore

37

Condor does not provide application-wide checkpogntvhich belongs to category E.
Since Condor dynamically deploys PVM daemons thhotlge Resource Manager
functionality of PVM, the solution covers categofy In addition, fault-tolerant
execution is limited to a programming framework aniiked topology.

The main purpose of Fail-safe PVM [65] is detectifagled nodes and
migrating application processes from the failedesotb the error-free ones. To do this
PVM daemons are modified which belongs to cate@ory

Approaches to implement
checkpointing/migration for PVM applications

(]
[¢b] =
(f) ho] 8 c — =}
S 8835 2BE 258 §Fg =758
& £2% £5& 28 £8 TEF
= QT x S 2 O A= 3 o a S =2
= 4 < = s C 3 < 35 S a
Q . = = . i O . w o 9
IG_J < > m E O E Q bt ©
Tools o <
. - Violates
Violates condition 1-4.
cond. 5.
CoCheck »* *
Condor * *
Fail-safe PVM *
Dynamite * * * *
MPVM (MIST) *
tmPVM » »* »
DamPVM » »* »*
CHARM * *

Table 1 — Classification of existing PVM checkpoirihg tools

Dynamite [66] aims to provide a complete integragelition for dynamic load
balancing of parallel jobs on networks of workstas. It contains an integrated load-
balancing and checkpointing support for PVM appitas. The system focuses on
migrating individual PVM processes. It does notvyide application wide consistent
checkpointing and it also uses a wide variety ehtgjues. Dynamite replaces the

38

dynamic loader of the kernel and the whole PVM mnpéntation for the daemons.
Background processes like monitor helps the systents operation. This design
makes the tool belong to category B, C, D and fwedk

In MPVM [67], the interface between the pvmds ahd Resource Manager
has been extended to accommodate task migratiomdnffication of both PVM
daemon and PVM library. This point in the desiglohbgs to category B.

The tmPVM [68] system aims to provide efficient naigon of PVM tasks
therefore it does not perform application wide d&pe&inting. After analysing its
architecture, it turns out that special backgromuhitoring components and resource
managers must be deployed in order to support tmPX81a summary, this tool
belongs to category B, D and E.

DAMPVM [69] (Dynamic Allocation and Migration Patal Virtual Machine)
is an extension to the PVM environment. PVM librand the daemon are patched to
provide migration of PVM processes (only). Prograanmmust update its source code
to fit to DAMPVM requirements. Altogether, the towith its architecture fits into
category B, D and E.

CHARM [70] is a checkpoint/restart system wherepacsgal external process
called C-manager is responsible for performing ghweper protocol among the
processes of the application to realise processatimg. The technique used in this
tool belonging to category D while supporting ophlpcess migration covers category
E, too. Besides, the startup mechanism of the Pplieation is also modified by
using the C-manager.

Based on the analysis it can be seen that thedimtexl and examined PVM
checkpointing tools are not ClusterGrid complianthe way it is defined in section
2.1.4, i.e. each tool breaks at least one of thairements, therefore they are not able
to realise application and middleware transparbatkpointing with migration among
the clusters.

Continuing the analysis of the parallel checkpoigtitools of the MPI,
different techniques can be identified causing ddpacies on the Grid middleware
components running on a cluster. Analogously toRW& checkpointing, the design
and implementation techniques violating some of twenpatibility or integrity
conditions defined in Section 2.1.4 can be founthetools.

CLIP [74] (Checkpoint Libraries for Intel Paragoiy a semi-transparent
checkpointer for the Intel Paragon. CLIP can cheakpprograms written in either
NX or MPI. To use CLIP, the user must place onenore subroutine calls in the code
specifying when checkpoints can occur. Inspectiagaichitecture and examining its
internal behaviour shows that the existence of tiaive Intel/Paragon NX
communication support is a requirement for cheakipog MPI application. The
solution applied in this tool depends on a speciBesion of the MPI, nonetheless
architecture of CLIP itself showing a layering sture.

The design and implementation of CLIP violates Gomd 3 defined in
Section 2.1.4 requiring the usage of the native aleeckpoint-free version of the
message-passing communication service.

ZapC [75] is an application transparent coordinatdé@ckpoint-restart of
distributed network applications on commodity odust It provides a thin
virtualization layer on top of the operating systéhat decouples a distributed

39

application from dependencies on the cluster namesvhich it is executing. This
requires the installation of a loadable kernelrad ithe OS of the node. Modification
of the kernel in this way unfortunately violatesndaion 1 defined in Section 2.1.4.

LAM/MPI [76] is a high performance implementatiohtbe Message Passing
Interface (MPI) standard. It implements most manag® of coordinated
checkpointing and rollback recovery for MPI paridipplications and it integrates the
BLCR [77] kernel-level single-process checkpoirtmyl. Since LAMMPI integrates
the coordination of checkpointing and applies ankktevel checkpointer, it violates
Condition 3 and 1 defined in Section 2.1.4.

ChaRM4MPI [84] is a Checkpoint-based Rollback Recgpv(CRR) and
Migration System for Message Passing Interfacegiafpe designed and implemented
for Linux Clusters. It is based on coordinated &peanting protocol, synchronized
rollback recovery to provide process migrationtHis solution the startup mechanism
is modified that makes checkpointing support depahdn this actual version of MPI
implementation and an external so-called coordmstoequired during execution to
which the processes are connected. The implementatithis tool violates Condition
3 and 4 defined in Section 2.1.4.

FT-MPI [80] aims to build a fault tolerant MPI ingrhentation that can
survive failures and is built on the HARNESS [81¢tarcomputing system. In FT-
MPI the MPI communicator states are updated i.ditiadal return values are defined
those are not even part of the MPI standard. Witk tipdate modification of the
message-passing layer is realised, therefore Gond# defined in Section 2.1.4 is
violated.

Starfish [82] MPI is a daemon based implementa@g@proach for MPI.
Application processes can only be migrated withm $o-called parallel computer i.e.
where a starfish daemon is running. Starfish useswn distributed system to provide
built in checkpointing. Based on these facts, &fafPI has its checkpointing system
integrated, therefore no native version of the 4RIsed i.e. Condition 3. defined in
Section 2.1.4 is violated.

With this overview altogether 14 related works basn examined. The result
of the examination is that currently no tool prongl parallel checkpointing is able to
satisfy the conditions defined in Section 2.1.4ckhimeans transparent behaviour of
the examined tools is not possible. However, simgke cases defined in Section 2.1.3
show the real need of parallel checkpointing tofdsusing on middleware
transparency.

40

2.2 The ClusterGrid checkpointing method

2.2.1 Overview

The list of requirements introduced in thesis 1efirsks several criteria for
transparent checkpointing. The various solution®ppsed by the different
checkpointing techniques form a design space. teroto designate my proposed
solution | have defined the operational and archieal details of the desired
transparent solution. As a result, the definitidmhe proposed solution is summarised
by a seven point list and the definition has beaited into the ASM formal model
(CPyroung introduced previously in thesis 1.1. In additidnhave elaborated the
necessary ASM rules to describe the internal ojperahechanism. Finally, | have
proved thesis 1.2 through introduction of absteaents.

Thesis 1.2:The newly elaborated checkpointing method definethb ASM
model called CRounda implements transparent checkpointing both for the
programmer and for the middleware at the same time.

Related publications are [3][4][5][19].

The solution defined by the GRing abstract model enables the saving and
restoration of the consistent, global state of assage-passing based parallel
application or algorithm in a transparent way.

2.2.2 Introduction of the ClusterGrid method

In this section the main cornerstones of a new lighicheckpointing method
are introduced. The following seven key definitidasm a method which meets the
requirements defined in section 2.1.4. The follayvimethod creates a more tight
solution range than it is allowed by the compatipénd integrity requirements.

The conditions defined in section 2.1.4 restrice trarious checkpointing
approaches to those implementing the whole cheokpestart functionality inside the
application. There are two different checkpointiegels which can be applied:

In application-levelcheckpointing applications can perform checkpamtby
providing their own checkpointing code. Applyingisthlevel of checkpointing a
solution can be designed which fulfils the requiests defined in section 2.1.4 since
no dependence on auxiliary components exists. Té¢addantage of this solution is
that it requires a significant programming effartbie implemented while library level
checkpointing is transparent for the programmer.

Library level checkpointing requires a special library linkedhe application
that performs the checkpoint and restart procedusag library level technigue can
also result in a solution providing compatible naettior checkpointing.

Apart from the two abstraction levels one mustinligtish two further aspects
on how parallel processes are coordinated in cdseckpointing performed:
coordinatedand uncoordinated(see section 1.2.2). Both directions can satisy th
conditions defined in section 2.1.4.

In the coordinated version (see section 1.2.2)segdated process controls the
checkpoint saving procedure to ensure the consigteri messages among the
processes in the application to avoid messagedoshiplication. In uncoordinated
version (see section 1.2.2) consistency is ensate@start time. During execution
checkpoints must be stored from time to time fazheprocess without removing the

41

ones created previously. At restart checkpointsefimh process are searched through
and attempted to make a selection in a way that fibven a consistent state for the
application and that they represent the latesth\state. While the coordinated version
forces the processes to synchronize, uncoordingtedkpointing gives freedom for
the processes to create checkpoint at any timeobrdinated checkpointing one
checkpoint per process is enough to perform a ssb@we resumption of the
application, while in uncoordinated version theelikood of successful resumption
can only be increased with raising the number ettkhoints per process. In extreme
cases when consistency is not established thecapiph must be started from the
beginning.

After giving a short overview of the potential teedues, here is the proposed
transparent ClusterGrid method summarized by skegmefinitions:

Definition 1. Library level checkpointing technique is used

The proposed checkpointing method performs libtaxgl checkpointing. A
library performing checkpoint and restart functitities are linked to the application.
Therefore, application carries its own checkpomtilities in its executable code.
Behaviour of the application is also modified table the linked checkpoint facility
to catch and wrap system and message-passingircéiie application. Library level
checkpointing technique is the only alternativgtovide a transparent solution for the
programmer and for the surrounding ClusterGrid mmrnent at the same time.

Definition 2. Application wide checkpointing is performed

Each time a checkpoint is taken; all processes taltst part in the checkpoint
creation process. The generated checkpoint infoomatust contain state information
of every process of the application. It is requis@tte the checkpoint itself must store
enough information for the entire application toresumed.

Definition 3. Checkpoint information is stored in files

Migration of an application between two clustercasverted to checkpoint,
terminate, movement of working files, resubmit aresume steps. Checkpoint
information must be stored into files in the woxkidirectory of the application in
order to transfer the generated checkpoint infolonatransparently to the target
cluster in case of migration. There are checkpagntools using storage techniques
like temporary memory, or sending the checkpoirbrimation into a socket (to a
process being resumed) which are not possible amaodgpendent clusters.
Transferring checkpoint information through a ferver can also be an alternative,
but it is not scalable, fault-tolerant and trangpéfor the middleware.

Definition 4. Parallel checkpointing technique is coordinated

The most problematic feature of uncoordinated cperking is the possible
inconsistency of individual checkpoints. In casdyahe last set of checkpoints is
stored, the likelihood of storing an inconsisteet & fairly big. In most cases
resumption results in rolling the application stdk@ck to the initial point if one
checkpoint per process is stored at a time. Toessaveral checkpoints for each

42

process raises a significant overhead for the géosgstem and at the same time it still
does not guarantee that consistency exists amoagobrthe combinations of the
checkpoints. To overcome this problem coordinathdckpointing techniques are
used.

In message passing systems, earlier performanciestby Bhargava et al
(1990) [60] showed that coordinated checkpointitgpathms are costlier because
they incur extra communication. Later simulationdss by Elnozahy et all (1992)
[61], however, revealed that coordinated algorithane better than independent
algorithms. The cost of coordination is much lowdren compared with the cost of
maintaining multiple checkpoints and/or logging sages.

Definition 5. Coordination process is part of the application

In order to provide a coordinated checkpoint of édpglication a coordination
process is required. Originally, it can be an exéErone or the representative
functionality can be part of the application. SinCendition 4 in section 2.1.4
prohibits applying external (auxiliary) processesprdination functionality must be
built in the application, which includes alterna&svusing separate and non-separate
processes inside the applications.

Definition 6. Processes migrate within a cluster without ternmgathe application

In case a process needs to be migrated from one tw@nother within a
cluster there are two alternatives. First one iat thnly the migrating process
terminates and restarts while the rest of the apfdin is suspended. Second one is
that the whole application terminates after cheaijorg which is then resubmitted to
the cluster with different process-host mapping. ¥é&m see that both results in
process migration. This definition states that ¢heckpointing solution must include
the possibility of providing migration of processae former way.

Definition 7. Application source code is unmodified

All the checkpoint techniques listed above musph®vided in a transparent
way for the programmer. The original applicatiorattthas been created by the
programmer must be made checkpointable in a waythkasource code does not need
to be changed.

Based on the proposed method described above ltbeifty scenario can be
outlined. The programmer has an application dewglom a certain programming
environment. Without source code modification he/adds checkpoint support to its
application through recompilation or relinking olfiet application. The resulted
executable with the required input files are suteditto a ClusterGrid as job. The
application is assigned to a cluster by a brokeis submitted and started. During
execution local scheduler decides to deallocateescomputational nodes because of
some reasons (overload, maintenance, etc). Beforen@de is lost by the cluster, all
jobs running on them are terminated gracefully. &peint facility built in the
application detects the start of the terminatiosahe of its processes and initiates a
checkpoint saving. It creates an application-wideststent checkpoint represented as

43

working files in the application working directoryAt this point two different
continuations can happen.

(1) If some of the processes are terminated, tipdicapion tries to reallocate
the terminated processes on different nodes. Whdesare available new processes
are spawned that reload the checkpoints producdbebterminated processes. At the
end of reloading a checkpoint, migration is sucktélysperformed for a process.
When all the processes are ready to run and alhélcessary migration has finished
the application continues its execution.

I T

Qessage—passing system
ﬁ

.
- 4 =
-

Figure 12 Structure of the proposed checkpointingegchnique

(2) In case all the processes are terminated thedsder on the cluster detects
a successful finish of the. At this point the cahbroker of ClusterGrid reassigns the
job to another resource (cluster), transfers thecatable and all working files
(including checkpoints) to the target cluster amubmits the job. When the
application is being started the built-in checkpestart facility detects the existence
of checkpoints and performs resumption. After sasftd resumption of every process
of the application execution continues. At sucadd#hish of the application existing
checkpoints are removed. Checkpoint saving proeedeen also be initiated
periodically.

As a summary, an architectural overview is showRigure 12. It can be seen
that the application must be extended with a taskKiopming checkpoint/restart
functionality, but in a way that the applicationogrammer is not forced to make
modification in the application i.e. in a transpdreay.

2.2.3 Formal definition of the ClusterGrid checkpointing method

In this section a formal ASM definition of the ClasGrid checkpointing
method (detailed in section 2.2.2) is introducearder to give a precise description.
The formal definitions below are based on the ws®s and functions, relations
introduced already in section 2.1.5.

44

Definition 1. Library level checkpointing technique is used

Library level checkpointing is defined by the “ckgtinction, which returns true in
case checkpoint related functionality belongs te tomponent passed as an input
parameter.

VCeCLUSTERYAcAPPLICATION,¥YpePROCESS, app(p)=A:
ckpt(code(p)) = false & ckpt(libs(p)) = true
&
vneNODE, cluster(n)=C{comp={SCHED, MPE, OS}, mapped(comp)=n:
ckpt(comp) = false & coord(comp) = false

The goal of the formula is to prohibit checkpoinnhétionality in the user code, to
ensure linked libraries to support it and finalygrohibit checkpoint functionality in
any other component of the cluster.

Definition 2. Application wide checkpointing is performed

Let us assume that we have an image set, whicasstbe state of each process of the
application.

VCeCLUSTERNYAcAPPLICATION:
VpePROCESS, app(p)=A:
ImeIMAGES:
image(pxrm &
checkpoint(C, state(A))=m &
resume(C, m)=state(A)

The latter two additional restrictions for the imagnsure that this image is the result
of the checkpoint and the application can be reskinoen it.

Definition 3. Checkpoint information is stored in files

To represent the image(s) of the application esfilwve state that working file(s) of the
application exist which are assigned to the imgge(s

VCeCLUSTER,VAcAPPLICATION, 3meIMAGES:
checkpoint(C, state(A))=m &
resume(C,m)=state(A) &
VieIMAGES: imagefileofapp(i)=A

The function imagefileofappreturns the application if input parameter hasaaking
file representation owned by an application othsewi returns the value of undefined.
The file is usually stored in the working directohy other cases the only requirement
that the application owns it i.e. can access aad iteand has file representation which
assumes that can be accessed in the same waieas a f

Definition 4. Parallel checkpointing technique is coordinated

45

The assumption follows the idea that in coordinatbdckpointing the cluster must
have a component (part or not part of the appbcatisomewhere on its nodes
performing checkpoint coordination.

VCeCLUSTER,3comp={SCHED, MPE, OS}:
cluster(mapped(comp))=C & coord(comp) = true
OR
VCeCLUSTER ,3pePROCESS:
cluster(mapped(p))=C AND (coord(libs(p)) = trueopad(code(p)) = true))

Definition 5. Coordination process is part of the application

The first part of definition ensures that exactlpeoprocess exists among the
application processes to which coordination agti&longs to.

VCeCLUSTER,VAcAPPLICATION:
JpePROCESS: cluster(mapped(p))=C & app(p)=A &
(coord(libs(p)) = true | coord(code(p)) = true)

AND
vcomp={SCHED, MPE, OS}: cluster(mapped(comp))=C &
coord(comp) = false

The second part clarifies that no coordinationvtgtiexists in a component which is
not part of the application.

Definition 6. Processes migrate within a cluster without ternmgathe application

There are two possibilities to alter the mappindi@f to migrate) the processes of an
application. It is possible to checkpoint the whalpplication, shutdown all the
processes and restart the whole application wdlf@rent mapping of processes. The
second possibility is to checkpoint all or sometlod processes, but shutdown those
processes only that need to be remapped to anottky. The method follows the
second alternative.

Let assume that formally a run of an ASM M is deflnas an ordered set (M,<) of
movesm, of its agent satisfying the following conditiofikis method is introduced in
[47]):

- Each move has its finite predecessors, i.e. foln @M the set {m’|m’'<m} is
finite.

- The set of moves {m | aM} is linearly ordered by <

- Each finite initial segment X of (M, <) has an agated states(X) which is
the result of all moves in X with m executed befoneif m<m’. For every
maximal element X is the result of applying move m in staieX — {m}).

Let us define the cluster and the parallel appbcaas follows:

46

C e CLUSTERA € APPLICATION :

an;,n,,...,n. € NODEVn, :1< j <c:cluster(n;) = C;

3py, P,y P € PROCESSVD, (1<i<k:app(p)=A
wherec is the number of nodek,is the number of processes in the cluster.

Let assume we have two mappings,(G;) between the processes and nodes which
are defined as follows:
G, e{n,n,,...n}* VG, :1<i <k:G, = mappedp,)

G, e{n,n,,..n}* VG, :1<i <k:G,, = mappeqp,)

.Let us define two (sub)set of mové4, €M and M, e M where applying every
move in M results in state(M1) which is the state where the mapping of applicati
is exactly equal to Gand applying every move in Mesults in state(M,) where G
exists. We assume tha¥l, c M, to define the ordering of corresponding states.
Based on the ordering of moves we can define therong of states, wher€M,)
happens before(M,) if and only if My<Mo.

Let us define the states between &dM; representing the start of the migration and
the end of migration of the application, wheres the number of mappings that leads
to M, from M;:

d=M,\M, |

S..5,€S:S :G(MluU{mj} 'm; € (M, \M)),1< j<d)

Now, we can define the state of ASM at the poinerelthe two consecutive mapping
have happened.

o(M,):G, =(n,n,,....n,.),vpe PROCESS phas€p) = RUNNING& app(p) = A
o(M,):G, =(n";,n,,...n",),Vp e PROCESS phas¢p) = RUNNING& app(p) = A
dil<i<k:n =n|

And finally, we can make definitions regarding fhmcess phases between the two
states. Definition 6 can be fulfilled, if and onfythere is least one process that does
not terminate between the two states while at leastis migrating. If a process is
terminated and restarted it must go through themgsion phase, but at the same time
does not necessary holds RUNNING phase continuotiblgrefore the expression is
as follows:

dp e PROCESSVS 1<i <d: phas¢p) # RESUMING

This expression says that at least one processsetiging the execution of the
migration protocol (from §to &) that is not restarted.

Definition 7. Application source code is unmodified

Using the ‘ckpt’ and ‘coord’ functions it is poskbto describe that checkpointing
activities cannot exist in the user code of anypss of the application.

a7

VAecAPPLICATION, YpePROCESS, app(p)=A:
ckpt(code(p)) = false & coord(code(p)) = false

As a summary, the definitions above clearly defsaeh definition of the proposed
checkpointing method for Clustergrid environments.

2.2.4 Definition of the CPgyouna ASM model

In this section a formal model - called &R - is defined in the ASM
framework. This model forms the basis for a distiédal checkpointing tool that
provides all the features introduced by the Clugtdrmethod in section 2.2.3. This
model is a ground model since in section 3, twotaddl refinements of this model
are going to be introduced.

2.2.4.1Universes and signatures

The model presented here is a multi-agent ASM, w/lagents are processes
i.e. elements from thEROCESSuniverse. The nullar$elf function represented here
asp allows an agent to identify itself, so it is iniegted differently by the different
agents [47].

Basic universes and signatures used in th@.&EPASM model are introduced
in section 2.1.5.2, only extension of universes aighatures are described in the
following paragraphs.

To give a detailed internal behaviour of a paratheillti-process application the
communication activity must be modelled. To reat®enmunication, processes are
sending and receiving messages (universe MESSABGEgre every message has a
sender from: MESSAGE-PROCESY)and a receivertg: MESSAGE-PROCESPH
The actual content of the message is irrelevatitisnmodel.

During execution of the application, its processgsract with each other and
the surrounding cluster middleware components. \Ewvgeraction has an initiator and
a target. These interactions are modelled as “stefihere are numerous events
occurring among the participants, so modelling eaickhem is a difficult task and
irrelevant from checkpointing point of view. Theved only the checkpoint related
events are modelled by the universe EVENT. Theo¥alg events are represented:
spawnto create a new procesendto send a messageceiveto receive a message,
terminateto finish execution of a certain procesBeckpointo perform checkpointing
of a processtesumeperforming resumption of a procesxit to notify a process to
finish execution. The occurrence of an event igasgnted by the external function
event: PROCESS> EVENT Events are generated by an external functioredall
egen This function describes events generated by iceitestructions which are
located at certain points in the code. Each uné&vé@rspresenting the components of a
cluster middleware) contains elements representisguctionsto be executed. The
function egen maps the instructions and an instruction pointerah eventiegen:
({CODE, LIBS, SCHED, MPE, OS}, INSTRUCTION_POINTEREVENT (Note:
the referred universes are defined in section 2.5

A program represented by an instruction set (INSCRIDN_SET) that can
be divided according to the components that exedbem. Elements of the
INSTRUCTION_SET are fragments of program codeg likstructions, procedures,
and so on. Therefore we define universes CODE $ar wlefined code, LIBS for
linked libraries, SCHED for scheduler, OS for theerating system and MPE for

48

message-passing subsystem. Accordingly, we carnratepéunctional components
such as user program, library, operating systerneumessage-passing procedures.

In the following sections only those rules areadiuiced and explained, where
functions related to the INSTRUCTION_SET universe always related to LIBS. In
other words we model the library component. Theesuthat operate on CODE,
SCHED, OS and MPE universes, i.e. user programedsdér, message-passing
components are omitted in the &, model since well-known functionalities are
assumed such as creating a process, managing mamdnyandling 1/O operations,
etc.

Processes are going through different phases duthegr execution
represented by the functiophase: PROCESS~ {init, waiting, receive_waiting,
running, checkpointing, resuming, terminatingjny process of the application may
be marked to be checkpointegrgcess _to_checkpoint: PROCESS {true, false),
marked to be terminategrpcess_to_terminate: PROCESS{true, false), marked
to be resumedpfocess_to_resume: PROCESS{true, false) or marked to be stored
(process_to_store: PROCESS{true, false).

Two different roles are defined for the processes tare expressed by the
function role: PROCESS— {coordinator, userdefined}The functionrole returns
userdefinedor a process if it is programmed by the user.rigpeocess has a function
for startup ¢tartupmode: PROCESS {normal, resumé} marking the process to be
resumed and a relatioméster: PROCESS» {true, false) that is evaluated to true
for exactly one process that is spawned first énapplication.

2.2.4.2Initial state

In this model, an application starts one processst{er) initially which then
performs spawning the required additional proceskesing the application.
Spawning the first process is the responsibilityh&f middleware components of the
cluster, while spawning the rest of the processedgown by any of the application
processes e.g. by the master. Therefore the ist#é is exactly one process where
the functions are interpreted as follows:

IpePROCESS: app(p)=undef,
phase(p)=init,
role(p)=undef,

master(p)=undef,
startupmode(p)=undef

The initial state claims that the master procesguires an application
(identifier) to belong to (“app(pundef’) and the execution phase to be seinib
(“phase(p)=init”). The other three functions mu& bet toundef since they are
updated internally.

2.2.4.3Rules

1. Rules for initialisation
At startup, each process decides its role in th@iegiion. Two different roles exist:
coordinator that manages the checkpoint related activities @s®t-definedthat is
programmed by the user. Coordinator has zero ict#bru set belonging t€CODE
universe, while user-defined processes have instrusets both fromCODE and
from LIBS universe. The first initialisation rule fires onfo user-defined processes

49

and twice for coordinator process. This rule salextly the first (master) process to
be the coordinator. All the processes are updateaiting phase by this rule.

CPground-R1a
if phase(p)=init then
if role(p)=undef then
role(p)=coordinator
else
phase(p) :=WAITING
endif
if master(p)=undef then
master(p)=true
endif
endif

When a coordinator is selected it decides at sgartwhether to execute the
application from the beginningh¢rmal), or resume it from a previous checkpoint
(resumé. This decision is based on the existence of bheekpoint information.

CPground-R1b
1E role(p)=coordinator & phase(p)=waiting & startupmode(p)=undef
then
if 3ieIMAGES: imagefileofapp(i)=app(p) then
startupmode(p) :=resume
else
startupmode(p) :=normal
endif
endif

In case of normal execution one user-defined psocesreated that is going to build
the whole application, otherwisesumingphase is started.

CPground-R1c

if role(p)=coordinator & phase(p)=waiting & startupmode(p)=undef then
if startupmode(p)=normal then

phase(p) :=running

process_to_store:={}

process_to_checkpoint:={}

process_to_terminate:={}

process_to_resume:={}

extend PROCESS by child with
app(child):=app(p)
phase(child) :=init
role(child) :=userdefined
startupmode(child) :=normal
master(child) :=false

endextend
else
phase(p) :=resuming
event(p) :=resume
endif
endif

2. Rules for process creation

Whenever a process executes an instruction (praogeahby the user) that generates
spawnevent, a new process is created with the apptepparameter set. The newly
created proces<lfild) belongs to the same application. Obviously, tee process
will fire the rules of initialisation, after createThe way of creation and allocation of
process on a node is irrelevant in this model.

50

CPground-R2a
if role(p)=userdefined & phase(p)=running & event(p)=spawn then
extend PROCESS by child with
app(child):=app(p)
phase(child) :=init
role(child) :=userdefined
startupmode(child) :=normal
master(child) :=false
endextend
endif

This rule ensures that the newly created procemdsstunning after it fired the
initialisation rules.
CPground-R2b
if role(p)=userdefined & phase(p)=waiting &

sﬁartupmode(p)=norma1 & process_to_checkpoint(p)=false

then

phase(p) :=running

endif

3. Rule for sending a message

Processes in a distributed system interact withh eatber via message passing.
Although, in modern systems there are higher lewsistructs (e.g. RPC, RMI, etc.
[86]) with a rich set of sophisticated message-pgsservices, in the lowest level they
all based on simple send-receive communicationipvies.

A running process programmed by the user may e&eantinstruction (from the
CODE universe) that generatesendevent to send a message to another process.
This event is handled by this rule that implementson-blocking version of sending
operation. The content of the message is irrelewart sourcef(fom) and targettf)
process is modelled.
CPground-R3a
if role(p)=userdefined & phase(p)=running &
event(p)=send(dest)
then
extend MESSAGE by msg with
from(msg) :=p
to(msg) :=dest
endextend
endif

4. Rules for receiving a message

A running user process may execute an instructicmm(the CODE universe) that
generates &eceiveevent to send a message to another process. vidns is handled
by this rule that implements a blocking versionre€eiving operation. In case the
message does not exist yet, the process waitst foy changing its phase. If the
message exists, it is removed from the universe 8/SE, i.e. it is received by the
process. The source process of the required measag&ource or may not &ny) be
specified to support nondeterministic behaviour.

51

CPground-R4a

if role(p)=userdefined & phase(p)=running &
event(p)=receive({source|any})
then

. it (ImsgeMESSAGE) :to(msg)=p & {from(msg)=source| }
then
MESSAGE (msg) :=false
else
expecting(p) :={source|any}
phase(p) :=receive_waiting
endif
endif

If a message exists from the approprigepecting process, the message is removed
and process continues its execution by changinghiése.
CPground-R4b

if role(p)=userdefined & phase(p)=receive_waiting &

(ﬁﬂmsgeMESSAGE):to(msg)=p & {from(msg)=expecting(p)| })
then

MESSAGE (msg) :=false

phase(p) :=running

expecting(p) :=undef
endif

5. Rules for initiating checkpoint procedure

Checkpoint procedure is initiated based on the weouge of the appropriate event
during the execution of the application. In this dabthe exit event initiates the
checkpoint.Exit event can be generated by any middleware compobentsually it
is done by the scheduler component when a prosestended to be removed from its
node, i.e. process is marked to be pre-empted. Wadel handles this case by
performing an application-wide checkpointing.

There are two situations: In case the master (coat@r in this model) process gets
the exit event every process (including master)troascheckpointed and terminated.
Otherwise, after performing an application-wide apointing, the processes that got
this event must be terminated and restarted. Ttvesesituations are handled by the
following three rules.

Whenever auserdefinedprocess receives aexit event, it is marked to perform
checkpoint, terminate and resume operations seqllgnt
CPground-R5a
if role(p)=userdefined &
phase(p)={running|receive_waiting|checkpointing} & event(p)=exit
then
process_to_checkpoint(p) :=true
process_to_terminate(p) :=true

__process_to_resume(p) :=true
endif

In case the coordinator gets an exit event, theleviapplication (including the

coordinator itself) is going to be checkpointed aedminated, since without the
coordinator the application cannot continue itsceixien. Therefore, every process is
marked for checkpointing and termination and phashanged accordingly.

52

CPground-R5b
let allproc:=((VcpePROCESS) :app(cp)=app(p) & cp=p)
if rﬁ1e(p) =coordinator & phase(p)=running & event(p)=exit
then
process_to_checkpoint:=allproc
process_to_terminate:=allproc
process_to_resume:={}
process_to_store:=allproc
phase(p) :=checkpointing
event(p) :=checkpoint
endif

Whenever the coordinator detects the need of cloaalpg it initiates checkpointing
of all the processes by changing their phaseheckpointingand by notifying them
with a checkpointevent. Every process must take part since apjlicatide
checkpointing is required by the method definedeation 2.2.3.

CPground-R5c¢

let allproc:=((VcpePROCESS) :app(cp)=app(p) & cp=p)
if role(p)=coordinator &
(dp1lePROCESS:app(pl)=app(p) & plzp &
process_to_checkpoint(pl)=true &
phase(pl)={running|receive_waiting})
then
do forall p2 :p2ecallproc & app(p2)=app(p) & p2zp &
phase(p2)={running|receive_waiting}
process_to_checkpoint(p2) :=true
phase(p2) :=checkpointing
event(p2) :=checkpoint
enddo
endif

6. Rule to create checkpoint

If a user process receivesl@eckpoinievent, it creates an image file with its own state
and then changes phasetéominateif needs to be terminated, otherwise it waits for
the coordinator. Checkpoint creation of a singlecpss is modelled by a high-level
macro called SINGLE_PROCESS_STATE_CHECKPOQINIThe way — how the
relevant information for saving and restoring ag&nprocess is collected — is
irrelevant in this model. This macro takes the pescand image file as parameter.
Refinement of this macro is out of scope of thigdelo

CPground-R6a
if rﬁ1e(p)=userdef1ned & phase(p)=checkpointing & event(p)=checkpoint
then
extend IMAGE by imagefile with
imagefileofapp(imagefile) :=app(p)
SINGLE_PROCESS_STATE CHECKPOINT(p 1'magef1"|e)
endextend
if process_to_terminate(p)=true then
phase(p) :=terminating
else
phase(p) :=waiting
endif
endif

7. Rules to terminate processes

The following rule handles the case when the uséneld process reaches the end of
its execution and intends to terminate normallyisTiotification is realised by the
terminate event generated by the appropriate instructioorigghg to theCODE

53

universe. The detection of the event causes theepsoto change its phase to
terminatingwhich is handled in the rules detailed later.

CPground-R7a

if role(p)=userdefined & phase(p)=running & event(p)=terminate then
- phase(p)=terminating

endi

The following rule handles two cases. In the fa@se when all user defined processes
reached the end of their execution and are beingiriated normally, coordinator
removes existing checkpoint information (assumpteheckpoint information became
useless, since application finished successfuligtructs the processes to finish their
execution and terminates. In the second case, pircajon-wide checkpoint is just
about to finish (finished executing its user codbgrefore coordinator performs self-
checkpoint and application terminates.

CPground-R7b
if role(p)=coordinator & process_to_resume={} &
(ZplePROCESS: plzp & app(pl)=app(p) & phase(pl)=terminating)
then
if phase(p)=running then
do forall imagefile : imagefilecIMAGE &
imagefileofapp (imagefile)=app(p)
IMAGE (imagefile) :=false
enddo
do forall p2ePROCESS: app(p2)=app(p) & p2=p
event(p2) :=terminate
enddo
PROCESS(p) :=false
endif
if phase(p)=checkpointing then
extend IMAGE by imagefile with
imagefileofapp(imagefile) :=app(p)
SINGLE_PROCESS_STATE_CHECKPOINT(p, 1'magef1' Tle)
endextend
do forall p2ePROCESS: app(p2)=app(p) & p2=p
event(p2) :=terminate
enddo
PROCESS (p) :=false
endif
endif

The following rules ensures that the process teatami.e. the process is removed
from thePROCESSuniverse.

CPground-R7c

1E role(p)=userdefined & phase(p)=terminating & event(p)=terminate

then

PROCESS (p) :=false
endif

8. Rules to resume processes

Whenever an application is started and checkpaiftrmation exists, application
continues its execution from checkpoint. This pthoe starts with resuming the state
of the coordinator. The macro call86NGLE_PROCESS STATE_RESUdARresses

a service providing the state recovery of the wgliprocess. Similarly to the macro
calledSINGLE_PROCESS_STATE_CHECKPOLINg refinement is omitted, library-
level resumption is assumed. As a next step uderedeprocesses are spawned and
their resumption is initiated.

54

CPground-R8a
if rﬁ1e(p)=coord1nator & phase(p)=resuming & event(p)=resume
then
imagefile € IMAGE: imagefileofapp(imagefile)=app(p)
SINGLE_PROCESS_STATE_RESUME (p , i mageﬁ' '?e)
do forall child : process_to_store(child)=true
extend PROCESS by child with
app(child):=app(p)
phase(child):=init
role(child) :=userdefined
startupmode(child) :=resume
master(child) :=false
endextend
enddo
process_to_checkpoint:={}
process_to_terminate:={}
process_to_resume:=process_to_store
phase(p) :=running
endif

This rule ensures the restart of processes that faished checkpointing and are
about to be resumed. These are the processesotletitgevent previously, performed
checkpoint and must be restarted on another nodéheofcluster. The method of
resource allocation is irrelevant in this modeisiperformed by the scheduler.

CPground-R8b
if role(p)=coordinator & phase(p)=running &
HﬂlePROCESS: phase(pl)=terminating & process_to_resume(pl)=true
then
event(pl) :=terminate
extend PROCESS by child with
app(child):=app(p)
phase(child):=init
role(child) :=userdefined
startupmode(child) :=resume
master(child) :=false
endextend
endif

A user defined process may getwaiting phase in two different ways: the process
finished checkpointing (and is waiting to contineseecution) or the process has just
been started (and is waiting to resume and/or woatexecution). To handle this case,
the coordinator changes the phase of every pr@oessdingly.

CPground-R8c¢
if role(p)=coordinator & phase(p)=running &
(ZpFOCGPROCESS:app(proc)=app(p) & proczp & phase(proc)=waiting)
then
do forall pp : ppePROCESS & app(pp)=app(p) & pp=zp
if process_to_resume(pp)=true then
phase(pp) :=resuming
event(pp) :=resume
else
phase(pp) :=running
endif

enddo
endif

Resumption of the state of a user defined proceperformed when it getsrasume
event. It is done by the SINGLE_PROCESS_STATE_RE&UNacro that has been
detailed at rule CPground-R8a. After resumptiorecexion is continued depending
whether the process was communicating or not dirtieeof the last checkpoint.

55

CPground-R8d
if role(p)=userdefined & phase(p)=resuming & event(p)=resume
then

imagefile € IMAGE: 1magef11eofapp(ima%ef11e)=app(p)
SINGLE_PROCESS_STATE_RESUME (p , i mageﬁ' e)
if expecting(p)=undef then
phase(p) :=running
else
phase(p) :=receive_waiting
endif
endif

2.2.5 Validation of the CPgoung model

In the CRyrounamodel an application interacts with the middleweoenponents
through events. When an application requires serfritm one of the components, it
generates an event which is caught and served lindler of that component. To
express which event is generated by a componergnieirag and which one is
handled (Eventnaie) by @ component, the following functions are idfoed:

Eventeneratr EVENT x {CODE, LIBS, SCHED, MPE, OS}> {true, false}
Eventandge; EVENT x {CODE, LIBS, SCHED, MPE, OS}- {true, false}

Let us define the following assumptions:

Assumption 1. During the execution of a distributed applicatitre application
relies on the following four basic functionalities services that need external
support: process creatiosp@wnevent) served by the message-passing layer
(it interacts with the operating system and schelutermination terminate
event) served by the scheduler, message sendergl¢vent) and receiving
(receiveevent) both served by the message-passing layer.

Vee{spawn, send, receive, terminatél;e CODE: Evenfeneratk€, C)=true
Vee{spawn, send, receivegmpe MPE: Eventanqiefe, mp)=true
Vee{terminate}, 3Ise SCHED: Eventanaief€, S)=true

Assumption 2. During the execution, termination (exit event) gpr@cess can
be initiated by an instruction belonging to the estiier (universe SCHED),
and the event can be handled by instructions egdcbly the user code
(universe CODE) or libraries (universe LIBS). Theeetsterminateand exit
both causes the process to finish its executiohalei distinguished based on
the initiator.

1se SCHED: Evenfeneratk€Xit, S)=true

VpePROCESS: Evemtngefexit, code(p))=true |
Eventangefexit, libs(p))=true

All events other than the ones defined in the pnevitwo assumptions
(checkpointandresumein this model) belong to the checkpointing funotibty. The
next step is to define which interaction set/urseethecheckpointand resumption
event generation and handling belongs to.

The definition of the Cfound model (see section 2.2.4) details that the rules
defined for the CRouna model are updating the locations related to tigSL liniverse.

56

Therefore, any event generation or event handlatiyigy realised by the rules named
CPground-* updates locations related to the LIBEanse.

After analysing the rules of GRBunamodel, checkpoint event generation occurs
in rules CPground-R5b and CPground-R5c, while reserment generation occurs in
rules CPground-R1c, CPground-R8c.

Definition A:

Vee{checkpoint, resume};lcLIBS:
Eventenerarke, I)=true and

Vee{checkpoint, resume}¥ic{CODE, SCHED, MPE, OS}:
Eventenerake, 1)=false

Checkpointevent is handled in rule CPground-R6a, whilesumeevent is
handled by the rules CPground-R8a and CPground-e8dectively.

Definition B:
Vee{checkpoint, resume};lcLIBS:
Eventangef€e, I)=true and
Vee{checkpoint, resume}yic{CODE, SCHED, MPE, OS}:
Eventangefe, i)=false

Before checking the ASM model against the severnnitiehs (defined in
section 2.2.3)¢ckptandcoordrules (see section 2.1.5.2) must also be exprassad
the functions Evegdneratorand Evenfangler We can say that a checkpoint activity exists
in a component, if checkpoint related event gerarair event handling is performed
by that component. For instruction set that handlesckpoint related events the
function ckpt evaluates to true and for the instruction set fwaterates these events
the functioncoordevaluates to true. Therefore

Definition C:
if 3ec{checkpoint, resume},
instructione{CODE, LIBS, SCHED, MPE, OS}:
Eventandgef€, instruction) = true
then ckpt(instruction) = true,
otherwise ckpt(instruction) = false
Similarly coord function can be expressed in the following way:
Definition D:
if 3ec{checkpoint, resume},
instructione{CODE, LIBS, SCHED, MPE, OS}:
Eventeneratk®, iNstruction) = true
then coord(instruction) = true
otherwise coord(instruction) = false

57

Based on the definitions A, B, C and D, now it @spible to evaluate the seven
definitions of the ClusterGrid checkpointing methaefined in section 2.2.3.

Definition 1. Library level checkpointing technique is used
VCeCLUSTERYAcAPPLICATION,YpePROCESS, app(p)=A:
ckpt(code(p)) = falséexpression 1.1)
& ckpt(libs(p)) = trug(expression 1.2)
& ¥neNODE, cluster(n) = C,
vcomps{SCHED, MPE, OS}, mapped(comp) = n:
ckpt(comp) = falséexpression 1.3)
& coord(comp) = fals¢expression 1.4)

Evaluation of logic expression in definition 1 fdre CRrouna model is divided into
four parts. The evaluation of the four parts igiearout in the following way:

(expression 1.1xkpt(code(p)) =
Eventange(Checkpoint, code(p)) | Evertae{resume, code(p)) =
(false | false) = false;

(expression 1.2xkpt(libs(p)) =
EventandgiefCheckpoint, libs(p)) | Everhaefresume, libs(p)) =
(true | true) = true;

Since no checkpoint or resume events are genecatédndled by any instruction
belonging to SCHED, MPE and OS universes, thedasdt is also evaluated false
for each of the universes as described below:

(expression 1.3)Wvcomp={SCHED, MPE, OS}-
(Eventangie{checkpoint, comp) | Eventae(resume, comp)) =
(false | false) = false
(expression 1.4 comp={SCHED, MPE, OS}-
EventenerakCheckpoint, comp) | Evefheraresume, comp) =
(false | false) = false

Altogether, the expression for Definition 1 is sééd, since all the four parts satisfies
the equivalence, separately.

Definition 2. Application wide checkpointing is performed
VCeCLUSTERNYAcAPPLICATION:
VpePROCESS, app(p)=A:
ImeIMAGES:

58

image(pxrm &
checkpoint(C, state(A))=m &
resume(C, m)=state(A)

This definition says that for each process a chelckpmage is created at checkpoint
time. To decide whether the image is created, pipecgriate rules of theoordinator
and theuserdefinegrocesses must be analysed. The rGeground-R5bCPground-
R5con the coordination side ensures that in caseraifihation all the processes gets
the checkpoint event and the r@é&ground-R6aensures that an image is created by
the process that gets the event.

Definition 3. Checkpoint information is stored in files
VCeCLUSTER,VAcAPPLICATION, 3meIMAGES:
checkpoint(C, state(A)) =m &
resume(C,m)=state(A) &
VieIMAGES: imagefileofapp(i)=A

This definition expresses a further restriction tle=d of mapping the image into a
file. Image creation is performed by the rulé®ground-R6aand CPground-R7p
respectively. In both rules, the functiomagefileofappensures that the image is
mapped on to a file belonging to the application.

Definition 4. Parallel checkpointing technique is coordinated

VCeCLUSTER,dcomp={SCHED, MPE, OS}:
cluster(mapped(comp))=C & coord(comp) = t(egpression 4.1)
OR
VCeCLUSTER ,3pePROCESS:
cluster(mapped(p))=C & (coord(libs(p))=true | cdeatle(p)=true)expression 4.2)

The checkpoint method (modelled by ff9 conforms definition 4 if at least one
component performs coordination activity (ioeord function is evaluated ttrue for
one of the INSTRUCTION_SET subuniverses).

Expression 4.1 is evaluated false since based on definition A there are no
checkpoint related events generated by any of @t¢ED, MPE, OS instruction sets.

At the same time, the expression 4.2 is evaluaiéadie¢ according to definition A and
D since coordination activity exists among the psses of the application. The rule
CPground-R1a ensures that at least one processthgetexpressionole(self) to
coordinator and the rules CPground-R5b, CPground-R5c perfdretkpoint event
generation in this process.

Definition 5. Coordination process is part of the application
VCeCLUSTER,VAcAPPLICATION:

59

dpePROCESS: cluster(mapped(p))=C & app(p)=A &
(coord(libs(p))=true | coord(code(p))=true)
AND
vcomps{SCHED, MPE, OS}: cluster(mapped(comp)=C &
coord(comp)=false

This definition is a more restrictive version oetprevious (definition 4) one. While
the previous one requires a coordination compowanthe cluster, this definition
requires it to be integrated into the applicatidime existence of the coordinator
activity has already been showed in definition 4.

Definition 6. Processes migrate within a cluster without ternmgathe application

To see, whether the GRina model satisfies this point, we have to examinedtate
transition of a process during migration. After lgamg the rules a phase transition
diagram can be created as seen in Figure 13.

I = inator (R1
role(p)=coordinator (R1a) R1b. R1c

™ RE;
R8
Rla R1b, R1
We S, R, R5b R7b
R7b 4
PROC ESS
R8C DISCARDED

A

R
Rlc, R2a, R4a
R8a, R8b

PROC ESS
CREATED

C R7c, R8b
R5a, R5b, R5c

Figure 13 Phase transition diagram of the Cf,un¢ model

role(p)=userdefined (R1a)

Nodes represent the possible phases of the precassethe directed arcs represent
the firing of rules that change the phase of a ggsa@ccordingly. Abbreviations for
the name of the phases are as follows:

[: init, W: waiting, R: running, RW: receive_waig,
T: terminating, C: checkpointing, RE: resuming
Based on the phase transition diagram, the follganir statements can be derived:

60

1. All user defined (i.exrole(p)=userdefinefiprocesses at normal execution are going
through the following phases:

a. At startupinit = waiting = running
b. At receiving a message runniagreceive_waiting= running
2. Migrating user defined processes are going titrabe following phases:

a. running = checkpointing= terminating= init = waiting = resuming=
running

3. Non-migrating user defined processes are gdimgugh the following phases if at
least one migrating process exists in the apptioati

a.running = checkpointing= waiting = running

4. Coordinator process does not change phase dinengnigration of the user defined
process(es).

Based on the four statements derived from the ptrassition diagram of CRund
model, the original (Definition 6) expression cas dvaluated to true, since the non-
migrating processes and the coordinator processrrekminate during the migration
of migrating processes of the application. The do@tor terminates only in two
cases: if every user defined process has finislkedugion or if coordinator gets an
exit event from the scheduler. The first case maaasnormal termination of the
application, while the second one happens whewltitde application is shut down by
the scheduler before it could finish the execution.

Definition 7. Application source code is unmodified
VAecAPPLICATION, YpePROCESS, app(p)=A:
ckpt(code(p))=false & coord(code(p))=false

ckpt(code(p))which is evaluated tbalse according to Definition 1 for the GRBund

model. The second part can be evaluated takingitlefis A and D. Definition D that
state thecoord function is evaluated to true for the elementsttedf universe if it
contains at least one instruction that generateskgoint or resume events.

Since definition A says that
Vee{checkpoint, resume¥instructione{CODE, SCHED, MPE, OS}
Eventenerarke,)=false
the expressionoord(code(p))s also evaluated to false, accordingly.

61

3 Checkpointing PVM applications

62

3.1 The GRAPNEL checkpointing framework

3.1.1 Overview

The theoretical background introduced in the fgsbup of theses — which
resulted in a checkpointing solution defined by a@pstract model — forms an
appropriate basis for developing a concrete tool.ulilise the theoretical results |
have chosen the P-GRADE graphical parallel progdewelopment environment
developed by MTA SZTAKI. The goal of the secondgrmf theses is to apply the
abstract model for message-passing PVM applicatanalgorithms created by the
P-GRADE environment.

As a preparation of thesis 2.1 | have designededadobrated a checkpointing
technique for PVM applications created by the P-GEAdevelopment environment
based on the abstract method defined in thesisllhdve studied the architectural
design of the GRAPNEL application. | have definkd tequired modifications on the
architecture and redesigned the communication pvies in a way that the
checkpointing operation can be activated at ang tlaring the execution. In addition
| have elaborated an abstract model &Ry that fits to the solution introduced in
P-GRADE. Finally, | have proven the correctnessedihement between the GRing
and CRrapneimodels. Based on the results thesis 2.1 is stated.

Thesis 2.1:The checkpointing technique integrated in GRAPNRglieations

— following a static process model and developedPB$RADE — realises
transparent checkpointing and its correspondingg&diel ASM model is a
correct refinement of the original model called R

Related publications are [1][3][13][16][17][18].

The elaborated solution enables transparent chadikpugp operation — both for
the programmer and for the middleware — for paralfplications which follow a
static process model and developed by the P-GRADE@mMent.

3.1.2 P-GRADE environment and GRAPNEL language

In order to cope with the extra complexity of plidnd distributed programs
due to inter-process communication and synchroniza&a graphical programming
environment called P-GRADE [1][48] have been desthrits major goal is to provide
an easy-to-use, integrated set of programming témisdevelopment of general
message-passing applications to be run on both gememus and heterogeneous
distributed computing systems like supercomputdusters and Grid systems.

The central idea of P-GRADE is to support eachestaghe parallel program
development life-cycle (e.g. designing, executidgbugging [2], monitoring) by an
integrated graphical environment (see Figure 14revlall the graphical views applied
at the various levels are associated with apptiocatesigned and edited by the user.

The parallel program design is supported by the BRBL [35] (GRAphical
Process NEt Language) language and the GRED (geeFl4) graphical editor. In
GRAPNEL, all process management and inter-processrunication activities are
defined graphically in the user's application. Liewel details of the underlying
message-passing system are hidden. P-GRADE geseratematically all message-
passing library calls (either PVM or MPI) on thesisaof the graphical notation of
GRAPNEL. Since graphics hides all the low levelailst of message-passing, P-

63

GRADE is an ideal programming environment for aggtion programmers who are
not experienced in parallel programming (e.g., fdremists, biologists, etc.).
GRAPNEL is a hybrid language: while graphics israduced to define parallel
activities, textual language parts (C/C++ or FORTRAare used to describe
sequential activities.

GRAPNEL is based on a hierarchical design concepparting both the
bottom-up and top-down design methods. A GRAPNElogmm has three
hierarchical layers which are as follows from togottom:

Application window

Process window

2k | me| an || 22 ><] o | =

EEREARCI e

0% GTIR B 00% {0 125%
ISH EME TIR 100G 12 | E| o | m8
|Fun] Cortinue| Step| stap| [Fiter| | sync]
B bl || Local| Heac |

.D—’i:E-E s
Y

r_,-'—F - E
stors IEI.EZII
EXn

Text window

Text: serve

Figure 14 Hierarchical design in the P-GRADE enviroment

e Application layer is a graphical layer which is d4e define the component
processes, their communication ports as well asir tlwnnecting
communication channels (directed arrows betweencgsses on the
application window on Figure 14). Shortly, the Apption layer serves for
describing the interconnection topology of the comgnt processes.

e Process layer is also a graphical layer to defieeiternal structure of the
component processes by a flow-chart like graph Esgere 14). The basic
goal is to provide graphical representation for tiessage passing function
calls. As a consequence, every structure that t@ntaessage passing calls
should be graphically represented. The followingety of graphical blocks
are applied: loop construct, conditional constreegjuential block, message
passing activity block and graph block. Sequertiatks must not contain
any message passing calls.

e Text layer is used to define those parts of thegram that are inherently
sequential and hence a textual language like C/@+FORTRAN can be

64

applied at this level. These textual codes arenddfiinside the sequential

blocks of the Process layer (see Figure 14).

The top-down design method can be used to despaitslel activities of the
application program. At the top level the topolagyd protocols of the interprocess
communication can be defined and then in the nayerl the internal structure of
individual processes can be specified. At thisllevel in the Text layer the bottom-up
and top-down design methods can be used in a naagdIn the case of the top-down
design method, the user can define the graphiaadtste of the process and then uses
the Text layer to define the C/C++ or FORTRAN cdalethe sequential blocks. In the
bottom-up design approach, the user can inherite ctsxdm existing C/C++ or
FORTRAN libraries and then can build up the inténmacess structure based on
these inherited functions. Moreover, GRAPNEL presgigpredefined scalable process
communication templates that allow the user to geadarge process farm, pipeline
and mesh applications fast and safely.

The GRED editor helps the user to construct thelgeal parts of GRAPNEL
programs in an efficient and fast way. GRAPNEL pergs edited by GRED are
saved into an internal file called GRP file thaht@ns both the graphical and textual
information of GRAPNEL programs. The main concept<GRAPNEL and GRED
are described in detail in [1].

After the edition of the application has finishele tpre-compilation and
compilation of GRAPNEL programs takes place. Thalgdf pre-compilation is to
translate the graphical language information of @GP file into PVM or MPI
function calls and to generate the C or FORTRANrsewode of the GRAPNEL
program. For the sake of flexibility, PVM and MRunttion calls are not called
directly in the resulting C code; they are hiddenan internal library, called the
GRAPNEL Library which has two versions. In the ffix@rsion (GRP-PVM Library)
the GRAPNEL Library functions are realised by PVMIs, and in the second version
(GRP-MPI Library) they are realised by MPI functicails.

P-GRADE GRAPNEL multi-process
environment application message-passing
(PVM or MPI)

Producer [Buif fer Consumer:
1 1

parallel application

DESIGN IMPLEMENT

Figure 15 Relation of P-GRADE and GRAPNEL applicaton

65

As a result of the compilation, one executablereated containing the code
for all communicating processes. The execution axtheprocess is defined by the
following triplet: user code, GRAPNEL library antiet concrete message-passing
library (PVM or MPI).

3.1.3 The GRAPNEL checkpointing solution

In the P-GRADE parallel application development ismvment the user
designs and develops an application by using naswerce code and graphical
annotations. Based on this information the exedatéinary) is implemented i.e.
generated and compiled (see Figure 15). Detailsutabow the generation and
compilation is performed can be found in [35].

The proposed checkpointing method defined in se@i@ is adopted in order
to implement library(user-) level, fully automatgelf-checkpointing for Grapnel
applications. Details are introduced in this settio

3.1.3.10verview of the solution

The solution of design is driven by the followingykfeatures of the grapnel
application:

e A built-in additional coordinator process to maintéhe process creation
and building up the connection among the processesreating the layout
of the application

e An existing additional software layer in the apgation (explained in the
next few paragraphs) between the user source codethe underlying
message passing layer servicing the seamless alirtkptegration and
information layer about the application structure

Based on the key features detailed above the desitire grapnel application
checkpoint can be summarised by the following kewts, which is in alignment with
the ClusterGrid checkpointing method defined intbac2.2:

1. Library-level checkpointing of the individual prases is realised by an
existing single-process checkpointing library ahlleCkpt[29], in
consistency with Definition 1 of the ClusterGrid timed.

2. Consistent — application wide - checkpoint is perfed by using the well-
known Chandy-Lamport [56] algorithm that providesaution to avoid
in-transit messages before checkpointing of théviddal processes takes
place. Every process of the application executesatborithm and creates
its checkpoint. This approach is consistent withfiidgon 2 of the
ClusterGrid method.

3. The created checkpoint information is saved intesfiin the working
directory of the application by the user processesptionally (in case a
shared working directory does not exist) by a cpeait server that can be
integrated (if needed) into the built-in extra sgrprocess of the grapnel
application. This consideration is consistent wibefinition 3 of the
ClusterGrid method.

4. Coordinated checkpoint is performed by the buils@iver process which
is called grapnel server. This consideration iss@iant with Definition 4
of the ClusterGrid method.

66

5. By default the grapnel application has a built-iarmager process which is
going to be extended to perform the checkpoint dioation required by
the application. This consideration is consisterthvDefinition 5 of the
ClusterGrid method.

6. Coordination process (grapnel server) schedules dhepending of
processes, synchronisation of messages, checkmpibérmination and re-
spawn of migrating processes to enable migratiomprotesses without
terminating the entire application. This consideratis consistent with
Definition 6 of the ClusterGrid method.

7. All the checkpointing support is integrated in arséess way into the
grapnel library of the application, which residextviieen the application
source code and the message passing e.g. PVMylibféie designed
grapnel application in the P-GRADE environmentasnigidered to be the
original source code of the application. Adding theckpoint support to it
does not require even a bit of change in the agipdic, only re-linking is
performed. This consideration is consistent withfifidon 7 of the
ClusterGrid method.

8. Checkpoint related information and checkpoint aointmessages are
distributed by the grapnel server through the psareation and through
the hidden communication channels between the pisEresses and the
grapnel server. It is needed to perform consisteatkpointing.

9. Existing extra software layer (GRAPNEL) between tiser code and the
underlying message passing layer enables the mgiterof the
communication primitives, where required.

10.Code generation and compilation is done by the AR environment,
extra libraries can be linked without user intei@ctUsing this feature the
checkpoint libraries can be integrated into theliaggon.

Console Files

grapne
server

messag
passing
layer

grapnel
library

Figure 16 Structure of a GRAPNEL application genergéed by P-GRADE

The following sections detail the design and immeamation of the Grapnel
parallel checkpointing tool for the P-GRADE genethGrapnel applications.

67

3.1.3.2Structure of the GRAPNEL checkpointing framework

In order to understand the operation of the graphetkpointing framework, a
short overview is presented in the next paragraplosit the checkpoint-free operation
of the grapnel application.

The P-GRADE compiler generates [35] the grapnetebables which contain
the code of the client processes (signed by “cherd, C, D” in Figure 16) defined by
the user and an extra process (signed by “gragneés in Figure 16), called grapnel
server which coordinates the run-time set-up ofahglication. The client processes at
run-time logically contain the user code, the mgsspassing primitives and the
grapnel library (signed by “grapnel library” in Fkige 16) that manages logical
connections among them. To set-up the applicaficst,the grapnel server starts and
then it creates the client processes containingitiee computation. As a result of the
co-operation between the grapnel server and grajimalry the message passing
communication topology is built up. To access altessary input-output files and the
console (see Figure 16), the server acts on beldaHe client processes. The client
processes send requests to the server for readthg/@ting files and console and the
necessary data are transferred when the actianishéd by the server on its master
host.

Terminal File

Client A Client B

ckpt lib
X "-.'

Grapnel Server LAY ckptlib

(GS) modul for
coordination

ckpt lib
A

ckpt server

(optionally K Client C \
built-in GS) g~ bk
................................. user cod
...................................... ckpt
./ ClientD e Bl e
Storage or b : ;
Working dir ckt lib PV iib

Figure 17 Structure of the Grapnel application in tieckpoint mode

Based on the previously introduced application cstme, the checkpoint
version (see Figure 17) of the grapnel applicationtains the following elements:

e Grapnel Server (GS) (signed by “Grapnel server reothr coordination”
in Figure 17): an extra co-ordination process thatart of the application
and generated by P-GRADE. It sets up the applicalip spawning the

68

processes and defining the logical communicatiopolgy for them.
Checkpoint extension of GS coordinates the checkpgi activities of the
client processes e.g. executes the checkpoint qobtat initialisation,
saving and resumption phases.

e Grapnel Library (GL) (signed by “grp lib” in Figur®7): a layer between
the message passing library and the user codanatitally compiled with
the application, co-operates with the server, parfopreparation for the
client process environment and provides a bridgevden the server
process and the user code. Checkpoint extensighiofibrary in client
processes prepares for checkpoint, performs syndation of messages
and re-establishes connection to the applicativer & process is rebuilt
from checkpoint.

e Checkpoint Server (CS) (signed by “Ckpt Server” kigure 17): a
component that receives data via socket and punsoitcheckpoint file of
the storage and vice versa. This component is ogtiéunctionality can be
built in GS.

e Dynamic checkpoint library (CL) (signed by “ckpt’liin Figure 17):
loaded at process start-up and activated by rewpi@i checkpoint event,
reads the process memory image, creates the chatkpage and passes
this image to the CS. CL can be transformed inaticstibrary as well in
order to be part of the application or can be an®d as a working file of
the application.

e Storage is a virtual component and can be estadlitbcally or remotely.
It is a repository for checkpoint files which cae bf any type. The
simplest solution is using the working directorytbé application if it is
shared among the nodes.

e PVM is the message passing layer of the applicatiahperforms process
management on PVM level and transfers messagesgatherGL and GS
components dealing with user data, grapnel-levetgss management and
checkpoint coordination.

e PVM lib is the client side part of the PVM messg@essing layer i.e.
provides access for PVM services through functmitsc

The resulted executable itself is a PVM applicatibme grapnel server process
with clients A, B, C, D (see Figure 17) form thepagation. Processes are connected
through the PVM system and each contains an ing@ligrocess checkpointer library
linked to them. The necessary checkpoint protaexecuted among the GS and the
GL components of the client processes. Grapnebpobimessages are transported by
PVM, but are invisible for the user code.

3.1.3.3The GRAPNEL checkpointing protocol

Before starting the execution of the applicatiam,irestance of the Checkpoint
Server (CS) is running in order to transfer cheakipdiles to/from the dynamic
checkpoint libraries (CL) linked to the applicatid®S is optional component since in
systems where common working directory exists amthrgg hosts checkpoint file
saving and loading is performed locally. Otherwi® plays this role. In the rest of
this section, CS and GS will be referenced indigituto split functionalities clearly.

69

The overall execution of application with checkpoig support can be divided
into 5 main phases, which are detailed in thisisact

1. Initialisation
Interruption
Synchronisation
Saving

a bk~ DN

Resumption

Initialisation phase

When the application is launched, the first prodbas comes to live is the GS
performing the coordination of the Client processAfier initialisation it starts
spawning the Client processes. Whenever a procesge< to live, it first gets
connected to GS in order to download parametetsng®, etc. When each process
has performed the initialisation, GS instructs theamstart execution or start the
resumption depending on the existence of the cleokmformation.

Each (user-defined) process of the applicationat-sp loads automatically
the CL that is going to perform the single processckpointing or resumption later.
The processes connect to GS and wait for decisiether to perform normal start-
up or initiate resumption. If GS decides to ingiaesumption, user-defined process
continues with restoring its memory, otherwise térts the execution from the
beginning.

Interruption phase

While the application is running and the procesaes performing the user
defined computation the checkpoint mechanism istiva. When a checkpoint is
required, GS instructs the client processes byiagral message/signal pair to them.
This step of the protocol is more detailed in settB.1.3.4. When a process is
successfully notified about the start of checkpo@tthe execution of the user code is
suspended and the grapnel library is started idstea

The GL first notifies GS about the successful intption and waits for further
instruction. The interruption phase finishes whdhtle client processes of the
application are interrupted successfully.

Synchronisation phase

The Grapnel server initiates the synchronisaticasphby sending a message to
all the processes of the application. This messegifies the processes to start the
synchronisation and contains a list of process tifiers. Having received the
identifiers each process executes the well-knowain@iLamport [56] algorithm.

The algorithm executes the following protocol. Eqmocess first sends an
end-of-channel message to the processes that welteled in the synchronisation
notification message before. After that, the serstarts listening on the message
channels one after the other. When receiving aagessvo different actions might be
performed. First, in case of receiving a user gatieek message i.e. the message is part
of the application protocol designed by the ude,message is stored in the memory
and the channel is repeatedly checked by the ppo&exond, in case of receiving an
end-of-channel message, the channel is cleana.engssage is currently transported

70

on this channel. Therefore, the next unclear chaisnstarted to be checked by the
process.

When end-of-channel messages arrived through alchannels to a process
and each processes of the application got this fadinpartners, the underlying
communication system demonstrably does not hold em®gsage sent by/to be
delivered to any of the processes of the applioatio that case the communication
system reached a consistent state regarding mestsyery. At this point the
synchronisation phase is finished, which is sigbogd ready-to-save message sent by
each process to the GS.

Saving phase

The Grapnel server initiates the low-level checkpsaving phase by sending
a do-save instruction message to all Grapnel cjeatesses. In this phase the main
step is to store the memory image map. This omaras done by CL. Before this
operation the last step is to leave the messagangad.e. PVM) subsystem. When
the process successfully exits from PVM, the cdngrtaken by CL which collects all
memory segments and necessary information andsstioeen into a file or optionally
sends it to the checkpoint server. After the cheakpinformation is successfully
stored, the processes might continue their exetwdioterminate immediately. If the
application is started to resume its state, alkpsses turns to resumption phase.

Resumption phase

In the resumption phase after the process stasgned by GS or continued
after checkpointing), the first step is to estdbli®nnection with the message-passing
(i.e. PVM) system. At this point the process getseav identifier. After successful
connection, the process notifies GS about its mamtifier and waits for permission to
continue the execution. When all the processesea@y to run, GS notifies them to
continue their execution.

There are two different ways to continue the exeaytdepending on the point
where the process was interrupted. If the processhg checkpoint signal while it
was executing computation, the resumption simphameto continue the execution
from the point where it was interrupted by the sigif the process got the checkpoint
signal while it was executing receive operatio® tommunication must be repeated
since the receive operation was aborted. (Thet&tuaaow invalid user messages are
generated explained in details in Section 3.1.39end operation cannot be
interrupted, since it is made atomic by disablimggiruption.

After each successful resumption, whenever a psoe@scutes the receive
operation, existing messages (stored in the memoayprevious checkpoint) must be
scanned through. In case the message (the progesaiting for) is found, it is
removed from the list and passed to the user caméhe receive action is simulated.
In case appropriate message is not found in thealial communication is executed.

3.1.3.4Checkpoint aware communication primitives

In order to prevent communication from malfunctmpie.g. losing messages
or duplicating message), it is necessary to preggmecommunication primitives for
proper handling of the underlying message-passibgystem.

In order to checkpoint the application, the exemuwnf all user processes must
be interrupted. The interruption might happen atttme of executing communication

71

and non-communicating operation. In the latter daseinterruption does not cause
any problem regarding the message-passing layer.

The former case might cause faulty operation. Bn VM message-passing
system the target process is identified by a tasKTiID). Whenever a process
connects, a new identifier is associated evenreifiocess was already member of the
communicating processes previously i.e. disconoectind reconnection steps are
performed. This fact might cause an initiated rezeoperation to be unfinished
forever or finished with invalid message in case tlarget process performs a
disconnection and reconnection. Reconnection isitedgle when checkpointing or
resuming a process of a parallel application.

Chkpt SIG

Chkpt SIG
——p

Figure 18 Guarded communication primitives to preent interruption

Grapnel process

Communication begins

Chkpt SIG | TIP=-
send/receive(TID)

Communication ends

The receive operation stores the TID of the tapgetess and it is not possible
to modify the TID that has been passed for the comaeation call. In order to prevent
the application to get to this situation a proddss is still executing a communication
operation (see Figure 18) must not be interrupt&@. communication primitives are
therefore defined as atomic operations.

Examine the following situation: an application sists of only two processes
M and S. Process M is the master process and I islave process. Process S is
performing a calculation and at the same time F®dé is waiting for the result i.e.
executing a receive operation. At this point a &pemt is required which start with
the ‘interruption’ phase. Process S is successfintgrrupted, but Process M is
impossible to be interrupted, since communicat®atomic. Process M is waiting for
the result from Process S in an endless loop. hhe&d to be resolved somehow,
because checkpointing may only work properly iflreaser process is successfully
interrupted.

Solution is based on the fact that the receive atfmsr must be forced to be
finished. A possible way to do this is to make teeeive operation accept messages
from a source different from the specified. To iempknt this mechanism three
requirements are needed to be fulfilled:

1. support for wildcard receive operation by the M{la
2. existence of method for communication primitiveealtion

72

3. existence of a different source process

For PVM based GRAPNEL applications the requiremeletined above can
be fulfilled by the support of the GRAPNEL layerhél P-GRADE code generator
redefines every receive operation to act as a waitticeceive operation and inserts the
Grapnel Server's identifier as an extra possiblecof the message (see Figure 19).
In this case if a process is stuck into a receperation and no messages are in the
gueue the Grapnel Server is able to force the peote continue its execution by
sending a checkpoint message to the process. Gibyjom this case, the receive
operation should be repeated after the resumptiatheo checkpointed process (see
Figure 19), since the process has got an invalidsage from its point of view just
before the checkpoint procedure.

-_— Communication begins
TID=source+SERVER
receive(TID)
handle_msg_from_server()
— Communication ends

SIGON

If chkpt_msg, wait for checkpoint
signal and repeat communication

Figure 19 Modification of receive communication primitives to multi-receive

As a summary, there are two situations for inteoup In the first case when
the user process is in computing phase (i.e. ekxgcuton-communicating code) a
unix signal works perfectly for interruption. Inetrsecond case the user process is
executing communication method and the checkporgsage forces the process to
finish the operation. In both cases the serveropers$ interruption and messaging in a
combined way.

The latter technique is required only when the pssds receiving a message.
In case of send operation there is no need forsdm®nd technique since the send
operation must finish in a limited/short period dese send operation is non-blocking
in this environment. Blocking and synchronized sepeération is realised by a non-
blocking send and blocking receive communicatioin waere the receive operation is
waiting for an acknowledgement. The communicatiempive that performs the
receiving of an acknowledgement is also implemeikedit is explained above.

3.1.3.5Interruption and consistent cut

To checkpoint a message-passing parallel applicatibe state of the
individual processes and the state of the commtiaica&hannel must be collected.
The states of the components forms the so calisiem state’. Whenever a system is
checkpointed, a snapshot of each component areedraad stored.

73

Components of a message-passing application inralglaenvironment are
executed in a concurrent way. Each process andndssage-passing subsystem are
using the same resources to perform its job. larearrent system where snapshot of
communicating processes is taken, key factor is tihree elapsed between the
snapshots of the individual components.

The ideal approach is that the snapshot of thevithaial components to form
the ‘system state’ lasts exactly zero time. In fpeacthis is not possible. Each
snapshot takes time greater than zero. To creat@pshot of the ‘system state’ i.e.
global snapshot, individual snapshots must be edefatr the components one after the
other. Since time — greater than zero - elapsesgdeet the snapshot of the individual
components, a ‘system state’ might be invalid, beeacomponents are changing their
state by the time the snapshot of the other comyerae taken. This state is invalid
because inconsistency occurs among the state ebthponents. The global snapshot
forms a consistent system state or consistent fcthei following conditions are
satisfied:

C1. Every message that has been receivdths
also been sent in the state of the sender.

C2. Each message that has been sent has ¢
been received in the state of the receiver.

For example, the cut T1 (see Figure 20) is condisteut T2 and T3 are
inconsistent. Condition C2 is not satisfied for ssge D in case of cut T2 and T3. At
the same time message E is also against condition €ase of cut T3, since the state
of process P3 shows that message E is received) the state of process P1 message
E is not yet sent, which is called ‘orphan’ message

F1 |
nl ’

P2
n2 : | |

E

Pz
n3

[| | | | | | | | | | |
0z 1= 25 3= |S b= Gzl 7z 8= FS 10 11s

T1 T2 T3
Figure 20 Consistent and inconsistent cuts in a dgsn state
Orphan messages [49] cannot be part of a consisystém state. Messages

that are sent but not yet received are calledansit messages which can be removed
from the system state in order to make T2 a caargistut.

The consistent cut in the Grapnel checkpointingnéaork are created in a
way that both conditions defined above are satisfleondition C1 is satisfied by

74

using the so-called blocking coordinated checkpagntConsistent cut is formed by
the points in the time when the notification frohe tGS reaches the user processes.
Whenever a process is notified, it interrupts thecation and does not continue until
all checkpoint related activities finish.

To satisfy condition C2, in-transit messages mastdmoved. This is realised
by an extra end-of-channel notification sent byrgy@ocess to all its neighbours. In
case there is a reliable communication layer wlikresering messages is done in
FIFO order, receiving the end-of-channel messagensao more messages are on its
way to the receiver from the source process.

3.1.3.6Redesigned communication algorithms

One of the key solutions in parallel checkpointiighe grapnel applications is
to update the receiver communication primitiveshaf GL in the user processes in a
way which provides interruptible receiver primitssen grapnel level and at the same
time it is atomic i.e. non-interruptible on PVM &y The problem and the proposed
solution is already introduced in section 3.1.3He following few paragraph details
the technique how this feature is implemented engtapnel layer.

The main communication primitives altered in the &k:
asynchronous send operation

synchronous send operation

blocked receive operation

el A

blocked wildcard (alternative) receive operation

The proposed solution detailed in section 3.1.8defines the primitives to
wildcard receiving operation that waits for any sagge. From the list above there are
three primitives requires redefinition: blockedeattative receive operation, blocked
receive operation and synchronous send operatiohe Tormer two are
straightforward, the last one requires redefinitioecause a synchronous send is
implemented by an asynchronous send-receive operatihere the receive operation
is to wait for an acknowledgement.

As a reference, the pseudo-like code original (kpemt-free) algorithm
performing the receiver operation in the GRAPNE&Qgasses is introduced below:

1 GRP_RECEIVE_FUNC_BEGIN(sendertype, source)

2 grp_set_comm_parameters() //setting communication parameters

3 grp_set_remote_tid(source) //gets tid of source process

4 exec_receive(source) //performing receive operation from the source process
5 extract_msg_from_buffer() //unpacks content of message

6 IF(sendertype==Dblocked)

7 send_acknowledgement() //sending acknowledgement

8 GRP_RECEIVE_FUNC_END

To enable the receiver operations of the processdse interruptible, the
following algorithm has been designed:

75

1 GRP_RECEIVE_FUNC_BEGIN(sendertype, source)

2
3
4
5
6
7
8
9

34

IF(chkpt_mode)
checkpoint_interrupt_disable()
grp_set_comm_parameters() //setting communication parameters
DO
chkpt_msg=NULL
from_queue=FALSE
grp_set_remote_tid(source) //gets tid of source process
IF(!chkpt_mode)
exec_receive(source) //performing receive operation from the source process
ELSE
IF (grp_chkpt_restore_stored_msg(source) < 0) //checking stored messages
set_receive_target(server+source) // sets matching function
exec_multiple_receive() // performs matching and set chkpt_msg flag
reset_receive_target() //resets matching function
ELSE
from_queue=TRUE;
IF(chkpt_msg)
chkpt_get_proc_list() // receiving chkpt msg, unpack and store proc list
IF(!chkpt_msg)
IF(from_queue)
extract_msg_from_queue() //unpacks content of message
ELSE
extract_msg_from_buffer() //unpacks content of message
IF(sendertype==Dblocked)
send_acknowledgement() //sending acknowledgement
IF(chkpt_mode&&chkpt_msg)
checkpoint_interrupt_enable()
wait_for_checkpoint_interrupt() -->checkpoint interrupt activates here
-->saving and restoration returns here
checkpoint_interrupt_disable()
WHILE(chkpt_mode&&chkpt_msg)
IF(chkpt_mode)
checkpoint_interrupt_enable()

35 GRP_RECEIVE_FUNC_END

The routine ,grp_receive” is modified to be intgtible. The main

modifications are as follows:

e disable and enable checkpoint interruption at titereand exit point of the

function (lines 2-3 and 33-34)

e searching for appropriate message in the messag@e ggioring in-transit

message caught at the previous checkpoint(s); Ie

e performing wildcard receive operation with the serprocess identifier

added into the list of acceptable input sourcese (13-14)

e receives and stores process list (part of checkpootedure) stored in the

checkpoint message; (line 18-19)

e in case the message is taken from the memoryaom the message queue,

different way of message unpack is required; (@he22)

e in case the message is a checkpoint message thell sgeeive operation
must be interrupted and checkpoint should be pasdrby simply letting

the checkpoint interruption to realise; (line 28-31

In order to make the Grapnel application be infgihble at any time, the
pattern of program code — based on the solutiopgeed in section 3.1.3.4 and

introduced above - is built into all operationsfpeming any receive action.

76

In this section a new ASM model called fpei is introduced, which is a
refinement [37] of the Cfuna ASM model. Refinement for GRpner means to
elaborate a model on the basis of;GRsmodel that is less abstract i.e. more concrete
in point of its execution. The aim of the refinerhes to show that the Grapnel
checkpointing framework implements the same fesatumed behaviour as GRind
model defines.

In CPyrapnethe following points are elaborated in a more diedavay:

e message types are introduced, messages are distiagudepending
on serve as application messages or checkpointadonéssages

e interrupt of processes are elaborated based oohdekpoint control
messages

e synchronisation of message channels are modelled
e storing application messages are modelled

e static process model of the GRAPNEL applicatiomiplemented in
the model

3.1.4.1Universes and signhatures

Universes and signatures for &Rheare the same as it is defined for (inherited
from) CRyoung In this section the differences are detailed.

In CPyapnel €vents have been redefined. First, the EVENT aafieerruption
has been introduced to model the interruption pbégarallel checkpointing based on
control messages. Furthermore, the event calleetkpointhas been redefined in
order to distinguish message synchronisation aneckgoint saving activities.
Therefore the universe EVENT is defined as folloBEENTS={spawn, send, receive,
terminate, interrupt, checkpoint(synch, save), nespexit}

In order to implement message synchronisation aetimm has been introduced
to mark the actual state of the synchronisatiorcgss. The function is defined in the
following way: eoch: (PROCESS x PROCESS){true, false} (note: ‘®och stands
for “end of channel”’). This function returrisue if synchronisation among two
processes has been successfully finisti@de if synchronisation is being done and
undefif it has not been started yet.

To model message handling, message types are ucgddto distinguish
application and control messages. Application ngssare always sent among user
defined processes and are necessary for propeatapenf the processes. Control
messages are sent by the checkpointing tool andidden from the programmer.
Application message type is calladerdefinedwhile control messages are defined to
mark the beginning or the end of an activity togeeformed. Therefore the type is
defined as follows:type: MESSAGE— {userdefined, interrupted, endofchannel,
synchronised, saved, resumed, exiting, exited }

In this model the universe MESSAGE contains thesagss sent among the
processes. It can be considered as a message Qaedéd by the underlying
communication layer. Supplementary to this, a newivarse (@niverse
MESSAGE_STOREs introduced which stores messages, but thesepted queue is
implemented in the memory of the process. Thereffuactions defined on the

77

MESSAGE universe are also defined for the MESSAGEDRE universe in Cfound

(from: MESSAGE_STOREPROCESPy to represent the source, toy(
MESSAGE_STOREPROCES) to represent the target and type:

MESSAGE_STORE{userdefined, interrupted, endofchannel, synchmhissaved,
resumed, exiting, exitedtd represent the type of the message.

Note, that this model follows the static processdetcof GRAPNEL, since
spawning new processes at runtime is not alloweld-BRADE [1][48]. The model
uses a predefined set of processasverse GRP_DEF _PROC_LIBthat is assumed
to be created by the P-GRADE environment at the tifncompilation.

All the universes and functions that are not mewd in the previous
paragraphs — but used in the model — are defineseations 2.1.5.2 and 2.2.4.1,
respectively.

3.1.4.2Initial state

Initial state of the Cfapnermodel is equivalent with the initial state of efhd
which is as follows:

IpePROCESS: app(p)=undef,
phase(p)=init,
role(p)=undef,
master(p)=undef,
startupmode (p)=undef

Detailed explanation of parameters can be foursgation 2.2.4.2.
3.1.4.3Rules

1. Rules for initialisation

Two of the three initialisation rules for gRnel are equal to the ones defined for
CPyround CPgrapnel-R1a=CPground-R1a, CPgrapnel-R1CPground-R1b

Since static process model is followed by GRAPN&ILprocesses must be spawned
at initialisation. These processes have been defilyy the programmer
(GRP_PROC_DEF_LIST) in P-GRADE. The rule R1c is thed accordingly.

CPgrapnel-R1c (modified version of CPground-R1c)

if role(p)=coordinator & phase(p)=waiting & startupmode(p)=undef then
if startupmode(p)=normal then
phase(p) :=running
process_to_store:={}
process_to_checkpoint:={}
process_to_terminate:={}
process_to_resume:={}

do forall x : X € GRP_DEF_PROC_LIST
extend PROCESS by child with
app(child):=app(p)
phase(child):=init
role(child) :=userdefined
startupmode(child) :=undef
master(child) :=false
endextend
enddo
else
phase(p) :=resuming
event(p) :=resume
endif
endif

78

2. Rules for process spawning

Since, there is no process creation during executiinitiated by the programmer -
the corresponding rules are disabled by perforraiskjp operation.

CPgrapnel-R2a (modified version of CPground-R2a)

if role(p)=userdefined & phase(p)=running & event(p)=spawn then
skip

endif

CPgrapnel-R2b (modified version of CPground-R2b)
if role(p)=userdefined & phase(p)=waiting &
startupmode(p)=normal & process_to_checkpoint(p)=false
then
skip
endif

3. Rule for sending a message

Refinement in this rule introduces the type of ragss.

CPgrapnel-R3a (modified version of CPground-R3a)
if role(p)=userdefined & phase(p)=running &
event(p)=send(dest)
then
extend MESSAGE by msg with
from(msg) :=p
to(msg) :=dest
type(msg) :=userdefined
endextend
endif

4. Rules for receiving a message

Receiving a message in &fnemodel is realised by a two-phase message checking.
First, messages stored in the memory (see defintidMESSAGE_STORE in section
3.1.4.1) are checked, and then real communicatigreiformed. In-transit messages
just before checkpointing are elements of this ewsg and after resumption of a
process these elements are removed whenever ag@geration is called by the user
code. Rules CPgrapnel-R4a and R4b are modificisnaay.

CPgrapnel-R4a (modified version of CPground-R4a)
if role(p)=userdefined & phase(p)=running &
event(p)=receive({source|any})
then
if (amsgeMESSAGE_STORE):to(msg)=p & {from(msg)=source| }
then
MESSAGE_STORE (msg) :=false
e1sehif (dmsgeMESSAGE) :to(msg)=p & {from(msg)=source| }
then
MESSAGE (msg) :=false
else
expecting(p) :={source|any}
phase(p) :=receive_waiting
endif
endif

79

CPgrapnel-R4b (modified version of CPgroundR4b)
if role(p)=userdefined & phase(p)=receive_waiting
then
if (amsgeMESSAGE_STORE):to(msg)=p & {from(msg)=expecting(p)| }
then
MESSAGE_STORE (msg) :=false
phase(p) :=running
expecting(p) :=undef
e1sehif (dmsgeMESSAGE) :to(msg)=p & {from(msg)=expecting(p)| }
then
MESSAGE (msg) :=false
phase(p) :=running
expecting(p) :=undef
endif
endif

5. Rules for interrupting the execution

Whenever a process getsexit event, application checkpointing must be performed
Only coordinator can initiate checkpointing, theref user defined processes must
notify it in case they get the event. Notificatisnsending arexiting message to the
coordinator. Rule CPgrapnel-R5a realises this djpera

CPgrapnel-R5a (newly introduced)

let coord=cePROCESS:role(c)=coordinator & app(c)=app(p)
if role(p)=userdefined & phase(p)=running & event(p)=exit
then
if master(p)=true then
event(coord) :=exit

else
extend MESSAGE by m with
from(m) :=p
to(m) :=coord
type(m) :=exiting
endextend
endif
endif

Whenever the coordinator getseting message first time, it initiates the interrupt of
all the processes of the application by sendingithainterrupt event.

CPgrapnel-R5b (newly introduced)

let allproc:={VcpePROCESS:app(cp)=app(p) & cp=p}
if role(p)=coordinator &
. ((AmsgeMESSAGE) :to(msg)=p & type(msg)=exiting)
then
process_to_terminate(from(msg)) :=true
process_to_resume(from(msg)) :=true
MESSAGE (msg) :=false
if process_to_checkpoint={} then
process_to checkpo1nt =allproc
if (Vp’e€PROCESS): p’#p & app(p D=app(p) &
process_to_checkpoint(p’)=true &
phase(p’)={running|receive_waiting}
then

do forall ppePROCESS:process_to_checkpoint(pp)=true
event(pp) :=interrupt
enddo
endif
endif
endif

The next rule handles the case when the coordirnggts anexit event. It means
application-wide checkpoint and shutdown must befopmed including the

80

coordinator. Therefore all processes marked toHeekpointed and terminated and
they are all notified. Changing the phase to cheirkmg indicates the need for
checkpointing the coordinator.

CPgrapnel-R5c¢ (newly introduced)

let allproc:={(VcpePROCESS) :app(cp)=app(p) & cp=p}
if rﬁ1e(p) =coordinator & phase(p)=running & event(p)=exit
then
process_to_checkpoint:=allproc
process_to_terminate:=allproc
process_to_resume:={}
process_to_store:=allproc

if (Vp’ ePROCESS): process to_checkpoint(p’)=true &
phase(p’)={running|receive_waiting}
then

do forall ppePROCESS: process_to_checkpoint(pp)=true
event(pp) :=interrupt
enddo
endif
phase(p) :=checkpointing
endif

Interruption is modelled in GRpnel Dy changing its phase to checkpointing when
interrupt event is detected and coordinator is notified bynéerruptedmessage. The
execution of the user code becomes suspended.

CPgrapnel-R5d (newly introduced)

let coord=cePROCESS:role(c)=coordinator & app(c)=app(p)
if role(p)=userdefined & phase(p)={running|receive_waiting} &
event(p)=interrupt
then
phase(p) :=checkpointing
extend MESSAGE by m with
from(m) :=p
to(m) :=coord
type(m) :=interrupted
endextend
endif

6. Rules for message synchronisation among the process

Message synchronisation begins when all user defipeocesses have been
successfully terminated. If the coordinator detéuiscase, it notifies all the processes
by sending a&heckpoint(syncgvent with the process list as parameters. Thetitum
calledeochis also initialised to mark the beginning of tiyachronisation activity.

CPgrapnel-R6a (newly introduced)

let N:=sizeof({(VcpePROCESS): app(cp)=app(p) & cp=pl})

if role(p)=coordinator &
(Imsgi, ..., msgueMESSAGE) : CV1e[l .N]:to(msg;)=p
type(msg1) interrupted & process_to checkpo1nt(from(msg1)) true)
then

do forall proc : procePROCESS &
process_to_checkpoint(proc)=true

MESSAGE ((meMESSAGE) : from(m)=proc &
type(m)=interrupted) :=false
event(proc) :=checkpoint(synch, process_to_checkpoint)
do forall p’ : process_to_checkpoint(p’)=true
eoch(proc,p’) :=undef
enddo
enddo
endif

81

This rule ensures that each user defined procags she message synchronisation by
sending an end-of-channel marker message to &t ptiocess.

CPgrapnel-R6b (newly introduced)
if role(p)=userdefined & phase(p)=checkpointing &
event(p)=checkpoint(synch,proclist) &
(ZDFOCEPROCESS, proclist(proc)=true:eoch(p,proc)=undef)
then
do forall neighbour : neighbour e {proclist\p}
extend MESSAGE by m with
from(m) :=p
to(m) :=neighbour
type(m) :=endofchannel
endextend
eoch(p,neighbour) :=false
enddo
eoch(p,p) :=true
event(p) :=checkpoint(synch,proclist)
endif

During message synchronisation every process teadanessages from all the other
ones, until the end-of-channel marker messagetectbsl. Userdefined messages are
stored in the memory to be part of the checkpanatge of the process.

CPgrapnel-R6c¢ (newly introduced)

if role(p)=userdefined & phase(p)=checkpointing &
event(p)=checkpoint(synch,proclist) &
((@proceproclist) :eoch(p,proc)#undef) &

(ﬁﬂmsgeMESSAGE):proc11st(from(msg))=true)
then
if type(msg)=userdefined then
extend MESSAGE_STORE by mb with
from(mb) :=from(msg)
to(mb) :=to(msg)
type(mb) :=userdefined
endextend
MESSAGE (msg) :=false
else if type(msg)=endofchannel then
eoch(p,from(ms%)):=true
MESSAGE (msg) :=false
endif
event(p) :=checkpoint(synch,proclist)
endif

A process finishes message synchronisation whegotitall end-of-channel marker
messages from all the other processes. In this thsecoordinator is notified by a
synchronisednessage.

CPgrapnel-R6d (newly introduced)

let coord=cePROCESS:role(c)=coordinator & app(c)=app(p)
if role(p)=userdefined & phase(p)=checkpointing &
event(p)=checkpoint(synch,proclist) &
(Vproceproclist:eoch(p,proc)=true)
then
extend MESSAGE by m with
from(m) :=p
to(m) :=coord
type(m) :=synchronised
endextend
endif

7. Rules for checkpoint saving of processes

82

After message synchronisation, the next step issdee the checkpoint image.
Coordinator instructs evenyserdefinedporocess one by one to save its state in case
synchronisation finished.

CPgrapnel-R7a (modified version of CPground-R5c)
if role(p)=coordinator &
(IdmsgeMESSAGE: to(msg)=p & type(msg)=synchronised &
process_to_checkpoint(from(msg))=true))
then
MESSAGE (msg) :=false
event(from(msg)) :=checkpoint(save)
endif

Checkpoint image creation is performed byuserdefinedprocess when it got a
checkpoint(save)event. The SINGLE_PROCESS _STATE_CHECKPOINT macro
performs the state saving operation. The interesdits of this macro are irrelevant,
since this model focuses on the distributed natficheckpointing.

CPgrapnel-R7b (modified version of CPground-R6a)

let coord=cePROCESS:role(c)=coordinator & app(c)=app(p)
if role(p)=userdefined & phase(p)=checkpointing &
event(p)=checkpoint(save)
then
extend IMAGE by imagefile with
imagefileofapp(imagefile) :=app(p)
SINGLE_PROCESS_STATE_CHECKPOINT(p , 1'magef1' Te)

endextend
extend MESSAGE by m with
from(m) :=p

to(m) :=coord
type(m) :=saved
endextend
endif

8. Rules for terminating the processes

The next rule is fired when a process successpdiformed saving the checkpoint
image. In this case coordinator decides whetheptbeess should be terminated or
must wait for further instruction.

CPgrapnel-R8a (modified version of CPground-R6a)
if role(p)=coordinator &
HﬂsgeMESSAGE:to(msg)=p & type(msg)=saved
then
if process_to_terminate(from(msg))=true)) then
event(from(msg)) :=terminate

else
phase(from(msg)) :=waiting
endif
MESSAGE (msg) :=false
endif

Rule R8b ensures that a user defined process thatesrminationphase whenever a
terminateevent is delivered. In this case the coordinaaotified.

83

CPgrapnel-R8b (modified version of CPground-R7c)
let coord=cePROCESS:role(c)=coordinator & app(c)=app(p)
if role(p)=userdefined & phase(p)={running]|checkpointing} &
event(p)=terminate then
extend MESSAGE by m with
from(m) :=p
to(m) :=coord
type(m) :=exited
endextend
phase(p) :=terminating
endif

Next rule is fired at normal termination. The cdiuh is evaluated to true, when every
process has exited, but no resumption is neededthi; case all checkpoint
information is removed (assuming, it is not neeflesecution completed).

CPgrapnel-R8c (modified version of CPground-R7b)
if role(p)=coordinator & phase(p)=running &
(Imsgi,..,mSgNneMESSAGE : (Vie[1l..N]:to(msg;)=p &
type(msgi)=exited & process_to_resume=?}
then
do forall imagefile : imagefilecIMAGE &
imagefileofapp(imagefile)=app(p)
IMAGE (imagefile) :=false
enddo
PROCESS (p) :=false
endif

Next rule fires at the end of the application-wateckpoint and shutdown operation.
When every process has exited, coordinator créatebBeckpoint and exits.
CPgrapnel-R8d (modified version of CPground-R7b)
if role(p)=coordinator & phase(p)=checkpointing &
(Imsgi,..,mSgNneMESSAGE : (Vie[1l..N]:to(msg;)=p &
type(msgi)=exited & process_to_resume=?}))
then
extend IMAGE by imagefile with
imagefileofapp(imagefile) :=app(p)
SINGLE_PROCESS_STATE_CHECKPOINT(p, 1'magef1' Tle)
endextend

PROCESS (p) :=false
endif

This rule ensures that processes in terminatiosg@hee removed from tiRROCESS
universe.

CPgrapnel-R8d (newly introduced)

if role(p)=userdefined & phase(p)=terminating then

PROCESS (p) :=false
endif

9. Rules for resuming the processes

The rule that ensures the resumption of the coatdinand the spawning of the
userdefined processes in §bhe IS equivalent to the one defined in gk
Therefore

CPgrapnel-R9a ECPground-R8a)

After a process exited and it must be resumed, va mecess is created by the
coordinator. This activity is realised by the r@Egrapnel-R9b.

84

CPgrapnel-R9b (modified version of CPground-R8b)
if role(p)=coordinator & phase(p)=running &
(IdmsgeMESSAGE: to(msg)=p & type(msg)=exited &
process_to_resume(from(msg))=true)
then
MESSAGE (msg) :=false
extend PROCESS by child with
app(child):=app(p)
phase(child) :=init
role(child) :=userdefined
startupmode(child) :=resume
master(child) :=false
endextend
endif

When all the processes arewaiting phase, there are two alternatives. The first ene i
that a normal startup of the application has besfopmed. In this case the phases of
processes must be changedriaaning to start the execution of the application. The
second alternative is that there are processeshthet been created and need to be
resumed. In this case their phases are changezstmingand an additionalesume
event is sent to notify them.
CPgrapnel-R9c (modified version of CPground-R8c)
if role(p)=coordinator & phase(p)=running &

(ZpFOCGPROCESS:app(proc)=app(p) & proczp & phase(proc)=waiting)

¢ e?f process_to_resume={} then

do forall pp : ppePROCESS & app(pp)=app(p) & pp=p
phase(pp) :=running

enddo
else
do forall pp : ppePROCESS & process_to_resume(pp)=true
phase(pp) :=resuming
event(pp) :=resume
enddo
endif

endif

In resuming phase and with aesumeevent a process recovers its state from a
checkpoint file. When done, the coordinator is fiexdi

CPgrapnel-R9d (modified version of CPground-R8d)

let coord=cePROCESS:role(c)=coordinator & app(c)=app(p)
if rﬁ1e(p)=userdef1ned & phase(p)=resuming & event(p)=resume
then
imagefile:=xcIMAGE:imagefileofapp(x)=app(p)
SINGLE_PROCESS_STATE_RESUME (p , i mageﬁ' Te)
extend MESSAGE by m with
from(m) :=p
to(m) :=coord
type(m) :=resumed
endextend
endif

The next rule ensures that an application continteegxecution after some of its
processes have been terminated, created and resemagrated.

85

CPgrapnel-R9e (newly introduced)
if role(p)=coordinator & (IpacPROCESS:app(pa)=app(p) & pazp &
phase(pa)=resuming)
then
if (VpbePROCES): app(pb)=app(p) & pbzp &
(phase(pb)=waiting |
(phase(pb)=resuming & ((3msgeMESSAGE) :from(msg)=pb &
type(msg)=resumed))))
then
do forall pc : pcePROCESS & app(pc)=app(p) & pczp
if expecting(pc)=undef then
phase(pc) :=running

else
phase(pc) :=receive_waiting
endif
if (ameMESSAGE):from(m)=pc & type(m)=resumed
then
MESSAGE (m) :=false
endif

process_to_checkpoint(pc):=false
process_to_terminate(pc) :=false
process_to_resume(pc) :=false
enddo
endif
endif

3.1.5 Correspondence of CPgoyng and CPgrapnet ASM models

In this section, the models §Rnq (defined in section 2.2.4) and &Bnel
(defined in section 3.1.4) are analysed and theespondence of the two models are
justified.

3.1.5.1Notion of equivalence

Based on the level of abstraction, many definitimfisequivalence can be
created. ASMs offer a possibility to precisely defiwhat equivalence means at a
certain case. There are two possibilities: comparigvolves only the results (i.e.
final states) of the two systems or the comparis@xpanded to (some of) the internal
states. In the first case equivalence can be dkfyased on relations among the input
and output of the analysed system. Otherwise, #fi@ition of equivalence must rely
on comparing the series of consecutive states peaty the corresponding runs.

In CPyround@nd CRrapneimodel, final states of a message-passing appulicald
not necessarily characterise all relevant attrdbutEherefore, the second way of
equivalence definition is followed, which is asléo¥s:

Definition CR1 Correctness of refinement [37]. An ASM M* is cala
correct refinement of an ASM M if and only if foagh M*-run $*, S;*, ... there is a
corresponding M-run& S, ... and sequencegii< ..., p < j1 < ... such thatyi= jo
=0 and & = Si* for each k and either

¢ Both runs terminate and their final states areldle pair of equivalent
states, or

e Both runs and both sequencgsi ..., p <j1 < ... are infinite.

In order to perform the comparison of two ASM magehe following items
must be defined:

e states

86

e (representative) states of interests

e computational segments where each single M-stegsldeom one
corresponding state of interest to (usually thet)n@orresponding
states of interest.

Based on the definition of the previous items, mjgarison can be performed
and the equivalence can be proven by applying itiefnCR1.

3.1.5.2Proof of equivalence

In CPyround @aNd CRrapnet ASM models an agent has several functigetzase
startupmodeexpectingetc...) that may (or may not) be updated duringetkecution.
After an analysis, it becomes obvious that the nabstracterising function of the
different agents iphase

The operation of every process in the applicatiasidally depends on its
actual phase Any activities performed by processes can begassi to a certain
phase.

role(p)=coordinator (R1a)

R1b, R1c > RE,
R9
R1la R1b, R1
We G R, R5c R8d
R8c PROC‘ESS
R9c Rad DISCARD

Rla

R8

Rlc,
R9a, R9b R5c

PROC ESS R8d

CREATE R6a-d, R7a, R7 ae

role(p)=userdefined (R1a)

Figure 21 Phase-transition diagram of processes @Pgyapnel ASM model

In both (CRrounda and CRrapneg models, there are two types of processes
executed in the application that have differenivdes (role) to perform:coordinator,
userdefinedSince activities are strongly depending on the oba process, it must be
part of the representative state of a processn lapplication there are always exactly
onecoordinatorand at least onaserdefinegprocess during execution.

Definition D1: the state of a process agent is expressed by the vhlplease
androle functions: S(p)=phasép), role(p)}

87

The phase of a userdefined process can be oneeofotlowings: init (1),
waiting (W), receive_waiting (RW), running (R), dk@ointing (C), resuming (RE),
terminating (T). To analyse, how a process can ghats phase during execution a
phase-transition diagram is created. Fog&R model the diagram has already been
elaborated, that can be seen on Figure 13 on pgagéh@ same kind of diagram for
CPyrapneiCan be seen on Figure 21.

On Figure 21 a directed graph can be seen, whetesnepresent the different
phases of a process and arcs represent trandigivween phases. Each arc has one (or
some) rule(s) assigned to it that may transfer ccgss from one phase to another.
Based on the value of thele function a process may traverse one (upper halfhe
other (lower half) branch of the graph. The lifetiof processes starts with creation
(box called PROCESS CREATED) and ends up with rengput (box called
PROCESS DISCARD).

Thestates of interestare defined to be the following ones:

e Sl : the initial state of the system (One processhef application is
created [see ‘Initial state’ definition of the mds]g

e SR: the state of the system at point of repose (Eyeocess is in
running phase)

e SF: the state of the system at the finishing point {Nocess of the
application is running i.e. every process has bsmminated and
discarded)

Definition D2: SlNTEREST::{SI, SR, SF}

The node Sl represents (see Figure 22) the begiramd SF represents the end
of an execution, while the node SR represents mnediate state of the execution
when all the processes are in running phase.ltvislthat SI and SF occur once in the
lifetime of an application, while SR can occur amymber of times.

--------------- an
------------------ immi
------------------ U
------------------]

N S T S

SC;IVITEF{MINATI(I\I

TN TN T 4
IIIIIIIIIIIIIIII fimi
------------------ (1
------------------ umi
R g \nEEv g

CPgrapneI

Figure 22 Computational segments in Cfoung and CPyapnes models

When a state (e.g. SlI, SR, SF) of a model is iatiaal to the state of another
model, they are called corresponding states. Caatipunt segments represent a
sequence of steps that leads from a correspontiitg sf interest (SI, SR, SF are
represented by shaded nodes in Figure 22) to (ygbal next) corresponding state of
interest. Computational segments therefore definead SGMymiaLisaTioN
SGMexecution and SGMermiNATION-

Definition D3: SGMnitiausaTion contains steps that lead from the related
states S| to the related states SR, $&WMition leads from SR to SR and
SGMrerminaTiON l€ads from SR to SF.

88

In order to prove the correctness of the refinememhust be shown that for
every run of CRouna model there exists a corresponding run of:5Ri where the
states of interest are in relation. Therefore,chputation segments must be defined
to show that the corresponding segments of thenwdels always lead between the
corresponding states of interest as it is definedddinition D3.

Computational segments are defined by a sequenstatds of the system.
System in this context means the application wiklofaits processes. The state of an
application in these models depends on the numb@razesses, their phases and
roles. Two states are different if any of thesepprtes are different and two
sequences are different if at least one statefiereint. Practically, the number of
different sequences can be infinite since the numdfeprocesses is unlimited.
Therefore the number of processes is consideredfxsnumber that is low enough
that the overall state can be handled and highginturepresent all different runs.

Every application contains exactly oneordinator process and at least one
userdefinedone. However, at least two of the userdefined gsses are required in a
parallel application. At the same time, behaviouf mrocesses during the
checkpointing can be divided into two represengatyroups: checkpoint with
termination and checkpoint without termination. 8h®n these considerations, state
sequences are represented by three processesortlinator and 2 userdefined
processes. A state with any numbeusérdefinedprocesses can be derived from this
two processes by scaling (multiplying) them uphte tequired number.

Based on the phase-transition diagrams (shownguar€i22) and the analysis
of the rules of the two ASM models, exactly twdeliént scenarios can be defined for
each (SI, SR, SF) of the three different computatiosegments. Altogether, six
different computation segments can be defined wbadh one represents an atomic
operation in the model. Atomic since the wheneher computation segments leaves
its initial state, there is no event that couldilwiththe model to reach the next state in
the sequence.

For segment SGMTiauisation the two scenarios are
1. Normal startup of the application and
2. Resumption of the application from checkpoint.

P=l PEW: PR P=R. P=R. Po~R. Po=Rc Po=Rc
P]_: | P]_:W P]_: R P]_: R P]_: R P]_: R
CPyround P=I P=W P=R

A 4B\ ﬁ::ii

SI™._ SAs. SAs; SAs: SAs. SAst SAs . SR

TTh

g ‘w22 = - 7

Cc Pgrap nel Po=I P=W, P=R. P=R. P=R¢
P]_: | P]_:W P]_: R
P2: | P2:W P2: R

Figure 23 Startup phase of SGMuriausation I CPground @Nd CPyrapnet models

The states for normal startup of §hd and CRrapnet models are shown on
Figure 23. Nodes represent the overall state obylseem and directed arcs show the
next state of the system. As it can be seen bajhesees start with the initial state
(SI) and end up with the running state (SR). Inediate steps are represented by

89

SAs1—SAss for CRyround@and SB:—SBsz for CPyrapner (NOte: steps are named in a form
like “SXsy” where X can be “A” for CRoung “B” for CPgrapnerand SY means the Yth
state in the sequence)

For each state, phases of every procegsRPP,) are shown above or below
the nodes in Figure 23, Pepresents theoordinator process, while fand B are the
userdefinegorocesses. The corresponding states are showradsdsnodes for SI and
SR and with thin grid pattern for intermediate etatRelation of a pair of states is
shown by a dotted line.

P=l P=W. P=RE P=R. P=R. P=R. P=R
C P P]_: | P]_:W P]_: RE P]_: R
grund p2 R

IIIIII

P2:
A\

A

Po=R;
P]_: R
P2: R

Po: | Po:WC Po: R EC
C Pgrap nel

Figure 24 Resumption phase of SGMmavisation iN CPground 8Nd CPyrapne models

Normal startup of the GRund assumes that the firstserdefinedprocess is
created by theoordinator the second one is spawned by tiserdefinedprocess,
since the ground model applies dynamic processioreaContrary to that, in the
grapnel model processes cannot be spawned atmenttiereforeoordinatorspawns
all userdefinedprocesses in one step. These two scenarios avenshoFigure 23,
where the sequences of both system starts and wgnds related states (in this
computation segment), while one pair of intermediatiated states (SA-SBs;) still
exists. Analysing the rules, one can come to alusion that every state can lead only
to the next state defined in the aforementioneduesieces (in Figure 23) for both
models. The rules ensure that during the startigselstate of the agents are not
depending on any external event. The exceptiomlg the spawnevent sent by the
programmer, which is predefined (assumed thad{-8 model gets a spawn event
after the first process started) in this situatmperform comparison of the two runs.

The comparison of the resumption computation segsnef CRyoung and
CPyrapnel (in Figure 24) shows correspondence between allstiates. Both model
implements resumption of an application in the savag, i.e. by going through the
same states.

For segment SGMecurion there can be two scenarios, namely
1. Communication among two processes
2. Process checkpoint and restart (i.e. migration)

Computation segment in the run of both models happge change state to
receive_waitingonly in case a process is blocked on receivingeasage. Any other
communication does not result in phase change. Biszra blocked process gets the
message it returns tounning phase again. These two segments are therefore
considered to be in relation (see Figure 25).

90

The second computation segment in S&Muriondescribes a scenario where
one of theuserdefinedprocesses initiates an application-wide checkpdu# to an
exitevent (assumed to be sent by the scheduler).

P=R. Po=Rc Po=R;
CPgroundPl:R P=R P=R

P]_: R P]_: R P]_: R
CPyapneP,=R P,=RW P,=R

Figure 25 Communication phase of SGMecution iN CPground @Nd CPyrapnet models

After checkpointing the notified process terminatesstarts and resumes,
while the other is suspended. When resumption Heds application continues
execution. The computation segment for this scenamlepicted in Figure 26.

CPyround P=R. P=R. Pr=R. P&=R. P=R; P=R. P&=R;
P]_: R P]_: C P]_:W P]_:W P]_:W P]_: R P]_: R
P2: R P2: C P2:T P2: | P2:W P2: RE P2: R

SR S She Shs She She SR

CPyrapn g I i K
SE* SBw SBwz SBws SBws SBus S’BMG SByw; SF
AT 4R\ 4R\ A N\ 4R\ AP
G HE, 1) HE . HH
W LV N1 1/ LV L/
P=R. P~R. Po=R. P=R. P=R. Pr=R. Po=R. Po=R. P~R:
P]_: R P]_: R P]_: C P]_:W P]_:W P]_:W P]_:W P]_:W P]_: R
P2: R P2: C P2: C P2: C P2:T P2: | P2:W P2: RE P2: R

Figure 26 Checkpoint/Restart phase of SGMkecurion iN CPground @Nd CPyrapnel models

The third segment SGMrminaTiON leads the system state from SR to SF.
There can be two scenarios implementing it. These a

1. Normal termination
2. Shutdown (termination with checkpoint)

In case of normal termination eveugerdefinedorocess finishes its work and
exits. After it, coordinator terminates, too. The sequence of states realiding
scenario is depicted in Figure 27 for both models.

After examining the termination segment of both eled all intermediate
states are considered to be in relation.

The final segment called shutdown can be seengar&i28. In this scenario,
the coordinatorprocess gets axit event (assumed to be sent by the scheduler) which
initiates an application-wide checkpointing. Whéreckpointing is performed, every
userdefinedand finally thecoordinator processes exit, i.e. the whole application
finishes execution.

91

Figure 27 Termination phase of SGMgrmination N CPground @8N0 CPyapne models

Analysis of the state sequences shows that the dmf&mence comes from the
fact that while in CRoung model thecoordinatorinstructs alluserdefinegprocesses to
terminate in one step (i.e. within one rule), thieeo model instructs them to do that
one-by-one whenever checkpointing is finished fpracess.

CP = P=Cc Po=C. P=C.
gound p-R P=R P=C P=T

PR Pi=C. P=C. P=C. P=C. P=C. Py=C.
P]_: R P]_: R P]_: C P]_: C P]_: C P]_:T
P2: R P2: R P2: C P2:T

Figure 28 Shutdown phase of SGMrmmnation N CPground @Nd CPyrapnel models

As a summary, the model gRnelis considered to be a correct refinement of
CPyround Since for every run of GRunamodel there is a corresponding run ofyGfRe
Every possible run of the models has been defiyed b

e showing that the model may only has three diffetgpés of computation
segments: SGMitiauisation s SGMexecution, SGMrerminaTION

¢ introducing the only two possible runs for eachhefthree segments

92

3.2 The TotalCheckpoint framework

3.2.1 Overview

As a preparation of thesis 2.2 | have designededadobrated a checkpointing
technique for native PVM applications based on dhstract checkpointing method
defined in thesis 1.2 and as a generalisation @itkthod developed in thesis 2.1. |
have studied PVM applications and services. Aftedsal have defined the structure
of the PVM application and solved the problem deiruption for communication
primitives. | have elaborated an abstract modelg)Pthat fits to the introduced
solution. Finally, | have elaborated a model refeat procedure to prove that the
model CRyy — implemented by the TotalCheckpoint (TCKPT) teols a correct
refinement of the Cfpnemodel. Based on the results thesis 2.2 has bgeiraed.

Thesis 2.2: The checkpointing technique for native PVM appios —
following a dynamic process model and realisedhgyTotalCheckpoint tool —
performs transparent checkpointing and its correspng CRcpt model is a
correct refinement of the GRynermodel and of the GRuna model.

Related publications are [4][5][8][9].

The solution introduced in thesis 2.2 gives trarspiacheckpointing operation
— both for the programmer and for the middlewar®ornative PVM applications
which follow static or dynamic process model.

3.2.2 Structure and principles

A native PVM application cannot migrate among nodesing execution,
because some parts of the application state aremaooration-related. The
communication-related part of the state is hiddenhe messaging layer i.e. in the
PVM environment.

Since the modification of the communication envirm@mt is undesired
(defined by Condition 3. in Section 2.1.4) thelagation must be modified. At the
same time only those techniques can be applieddthabt require any changes in the
application source code (defined by Definition inh Section 2.2.2).

The basic design principles of the TotalCheckpomamework can be
summarised by the following theses:

e PVM daemons of the virtual machines are not cheicked.

e Migrating PVM environment is converted to shutdoamd restart steps, i.e.
inner state of the PVM is lost after migration.

e Before checkpointing the processes leave PVM anmthguesumption they
reconnect to PVM. Processes leave PVM in ordertoatave such internal
state for the individual, disconnected processewsiy connected status.

e After the process memory is rebuilt from checkpoitilhe process is
reconnected to PVM.

e Everyreconnection causes the PVM process identdibe changed.

Based on the Conditions (defined in Section 2.anrt) Definitions (defined in
Section 2.2.2) special techniques must be intraditicat hide communication-related
changes from the user and give transparency forutde at the same time. To

93

understand the overall solution, the proposed tactire is introduced first (see
Figure 29).

In PVM, one process daemon per node is runningarbackground in order to
provide a contact point for the PVM processes ammunication. PVM daemons are
connected to each other forming a virtual envirommehere the connected user
processes can send messages to the others threudagmons [25].

In Figure 29 PVM daemons (represented by a PVMdjldarm the parallel
virtual machines and A, B, C, D are the user preee®of the application. They are
connected to the daemons and exchange messagaghthitem. Checkpoint server
[CS] stores and retrieves the checkpoint infornmatidhis information is gathered
inside the processes by a single process checlgpdibtary [CL] (denoted as ‘ckpt
lib’ in Figure 29) linked to the user processes.

TotalCheckpoint library [TL] (denoted as ‘tckpt’lim Figure 29) is linked to
each processes of the application. They are coethett the Totalcheckpoint
coordinator [TC] and execute the checkpoint rela®timands issued by TC.

Total-
checkpoint
coordinator

Check
point
Server T —e— T ot — = . Ckpt
~ lib
(pvm lib)

Figure 29 Architecture of the Totalcheckpoint framevork

In order to prepare the PVM application to be clpeaktable, modification of
the internal behaviour of the application is needexlavoid changes in the user code
special techniques are used, changes are transpfmenthe user. The main
cornerstones of the solution designed for TCKPTaagréollow:

e To perform checkpoint of a single process withiftsernals, a checkpoint
library (CL) is dynamically loaded at startup.

94

e At process creation time an initialisation functisnautomatically invoked to
initialize the underlying checkpointing system t@initialize TL.

e Using signals lets TL interrupt the user code ar@tete its own algorithms.

e Pre and post functions of TL are registered in ©Lbe called when a
checkpoint or resumption phase starts or finishes.

e Linker wrapping technique enables the modificatadrthe behaviour of the
PVM operations. When linking the application thegoral PVM routines are
renamed and they are replaced by the functionsLoWwith the same name.
Therefore, application user code invokes the fomctcalls defined in TL
instead of the real PVM calls. TotalCheckpoint dity can invoke the real
PVM calls if necessary.

e One instance of TC is running in the backgroundidilg on the frontend node
of the cluster) to help PVM processes in synchingisheir checkpoint
activities. PVM processes get contacted to TCaatigb.

3.2.3 Design issues and solutions

3.2.3.1ldentification of processes

The user code of a PVM application usually stonexcgss (task) identifiers
(TID) and refers to them when sending or receivimgssages. In case a process leaves
PVM the task identifier is discarded and when reegng a new identifier is generated
for the process [25]. Since processes exit and é\t& when they are checkpointed
and resumed, process identifiers change (if chankgub at least once) during the life
of the application.

During the execution, the checkpointer continuousdgps track of process
identifiers. For transparency, real TIDS are repthby virtual ones as returned by
PVM. Virtual process (or task) identifiers (USER SR ID, UTID) are kept the same
during the whole lifetime of the application, whilge continuously changing real ones
(SYSTEM TASK ID, STID) are mapped to them. This pigug is performed by the
checkpointer library and the checkpoint coordinator

If an application spawns and terminates its praedsequently, it might
happen that the STID returned by the PVM systeairesady assigned for a process as
UTID. Since, the virtualisation algorithm prefers use the same value for UTID as
STID, duplication can occur. Therefore, when spagnia new user process
coordinator always have to check for duplicatiod ahoose an unreserved value for
UTID if duplication is found.

In case a process is resumed and got a differexeps identifier it cannot be
addressed by its neighbours. Therefore the praadéss migration gets connected to
the coordinator and reports its new identifier viahis then distributed among all the
processes of the application before coordinatothemm continue their execution. In
other words the coordinator is used for a rendezvpaint for identification of
processes.

3.2.3.2Dynamic process creation

At the time of checkpoint, the Chandy-Lamport poatiois applied for saving
the in-transit messages among the processes. Uireecthe coordinator to have the

95

exact list of processes. According to the list, theocesses can cross-post
synchronisation messages to their neighbours.

Hence, dynamic process creation and terminationires) keeping track of a
process list. As a first step all processes musebestered in the coordinator, directly
by the newly spawned process and indirectly by#ient when querying the TID of
its child process. During the process creationexkpoint interruption is undesired, so
this operation must be defined atomic and uningeiile.

In case of process termination there is an obvsmlgtion. There are several
system or PVM calls that may result in process imation. Using wrapping
techniques enable the tool to redefine any catl. énsert notification of the
coordinator. However, there are numerous such ealis processes might terminate
even without any system call. Above all there carsibuations when a process aborts
due to any unexpected event. Applications are lsymepared for child process
termination; the checkpointer tool must also harttlis case. Therefore, it is not
failsafe to rely on the notifications of the moddi system calls, since it has no effect
when process aborts.

To continuously track the number of processes, dberdinator needs a
mechanism to automatically detect the terminatiba process. The solution used in
the TotalCheckpoint tool is based on the deteabibloss of connection towards the
user process. Since at startup the user procesdsbup a connection to the
coordinator, process termination can easily redlisg the connection loss detection
mechanism. When a process terminates the coordidatects that the connection has
been lost and registers the assigned process mn&ted and updates the actual
number of processes spawned by the application.

As a summary, in a Grapnel application the numldgrrocesses is constant
during the execution while in the native PVM versioew process can be created at
any time during execution. Therefore in the lattase, registering the actual number
of processes in a continuously varying applicateouires careful design.

3.2.3.3Starting the execution
In this section the normal startup (not resumednfroheckpoint) of the

application is introduced. During the startup medém a predefined protocol
between user processes and the coordinator is texecu

Based on the situation there are 2 different wéytantup:
1. Normal startup of a single process
2. Normal startup of a child process

The following protocol (depicted in Figure 30) iseeuted for normal startup
of a single process:

1. The user process gets connected to the coordinsiay the value stored in the
CHKPT_COORD_ADDR environment variable.

2. The user process decides on the mode of startepol lnesthe value of the
CHKPT_RESUME environment variable that can B&N, for normal
startup oRESUME for starting from checkpoint.

3. The user process identifies itself with the valiggedd inCHKPT_APPID
environment variable by sendingc#/lKPT_NEW_PROC message to the

96

coordinator. The startup mo@HKPT_WM_RUN is also attached to let the
coordinator override the mode if necessary.

4. Coordinator informs the user process with a mes€&tfePT_CKPT_INFO
storing the information about the locatid®dPT_SERVER) and about the
name CKPT_ID) of the checkpoint data.

5. Coordinator checks the conditions for performingN startup mode and
acknowledges it with thEHKPT_RUN message.

Protocol 1.
(single process, normal startup)

COOI‘dII’latOI‘ PVM Environment variables:

CHKPT_COORD-=<string>
Process default: checkpoint disabled
CHKPT_APPID=<string>
default: randomly generated
CHKPT_WM=RUN | RESUME
(WM= working mode)
default: RUN

connect(CHKPT_COORD_ADDR)

CHKPT_NEW_PROC
_ (CHKPT_APPID,CHKPT_WM_RUN)

CHKPT_CKPT_INFO

v

checking WM,|checking

environment and update
if necesgarv CHKPT_WM_RUN

STID=pvm_mytid()
CHKPT_PROC_TID(UTID=STID,STID)

UTID=chéck_dup(UTID,STID)
CHKPT_PROC_TID(UTID,STID)

CHKPT_PROC_TIDS

v

CHKPT_CONTINUE

v

v v

Figure 30 Protocol of normal startup for a single pocess

6. The user process sets the checkpoint related pteesrand initiates the PVM
subsystem.

7. The coordinator checks the TID values against dapbn sent by the user
processCHKPT_PROC_TID) and updatesGHKPT_PROC_TID) if
necessary.

The last two steps of the protocol are executednvaikeprocess initialisation
of user processes have reach this point. The Veststeps therefore are executed
simultaneously among the user process when theditabor decides to continue the
execution of the entire application.

8. Coordinator updates the process table of the useeps by the message called
CHKPT_PROC_TIDS. This message contaiksSER_TID, SYSTEM_TID
pairs of every process of the application.

9. Coordinator lets the user process start executica@HKPT_CONTINUE
message.

User process starts execution and coordinator Isgst¢co standby mode i.e.
waits for checkpoint related events to happen.

97

The following protocol (depicted in Figure 31) iseeuted for normal startup
of a child process:

1. Parent process spawns the child and sends a réqQuitisPT_CHILDTID) to
the coordinator to get the UTID, STID pairs for ttteld process.

2. Coordinator adds the request to a waiting queutbetTID values are
decided.

3. Overlapped with the first two steps, the child mssexecutes protocol 1.

4. After the startup protocol of the child processsimed, coordinator informs
(CHKPT_CHILDTID) the parent process about the TID values of thld ch

process.
Prqtocol 2. parent
(child process, normal startup) process
Coordinator child <> STID=pvm_spawn()

pl’OCESS Environment variables to b
Opropagated:
CHKPT_COORD=<string>
CHKPT_APPID=<string>
CHKPT_WM=RUN | RESUME

112

CHKPT_CHILDTID(UTID?,STID)

d

Adding paremt‘process to
gueue to wait for the child

process TID
Execution of protocol 1.
Checking wditing
gueue and send TID to
parent process CHKPT_CHILDTID(UTID,STID)

v

v v

Figure 31 Protocol of normal startup for the childprocess

Based on the previously defined two protocols,application can be rebuild
with checkpoint support in a seamless way as thestecols are hidden from the user.
To rebuild the application two additional protocale defined and introduced in the
next section.

3.2.3.4Recovering the execution

In case the application execution is resumed frbeckpoints, the recovering
protocol needs to be changed accordingly.

Based on the resumption alternatives, there are titerent startup
mechanisms distinguished. These are the followings:

1. Resumption of a single process
2. Resumption of a child process or the entire apfioa

The protocol of resumed startup for a single precdspicted in Figure 32) is
defined in the following way:

98

1. The user process gets connected to the coordinatay the value stored in the
CHKPT_COORD_ADDR environment variable.

2. The user process decides on the mode of starteol lnesthe value of the
CHKPT_RESUME environment variable that can B&N, for normal
startup oRESUME for starting from checkpoint.

Protocol 3.
(single process, resumption at startup) Environment variables
Coordinator py) CHKPT_COORD=<string>
default: checkpoint disabled
process CHKPT_APPID=<string>
O default: randomly generated
CHKPT_WM=RUN | RESUME
connect(CHKPT_COORD_ADDR) (WM= working mode)
CHKPT_NEW_PROC defauit: RUN

(CHKPT_APPID,CHKPT_WM_RESUME)

CHKPT_CKPT_INFO

checking|WM, -
checking envjronment,
update if necessary CHKPT_WM_RESUME

»
>

resume(CHKIPT_CKPT_INFO)
STID=pvm_mytid()
UTID=stored gt checkpoint
CHKPT_PROC_TID(UTID,STID)

UTID=checK_dup(UTID,STID)
CHKPT_PROC_TID(UTID,STID)

CHKPT_PROC_TIDS

»
>

CHKPT_CONTINUE
v 2 4

Figure 32 Protocol of resumption at startup for a s1gle process

3. The user process identifies itself with the valiggedd nCHKPT_APPID
environment variable by sendingC&/lKPT_NEW_PROC message to the
coordinator. The startup mo@HKPT_WM_RESUME is also attached to let
the coordinator override the mode if necessary.

4. Coordinator informs the user process with a mes€&tjfePT_CKPT_INFO
storing the information about the locatiddKPT_SERVER) and about the
name CKPT_ID) of the checkpoint data to be used for resumption.

5. Coordinator checks the conditions for performin@ESUME startup mode
and acknowledges it with tteHKPT_RESUME message.

6. The user process sets the checkpoint related ptaesrand initiates the
resumption of the internal state based on the gwnkinformation addressed
by the coordinator. Now, the process memory iswkigen, protocol is
continued with the initialisation of the PVM system

7. The coordinator checks the TID values against dapbn sent by the user
processCHKPT_PROC_TID) and updatesGHKPT_PROC_TID) if
necessary.

99

The last two steps of the protocol is executed drdil process initialisation of
user processes have reach this point. The last steps therefore are executed
simultaneously when the coordinator decides toiooatthe execution of the entire
application.

8. Coordinator updates the process table of the useeps by the message called
CHKPT_PROC_TIDS. This message contaiksSER_TID, SYSTEM_TID
pairs of every process of the application.

9. Coordinator lets the user process start executica@HKPT_CONTINUE
message.

Protocol 4.
(entire application, resumption at startup)

Coordinator Parent Environment variables:

CHKPT_COORD=
prOCeSS <string>

default: checkpoint

connect(CHKPT_COORD_ADDR) disabled
CHKPT_APPID=
CHKPT_NEW_PROC <string>
(CHKPT_APPID,CHKPT_WM_RESUME) default: randomly
D generated
CHKPT_CKPT_INFO CHKPT_WM=RUN |
i > RESUME
checking WM, - .
checking environment, (WM= yvorklng mode)
update if negessary CHKPT_WM_RESUME default: RUN

»
»

resume(CHKRT_CKPT_INFO)
STID=pvm[mytid()
UTID=stored a} checkpoint
CHKPT_PROC_TID(UTID,STID)

UTID=checK_dup(UTID,STID) Child
CHKPT_PROC_TID(UTID,STID) process

»

CHKPT_ SPAWN

STID:p\'/rT _spawn()--------- > (P

A

Execution of protofcol 3.

v

Repeat spawn if necessary

CHKPT_PROC_TIDS

v

CHKPT_CONTINUE
v > ,L v

Figure 33 Protocol of resumption at startup for theentire application

The next protocol (Protocol 4) is used for startihg whole application from
checkpoints. By forcing the parent processes tavsgaeir children, the relationship

100

of the processes in the application is preservé@. Jpawning operation is repeated
until the whole application is resumed. The protoctepicted in Figure 33) is as
follows:

1. The first block (until the messa@HKPT_SPAWN) of steps defined for the
parent process in this protocol is equal with thesodefined by Protocol 3
without the last two steps. It means that the maitof resuming a new child
process is executed after the parent process hasssiully finished its
protocol and is waiting for the coordinator to goue the execution.

2. In case a new child process is about to be spavinasgd on the relationship
of the processes at checkpoint time, coordinatiectethe parent process and
instructs it to spawn a child by sendinGKPT_SPAWN message to it.

3. When a child process resumes it executes Protocol 3

4. Coordinator repeats this step until the entireiappbn is built. Spawning
operations are executed overlapped in time.

5. When the last process has successfully resumedjinator updates the TID
table of the processes by sendil@HKPT_PROC_TIDS message to all of
them.

6. After all the processes are aware of the idensifieoordinator instructs them
to continue the execution withGHKPT_CONTINUE message.

Based on the protocols defined in this section,piieeesses of the application
can be started in 4 different ways.

3.2.3.5Checkpointing the application

In this section the overall application state sgvimechanism i.e.
checkpointing is introduced. The solution is dediieom the previously mentioned
Chandy-Lamport algorithm. The main steps of thevfiof checkpoint (depicted in
Figure 34) are the followings:

1. Checkpointing of the application is started bymteiruption of the processes.
Each process reports this fact to the coordinatthr av
CHKPT_SYNC_START message.

2. When the coordinator gets this notification frortlaé processes of the
application, synchronisation is started wit€@ldKPT_SYNC_TIDS message
containing the TIDs of the processes performingctieckpoint.

3. Inthe next step processes are performing a cressaging and turn into a
message receiving mode i.e. saves all incomingagessappear in the
channel until CHKPT_SYNC_MSG is taken.

4. Saving the in-transit messages is signalled tatloedinator by a
CKPT_SYNC_FINISHED to which responding with a
CHKPT_SAVE_START initiates the checkpoint of the individual proeess

5. Checkpointing of the individual process means &véemessage-passing layer
i.e. PVM and perform the real internal state sayirgg copying the whole
memory) of the process internals. The operatidimished with a
CHKPT_SAVE_FINSIHED message to the coordinator and after enrolling
again to PVM the new identifier is reported b AKPT_PROC_TID
message. Leaving and re-entering the PVM is reduo@eset the state of the
PVM library contained by the process itself, othiseathe internals of the
PVM library of a resumed process represents coadestate which is not true,
since reconnection must be perform after resumption

101

6. When all the processes have finished the previps soordinator distributes

the new identifiers (messa@HKPT_PROC_TIDS) and let the processes
continue CHKPT_CONTINUE) their execution.

_ PVM PVM
Coordinator process A process B
Checkpoint Checkpoint
interrupt interrupt%
CHKPT_SYNC_START

A

CHKPT_SYNC_START

A

CHKPT_SYNC_TIDS

v

CHKPT_SYNC_TIDS

v

CHKPT_SYNC_MSG

v

CHKPT_SYNC_MSG

A

CHKPT_SYNC_FINISHED

“CHKPT_SYNC_FINISHED
“CHKPT_SAVE_START
CHKPT_SAVE_START

v

pvm|_exit() pvm_|exit()
chegkpoint() checkpoint()
CHKPT_SAVE_FINISHED
" CHKPT_SAVE_FINISHED
) STID=pvm_|mytid() STID=pvm_|mytid()
CHKPT_PROC_TID(UTID,STID)
‘CHKPT_PROC_TID(UTID,STID)

a

CHKPT_PROC_TIDS
CHKPT_PROC_TIDS

v

v

CHKPT_CONTINUE
CHKPT_CONTINUE

v

v

Figure 34 Protocol of checkpoint saving in TCKPT

The introduced protocol is responsible to perforrchackpoint of the whole

application i.e. all processes must take part. Hewat can happen that only some of
them interrupted, since it is decided by the sclediihe processes that have not been
interrupted by the scheduler are interrupted byahgr suspended process.

102

3.2.3.6Restoring message buffers with dynamic message foatn

In case the processes execute the synchronisdtitie n-transit messages in
the checkpoint saving protocol the following regument must be fulfilled:

e PVM offers filtering of messages by type (called)tand by partner. During
receiving incoming messages, filtering of messaggstype must not be
applied; any type of incoming messages must beivesteread and saved.
Otherwise filtered messages are lost.

e Each process must possess the identifier of ther opinocesses that are
included in the procedure of message synchronisatio

e The receiver process must be able to save any ingomessage stored in a
message buffer. Saving a PVM message buffer rexjthiee knowledge of the
message format which is not part of the messadfeedouffer.

To fulfil the third requirement the checkpoint Bloy must recognize the
protocol i.e. the format of the message. Sinces iimplicitly coded in the user
algorithm, the only possible way is to add extrimnmation to the message through
redefinition of the message creation/packagingsc&kdefinition is demonstrated in
the next block of pseudo code.

Messaging in the application with TCKPT:

elementA :element with user type A

TA :element type A

elementT :element for storing a type

TT :element type for describing a type
Sender side:

Function packing(TA,elementA,messagebufferX)
Begin
packing(TT, TA, messagebufferX)
packing(TA, elementA, messagebufferx)
End function

Receiver side:

Function unpacking(TA, elementA, messagebufferY)

Begin
unpacking(TT, elementT, messagebufferY) ;ommitingype information
unpacking(TA, elementA, messagebufferY)

End function

Whenever the user adds a new element to a buffeugh a packaging
method, the method inserts the format (type angthgrinto the buffer before the real
user data. This extra information has a fixed ngsdarmat and is inserted before
every user message element. With this extensiorclieekpoint facility is able to
unpack the appropriate format of data elements tterbuffers. On the receiver side,
format information is automatically omitted by therresponding message handling
calls if the message is read by the user code.

Saving the content of a message buffer is alsoinetjfor created-but-not-sent
buffers at the time of checkpointing. Since any hamof message buffers can be
created in PVM by the programmer, saving and resjothese buffers are also

103

inevitable tasks for the checkpointing facility. Fave the content of these types of
buffers the previously introduced method can asajplicable.

Last, but not least virtualisation of the PVM buffdentifiers similarly to the

PVM task identifiers (TID) must be applied. PVM fers have discrete identifiers and
the buffers with their identifiers together areoatemoved in case of detaching from
the PVM environment. When re-entering PVM the regtiom mechanism must take
care of the initialisation of all the buffers ewdtat the time of checkpoint. New
buffers are created, their identifiers are assigoeithe original ones and their content
is also added. When the user code refers to a gedsaffer after resumption a
mapping of the original and new identifier is penfi@d by the checkpointing layer.

3.2.4 Comparison of GRAPNEL and TCKPT checkpointing

In the following few paragraphs an overview of BRAPNEL and TCKPT
checkpointing tool is given in order to reveal ttidferences between these two
solutions and in order to show the motivation for tinal design step in TCKPT.

The basic difference is that GRAPNEL version is edmat supporting
checkpointing of applications developed in a higdvel graphical environment,
TCKPT is a design for native PVM applications. Heyee TCKPT could be utilised
for checkpointing GRAPNEL applications, several aahages and extra assistance
offered by the GRAPNEL layer would not be exploitgdTCKPT.

In GRAPNEL application the GRAPNEL layer itself notluces several
restrictions regarding the topology. A significaastriction is that the topology of a
GRAPNEL application is fixed, the layout is statido creation of additional child
processes is possible in the PGRADE environmentis Teature enables the
GRAPNEL checkpointing support to simplify its imet process management
mechanism.

The essential support provided by the GRAPNEL layar be summarised by
the following points:

e Process topology is known by the GRAPNEL servecess that gives
significant help in the process management mecimnid the
checkpointer

e Virtualisation of the process identifiers is alrgaidhplemented with
GRP identifiers, so this functionality is not recd from the
checkpointer

e Message format is static in the sense the protogcbithe channels
connecting two processes must be defined in advandeno changing
is possible. Therefore the information of the mgesdormat is
available for the checkpointer to unpack and saessages in the
memory while executing the synchronisation of mgesa

The previously defined restrictions and supporeigiby the GRAPNEL layer
confirms the need for both GRAPNEL and TCKPT chedakier since for GRAPNEL
application a general native PVM checkpointer lIKEKPT is not efficient enough
while GRAPNEL checkpointer is not able to work amriPGRADE applications.

During the design of TCKPT several services pravidy the GRAPNEL
layer had to be replaced and the layering is alsdified (depicted in Figure 35)
according to that.

104

In the software layers (see Figure 35) designhed @KPT a virtual PVM API
is inserted (replacing the functionality of the GRREL layer) in order to enable the
modification of the behaviour of the PVM calls sag/transparent checkpointing for
the programmer. This insertion is automatically elcat the time of linking the
application and no modification of the source cizsdequired.

USER code USER code
Checkpoint support Checkpoint support
PVM api PVM api
Information on message format Information on message format
and topology in GRAPNEL layer and topology is missing
GRAPNEL checkpointina TCKPT checkpointing

Figure 35 Software layers in GRAPNEL and TCKPT chekpointing

However, most of the required services of the GREBNheckpointing are
successfully substituted in the TotalCheckpointl,t@me critical difference in the
current design is that the coordinator is a stamglindependent, background process
usually running on the front-end node of the clusiile coordination in the
GRAPNEL version is part of the application as shanvRigure 36.

/ application

nuﬁi;r (:)

workers

. <
coorqination
The coordination process is The coordination process it
part of the application an external process

Figure 36 Comparison of structures of GRAPNEL and TKPT checkpointing

The original version of TCKPT has been designedHongarian ClusterGrid
[85] where each cluster has the coordinator aspdoged service. Since the current
work aims at designing and developing a checkpoitdel with application and
middleware transparency, coordinator must be somehotegrated into the
application. Otherwise it causes the applicationdepend on a surrounding grid
middleware environment which results in failingftdfil the requirement defined by
Condition 4. defined in Section 2.1.4.

3.2.5 Overview of the Enhanced TCKPT

In order to reach the desired architecture of tl@&KFT and make it an
application and middleware transparent and ClustérGmpliant checkpointer tool
the coordinator must be integrated with the appboa The main advantages of the

105

introduced tools and the resulted enhancementnisrsuised and depicted on Figure
37.

GRAPNEL checkpointing TCKPT checkpointing

GRAPNEL dependence GRAPNEL in-dependence
static process model dynamic process model

static message format dynamic message format
built-in coordination

external coordination
Enhanced TCKPT checkpointing system

GRAPNEL in-dependence
dynamic process model
dynamic message format
built-in coordination

Figure 37 Evolution of the Enhanced Totalcheckpoinframework

In Figure 37 a classification of the two introdudedls is depicted. There are
four aspects, namely: GRAPNEL relation, process ehoand message format and
coordination type. Features are bold representiegdesired ones for the enhanced
version.

The weaknesses of the GRAPNEL solution are the rdkpee on the
graphical language, the static process model beatiésigned application follows and
the static message format which must be definetiirance without the possibility to
modify it during the execution. In the TotalCheckyaool these points have been
fixed in order to make the tool independent of graphical language, to handle
dynamic process creation in the application ansiutgport message formats compiled
on the fly. However, the built-in coordination lgnissing from the final (enhanced)
version that is a strong point of the GRAPNEL vensi

In order to integrate the coordination into thelmapion a special technique is
used. The coordinator functionality is transformiei a procedure and compiled into
a static library. This library then linked to thepdication at compile time as part of the
checkpointing library. Creation of the coordinaisrthe responsibility of the first
instance of processes (master) when starting u@ppécation as depicted in Figure
38.

1.submit

coordinator‘
2.
master ‘ fork or

spawn 3.connect

worker O
5. connect

¢ -—————— == -

v

———————-

Figure 38 Coordinator initialisation in the Enhanced TCKPT framework

When the first process (master in Figure 38) isate@ at startup, it forks or
spawns the coordinator process before any user d®dexecuted. When the

106

coordinator is started, master gets connected Hritleastart-up protocol defined in
section 3.2.3.3 and 3.2.3.4. is executed

Terminal

0

Process A
(master)

Process B Process C

tckot lib

tckot lib

tckot lib

fork()

Coordinator

&optional g [Process E \
chikpt server Ax
el user cod
‘) Process D tekot lib
Storage/ ; i
tckot lib k pvm lib j

Figure 39 Structure of the Enhanced TCKPT framework

After applying the mechanism introduced in the pres paragraph the layout
or structure of the application changes in the deyicted in Figure 39.

In the Enhanced TCKPT framework the coordinationalpee a child of the
Master process of the application. The lifetimetltd coordination starts when the
Master creates it and ends up with the event whieitsaconnections to the user
processes (A, B, C, D, E in Figure 39) break. Coatdr in this context also serves as
a checkpoint server storing and retrieving the kpemt information of the user
processes.

3.2.6 Definition of CPyckpt ASM model

In order to verify the proper behaviour of the TGtaeckpoint framework, a
CPept model is elaborated and its relationship to thg.dxfd model is analysed. The
following section introduces the ¢ model.

3.2.6.1Universes, Signatures and Initial state

The universes and signatures used byg:Rare inherited from Cfpne With
only one modification and the initial state is atbe same as in GRpyner model. The
exact definition can be found in section 3.1.4.d ari.4.2, respectively.

The one and only modification is related to the sage type. Since in this
model processes can only be spawned by user dgfnoegsses, the coordinator must
be able to control their spawning. This ability rsquired at resumption of the
application. New message type called “spawn” isonhticed, so the definition is as

107

follows: type: MESSAGE- {userdefined, interrupted, endofchannel, syncleedj
saved, resumed, exiting, exited, spawn}

3.2.6.2Rules

1. Rules for initialisation

The very first process (that is the master proocdédhie application) has the task of
creating thecoordinatoras it is introduced in section 3.2.5. Other dstare the same
as it was defined in GRpnel

CPgrapnel-R1a (modified version of CPgrapnel-R1a)
if phase(p)=init then
if role(p)=undef then
role(p)=userdefined
extend PROCESS by c with
app(c) :=app(p)
phase(c):=init
role(c) :=coordinator
startupmode(c) :=undef
master(c) :=false
endextend
else
phase(p) :=WAITING
endif
if master(p)=undef then
master(p)=true
endif
endif

CPtckpt-R1b (=CPgrapnel-R1b)

Comparing to CRound Or CRyrapnet models, in rule CPtckpt-R1c no process spawning
needs to be performed since by the teoerdinator starts onauserdefined master)
process is already created.

CPtckpt-R1c (modified version of CPgrapnel-R1c)

if role(p)=coordinator & phase(p)=waiting & startupmode(p)=undef then
if startupmode(p)=normal then
phase(p) :=running
process_to_store:={}
process_to_checkpoint:={}
to_terminate:={}

process_
process_to_resume:={}
else
phase(p) :=resuming
event(p) :=resume
endif
endif

2. Rules for process spawning

CPtckpt-R2a
if role(p)=userdefined & phase(p)=running & event(p)=spawn then
extend PROCESS by child with
app(child):=app(p)
phase(child):=init
role(child) :=userdefined
startupmode(child) :=normal
master(child) :=false
endextend
endif

108

Dynamic process creation during execution is suigglosimilarly to the Cgound
model. The rule CPtckpt-R2a ensures the process tweated, while the rule
CPtckpt-R2b ensures the process to start its erecut

CPtckpt-R2b
if role(p)=userdefined & phase(p)=waiting &
startupmode(p)=normal & process_to_checkpoint(p)=false
then
phase(p) :=running
endif

3. Rule for sending a message
CPtckpt-R3a (=CPgrapnel-R3a)

4. Rules for receiving a message
CPtckpt-R4a (=CPgrapnel-R4a)
CPtckpt-R4b (=CPgrapnel-R4b)

5. Rules for interrupting the execution
CPtckpt-R5a (=CPgrapnel-R5a)
CPtckpt-R5b (=CPgrapnel-R5b)
CPtckpt-R5¢ =CPgrapnel-R5c)
CPtckpt-R5d (=CPgrapnel-R5d)

6. Rules for message synchronisation among the process
CPtckpt-R6a (=CPgrapnel-R6a)
CPtckpt-R6b (=CPgrapnel-R6b)
CPtckpt-R6¢ (=CPgrapnel-R6c)
CPtckpt-R6d (=CPgrapnel-R6d)

7. Rules for checkpoint saving of processes
CPtckpt-R7a (=CPgrapnel-R7a)
CPtckpt-R7b (=CPgrapnel-R7b)

8. Rules for terminating the processes
CPtckpt-R8a (=CPgrapnel-R8a)
CPtckpt-R8b (=CPgrapnel-R8b)
CPtckpt-R8c (=CPgrapnel-R8c)
CPtckpt-R8d (=CPgrapnel-R8d)
CPtckpt-R8e ECPgrapnel-R8e)
9. Rules for resuming the processes

CPtckpt-R9a (modified version of CPgrapnel-R8a)
let allproc=((VrpePROCESS) :app(rp)=app(p) & rp=p)
Tet master=((mePROCESS) :app(m)=app(p) & master(m)=true
if rﬁ1e(p)=coord1nator & phase(p)=resuming & event(p)=resume
then
imagefile e IMAGE: imagefileofapp(imagefile)=app(p)
SINGLE_PROCESS_STATE_RESUME (p , i mageﬁ' '?e)
do forall child : process_to_store(child)=true &
master(child)=false
extend MESSAGE by msg with
from(msg) :=p
to(msg) :=master
type(msg) :=spawn
endextend
enddo
process_to_checkpoint:={}
process_to_terminate:={}
process_to_resume:=process_to_store
phase(p) :=running
endif

109

At resumption everyserdefinedprocess must be created — except the master one
since it is already created — to resume them.dbirge by notifying the master to make
it on behalf of thecoordinatorwhich is realised by the rule CPtckpt-R9a.

CPtckpt-R9b (=CPgrapnel-R9b)
CPtckpt-R9c (=CPgrapnel-R9c)
CPtckpt-R9d (=CPgrapnel-R9d)
CPtckpt-R9e ECPgrapnel-R9e)

The rule CPtckpt-R9hakes spawning possible by tirgerdefinegprocesses on behalf
of the coordinator process. When receiving a “spawn” message, promesdion is

performed.
CPtckpt-ROf

let coord=cePROCESS:role(c)=coordinator & app(c)=app(p)
if role(p)=userdefined &

(amsgeMESSAGE: from(msg)=c & to(msg)=p & type(msg)=spawn)
then
extend PROCESS by child with
app(child):=app(p)
phase(child):=init
role(child) :=userdefined
startupmode(child) :=undef
master(child) :=false
endextend
MESSAGE (msg) :=false
endif

3.2.7 Relation of CPgyapnel and CPyckpt ASM models

In this section, C& is examined in order to show the relation tog&Ry
model. Based on the definition of the rules, blwious that CR is more similar to
CPyrapnel model than to Cfuna Since CRrapner IS @ correct refinement, the models
CPyrapnel(defined in section 3.1.4) and Gk (defined in section 3.2.6) are analysed to
see whether Gyt is a correct refinement of GBeand of CBroungat the same time.

3.2.7.1Correctness of refinement

In order to examine the equivalence, first theedlé#hces between ¢ and CRBrapnel
are identified based on the definition of the rules
1. Initialisation rules are different, since the sta@rimechanism of the
coordinator is changed.
2. Resumption rules are different, due to the diffeeem the startup
mechanism.
3. New message type is introduced, but is has notedfethe states of the
models
4. Dynamic process creation is introduced comparetRgupnel

Proving the correspondence (i.e. one is a coredetament of the other) of
CPkpt and CRBrapnel can be carried out in the same way as in sectiar.2. The
definition of the state, states of interest and theee computational segments
(SGMnimiausation, SGMexecution, SGMrermination) are exactly the same in this
case at it was introduced in section 3.1.5.2. Basethe differences listed above, only
SinimiaLisaTion computational segment is required to be justiffe@Rcyp: by showing
the sequences of states for normal startup andefumption. For normal startup, a
comparison of the state sequences can be seegureHoO.

110

Any run of a normal startup of @Ry always leads from S| to SR which can be
derived from the logic of the rules. A startup ssaee is atomic, since the logic of the
rules only depends on internal parameters set éyules themselves i.e. cannot be
interrupted by any event.

P=l P=W. Po=Rc PE=R. Po=Rc

CPgrapneI
Sl SBs; SBs; SBs: SR™.
C Ptckpt }
SL-" SCs; SCs; SCs: SCs: SCs: SCse SR

|||||

P=l P=W. P~R; Pr=R; Pr~R. P=R. Po=R;
P]_: | P]_:W P]_:W P]_:W P]_: R P]_: R P]_: R P]_: R
P2: | P2:W P2: R

Figure 40 Startup phase of SGMuriausation IN CPyrapnel @Nd CPReyp: models

An alternative computational segment for initiaisa is the resumption (i.e.
startup based on checkpoints), which can be seé&igone 41.

Resumption of an application is always a sequerara 51 to SR. Looking at
the sequences there is a slight difference at Staie CR.. The state of the process
is marked with "R=I", while for CPyapneiSI is represented by ¢Pl”. The difference
is only syntactical, since both models have theesantial state (defined in section
3.1.4.2) which says that there is exactly one meedth INIT state, by theole is set
to undefined Therefore, the correct expression for SI would®el” in both models.
Indices are introduced in only to express whicle tbe created process will get in the
forthcoming steps of sequences.

P=l P=W. P=RE P=Rc P=R. P=R. Pr=R:

C Pgrapnel P]_:| P]_:W P]_:RE P]_:R

P2: | P2:W P2: RE P2: R
] AT T

SBr:

SGu SGrz SGr: SGCrs

AT

CPeipt Po=I P=W. P=RE; P=R. Pi=R. Po=R. P=R:
P]_: | P]_:W P]_:W P]_:W P]_:W P]_:W P]_: RE P]_: R
P2: | P2:W P2: RE P2: R

Figure 41 Resume phase of SGMriausation IN CPgrapnel anNd CPepe models

As a summary, GR is considered to be a correct refinement o§£:k and
CPyrapneiSince all computation segments have been definddtdnas been shown that
every segment leads to a corresponding state efestt between the models. In this
case only SGMmiauisation segments were shown because the other two segarents
equivalent in every state, since the related nwie® inherited from Cfpnel

111

4 Migration of PVM applications

Process migration in distributed systems is a gpesient when a process or
application running on one or several resourcefgedeployed to other one(s) in a
way that the migration is transparent for the psscexecution. The migration
mechanism can be advantageously used in severas cliee load-balancing,
preemption, fault-tolerance or providing specésdource needs.

Depending on the complexity and level two approachee defined from
migration point of view in this work:

1. Process migration process migration in a parallel application refés the
event when the execution of the application is pdusome processes are
terminated and restarted (i.e. migrated) on a miffe machine and finally the
application continues the execution. The numbenigfating processes (m) in
an application (consisting n processes) must be < n. The process that
never migrates is the built-in checkpoint coordimatprocess (e.g. GS in a
Grapnel application).

2. Application migration : application migration in a parallel applicatiam the
current context refers to the event when the exatuwif the application is
paused, an application-wide checkpoint is perfornaed all processes -
including the checkpoint coordination process - tareninated. The broker or
the user then resubmits the application to a diffecluster after all the files
(executable, input, output and checkpoint) havenbe®ved to the target
cluster. After resubmission the application relo#us previous state from the
checkpoint files and continues the execution.

Process migrationis typically used inside a cluster among nodesrerhe

¢ not all the resources (nodes executing the prosgséehe application are
revoked by the schedule

e the master process of the application is not teateth but continuously
running

e revoked resources are replaced within a relatiskedrt period of time

e the processes of the application are notified albetrevoking of the
resource

e the application is not removed from the queue efdtheduler
e the master process is not checkpointed

Application migration is typically used inside a Grid among Clustersnghe
o all the resources of the application are removed

e the master process of the application must be rtexted, it cannot continue
execution

e the revoked resources are not replaced within & gleoiod of time

e the processes of the application are not notifiedividually about the
removal of the resource, the migration is initiatedough/by the master
process

112

e the application is removed from the queue of theedaler in order to be
restarted on a different cluster

e master/coordination process performs its own cheickp

113

4.1 Process migration on Clusters

4.1.1 Overview

After the theoretical background elaborated inftigt group of theses and the
concrete checkpointing solution developed in theosd group of theses, the goal of
the third group of theses is to justify that treargmt migration — based on the previous
solutions — can be realised in ClusterGrid envirentn There are two options:
migration of certain processes of the applicatioroag the resources of the hosting
cluster and migration of the entire application amalusters. To demonstrate the
elaborated techniques the well-known job schedtdéed Condor has been selected.

Thesis 3.1 focuses on transparent process migrabpnanalysing the
interaction between the GRAPNEL application — ind#gg the transparent
checkpointing facility developed in thesis 2.1 -d&ondor maintaining the resources
of a cluster. In this thesis after short overviCondor, | define the basic conditions
of operation, the components and | determine tlpssbf migration mechanism. The
theory of this mechanism is justified by the anmlysf state-transition diagram
derived from the Cgspneimodel and by mapping the flow of migration procedinto
the state-transition diagram. Based on the intreduesults | have stated thesis 3.1.

Thesis 3.1: The migration of processes of the GRAPNEL appboasti—
developed in P-GRADE - is realised in a transpangay for the schedulers
and the elaborated solution adapts itself to theermal rules of the Cgapnel
ASM model.

Related publications are [10][11][12][14][20]

In the introduced solution transparency is enstirech several aspects, since
the migration does not require any modificationCiandor, nor in PVM, nor in any
components of the operating system and nor indbece code of the application.

4.1.2 Condor

Condor is a specialized workload management sy$dermompute-intensive
jobs [33][34]. Condor provides a job queuing meda$iam) scheduling policy, priority
scheme, resource monitoring, and resource managelbisers submit their serial or
parallel jobs to Condor, Condor places them intuaue, chooses when and where to
run the jobs based upon a policy, carefully mosittreir progress, and ultimately
informs the user upon completion.

The aim of Condor is to exploit the unused commuiycles of the nodes
under its control. Condor continuously monitors tisage of the machines and jobs
are started on idle nodes. When the machine becoomsdle (some processes are
executed by the owner of the machine), the executfocondor job is suspended to
deliver the whole performance for the owner ofirechine.

Condor defines different execution environments w@sverses. When
submitting the job, a submit file must be createat usually contains the name of the
executable and the universe, the name of filesdie standard output, error and log
and parameters if needed. Job requirements carnbalstefined by ClassAds that is
taken into account by condor when searching for@pyate resource.

114

Each machine might define its own policy detailmgv, when and what kind
of jobs can be accepted and executed through tes&dlls mechanism. Based on the
rules of the machine and the requirements of the @ondor performs matchmaking.

When submitting a PVM job, Condor searches andcaflés the minimum
number of available nodes defined in the submi {Condor usually allocates only
one process per computing resource i.e. proce¥doen all the nodes are ready to
execute job, the job is started on the master mddee the master process of the job
is expected to spawn the required number of PVMesses defined in the submit
file.

Starting a new PVM process on a remote node rexjtheeinitialisation of the
PVM daemons. Condor is integrated into PVM in ortteperform resource related
activities on behalf of the PVM environment. WherP¥M process terminates its
node is cleaned up and the master process is @jpgcspawn new ones if necessary.
In case a node becomes unavailable because - donpe - its owner starts using it,
PVM process running on it is notified to terminate.

When the job has finished its execution, everycalled node is deallocated
and the output of the job is available in its wadkdirectory.

This short overview is required to understand hbevrhigration mechanism of
GRAPNEL application works under the Condor job-stthmg system.

4.1.3 Self-coordinated migration in the GRAPNEL application

4.1.3.1Assumptions
Assumptions for the self-coordinated migrationtaeefollowing ones:

1. Resource management related operations (e.g. pwdhosy of PVM is
correctly handled and served by the job scheduler.

2. Node vacation in case of resource removal is @l soft termination of the
user processes issued by the job scheduler. Safinion lets the process
handle the event and execute any procedure befdre e

These assumptions are required for the migrationguture to be executed in a
correct way. Since these assumptions are fulfillyd the previously introduced
Condor job-scheduler, in the rest of the sectics @ondor system is considered to
demonstrate the process migration mechanism.

4.1.3.2Key components

Naturally, the migration procedure is based ondingport of the GRAPNEL
checkpointing framework integrated in the apploatdeveloped using the PGRADE
programming environment. The migration mechanismba&sed on the active
participation of four elements. They are introdudeefly, details can be found in
section 3.1.3.2:

e GRAPNEL Server (GS): Since this component is mamagie state of the
processes and coordinates the checkpointing proeedhe migration is also
coordinated by this component.

e GRAPNEL library (GL) with the checkpoint extensiariieckpoint extension
of this library performs checkpointing and resumptof the migrating user process.

115

e Dynamic checkpoint library (CL): loaded at procetamt-up and activated by
receiving a checkpoint event, reads the process amenmage and passes this
information to the Checkpoint Server

e Checkpoint Server (CS): a logical component (canpbe of GS) that
receives checkpoint data via a communication cHarsteres it into a file or vice
versa.

4.1.3.3Preparation of the migration procedure

First an instance of the Checkpoint Server (C3)itgated in order to transfer
checkpoint files to/from the dynamic checkpointrdibes (CL) linked to each
processes of the application. After starting theliaption, each process of the
application automatically loads CL at start-up tbla¢cks the existence of a previous
checkpoint file of the process by connecting to €8.finds appropriate checkpoint
file for the process, the resumption of the procssautomatically initiated by
restoring the process image from the checkpoiet dtherwise, it starts from the
beginning.

When the application is launched, the first prodbss starts is the GRAPNEL
Server (GS) performing the coordination of thertliprocesses. It starts spawning the
client processes to create the topology of thellpaegpplication. Whenever a process
becomes alive, it first initiates its integratedeckpointing support, checks for
checkpoint file and gets contacted to GS in ordeddwnload parameters, settings,
etc. When each process has performed its inittadisaGS instructs them to start
execution and hence, the application is running.

4.1.3.4The migration procedure

Figure 42 shows the main steps of the migrationooad applied between the
clients and the GS. The migration protocol is cygped with the checkpointing
protocol since the latter one is part of the fose.

While the application is running and the process®sdoing their tasks the
migration mechanism is inactive. Migration is aated when a client process detects
that it is about to be killed (‘Termination’ forieht A in Figure 42). The client process
immediately informs GS (REQUEST_for_chkpt) that i#urn initiates the
checkpointing of all the client processes of theliaption. Time for executing this
protocol is assumed to be ensured by Condor thrasglonfigurable properties.

For a client process checkpointing is initialisather by a signal or by a
checkpoint message (DO_chkpt) sent by GS in omlendke sure that all processes
are notified regardless of performing calculatiancommunication. Details of this
interruption are described in sections 3.1.3.4,3%land 3.1.3.6. When notified
processes are prepared for checkpointing (READYchkpt), they are instructed by
GS to initiate synchronisation (DO_sync) of messaddie synchronisation ends up
with all the in-transit messages stored in memdiryhe client processes. Finally,
client processes send their memory image to thekploént server to store.

Then all checkpointed processes wait (DONE_chkpt)fairther instruction
from GS whether to terminate or to continue itscexien. GS terminates the clients to
be migrated by the appropriate (DO_exit) messadier{CA in Figure 42) and then
GS initiates new node allocation through PVM foclegerminated processes.

116

When host allocation is performed, a new instarfabeterminated processes
is spawned on the newly allocated nodes. Each tegnarocess automatically loads
CL that checks for the existence of checkpointdil¢he process by connecting to CS.
This time the migrated processes will find theireckpoint file and hence their
resumption is automatically initiated by restoritige process image from the
checkpoint file.

The migrated processes execute post-checkpoimuatgtins before resuming
the real user code. The post-checkpoint instrustgarve for initialising the message-
passing layer and for registering at GS (DONE_rastin). When all the
checkpointed and migrated processes are readyntoG8 allows them to continue
their execution (DO_continue).

Grapnel server/Coordinator Client A .
I Client B
REQUEST for chkpt.. ermination

DO chkpt

|

DO chkpt

READY to chkpt
READY to chkpt

DO sync

AA

|

DO sync

SYNC messages
READY to save
READY to save

DO save

e
DO save

i
SAVE
DONE chkpt + need exit SAVE
DONE chkpt

DO exit

T

AA

RESTORE
DONE restoration

Figure 42 Migration protocol in the GRAPNEL application

4.1.3.5Migration among nodes under the Condor job schedule

The GRAPNEL checkpointing system has been intedrateh PVM as it is
detailed in section 3.1. The original purpose/nadion of this work is to make
GRAPNEL applications capable of migrating its prss®s from one host to another

relying only on PVM support where a native PVM @owment is built on the nodes
of a cluster.

117

Since jobs and resources in a cluster are supdragea local job-scheduler
the flow of migration integrated in the GRAPNEL #pation must be able to operate
in a transparent way.

In the Condor job-scheduling system the executibiPdM applications is
performed as a Master-Worker (MW) mechanism [73)e Dasic principle of the
Condor MW model is that the master process spawoskess to perform the
calculation and continuously checks whether thekess successfully finish their
calculation. In case of a failure the master prec@sply spawns new workers passing
them the unfinished work.

The situation when a client process fails to finishcalculation usually comes
from the fact that Condor removes the task bec#useassigned node is no longer
available. This action is called vacation of theertl process. In this case the master
node receives a notification message through PVillitating that a particular node
has been removed from the PVM machine. As an andveemaster process tries to
add new PVM host(s) to the virtual machine with tiedp of Condor, and gets notified
when host inclusion is done successfully. At tmgetit spawns new worker(s).

For running a GRAPNEL application, the applicatemmtinuously requires the
minimum amount of nodes to execute the processdenéler the number of the
nodes drops below the minimum, the GRAPNEL Sere®)(tries to extend the
number of PVM machines above the critical levelméans that the GS process
behaves exactly the same way as the master prdoessn the Condor MW system.

Under Condor the master PVM process is always estadn the submit
machine (Step 1 on Figure 43) and is running dinélapplication is finished. It is not
shut down by Condor, even if the submit machineobexs overloaded. Condor
assumes that the master process of the submittéti &plication is designed as a
work distributor. The functionality of the GRAPNEerver process fully meets this
requirement, so GRAPNEL applications can be executeder Condor without any
structural modification and the GS can act as twrdinator of the checkpointing and
migration mechanisms as it was described previously

Whenever a process is to be killed (Step 2 on Eigr) (e.g. because its node
is being vacated), an application-wide checkpoinsinbe performed and the exited
process should be resumed on another node. Theatppi-wide checkpointing is
driven by GS, but it can be initiated by any clipnbcess which detects that Condor
tries to kill it. In this case the client procesgifies GS to perform a checkpoint. After
this notification GS instructs every process tofgen checkpointing (Step 3 on
Figure 43). After checkpointing, all the clientopesses wait for further instruction
from the server whether to terminate or contineedkecution. GS sends a terminate
notification to those processes that must migrate.

At this point GS waits for the decision of Condbatttries to find underloaded
nodes (Step 4 on Figure 43) either in the homedGopool of the submit machine or
in a friendly Condor pool. Friendly Condor poolapool is the one from which or to
which the pool accepts/sends jobs. This is callecking [33]. Flocking can be uni- or
bi-directional depending on the friendliness relatiWwhen two pools are flocked to
each other it means that they share resourcesadnsd In Figure 43 migrations is
done to a friendly pool. However, migration to alawf a local or friendly pool does
not differ technically.

118

The resume phase is performed only when the PVMtengsocess (GS)
receives a notification from Condor about new hg)stpnnected to the PVM virtual
machine. When every terminated process is migreded new node allocated by
Condor, the application can continue its execution.

This working mode enables the PVM application totcwously adapt itself
to the changing PVM virtual machine by migratinggesses from the machines being
vacated to some new ones that have just been aBagde 43 shows the main steps
of the migration between friendly Condor pools. isetthat the GRAPNEL Server
and Checkpoint Server processes remain on the subauhine of the home pool
even if every client process of the applicationnaiig to another pool.

Step 1 GS: Grapne¢ Serve
CS: Checkpoint Server
spawry ABC
3
Step 1: Starting the applicati
Step 2: A node to vacate

P: PVM daemon
submit node client nodes Step 3: Checkpointing the app.

A,B,C: User processes
Step 4: Migration to a friendly pool
/=T —
i terminatd vacate

l checkpoint re/

77

allocate node

Spaw
P P
l rec

Figure 43 Migration of GRAPNEL application among Candor nodes

It should be noticed that Condor does not provideckpointing for any kind
of PVM applications it only provides applicationvégd support for fault-tolerant
execution of MW type PVM applications as it is diein section 1.3.2 and 2.1.6.2.

119

4.1.4 Modelling

Process migration introduced in section 4.1 is iekjyl part of all the three
elaborated (Cfound CPyrapneiand CRyp) models. The corresponding ASM rules make
sure that the migrating processes are going thrtheginecessary phases in the model.
Migration of a process consists of two executiorgnsents: termination and
resumption. Termination segment ensures that tleeess is checkpointed and
terminated while resumption segment starts a nevegss and rebuild its previous
state. Each process must be driven by the cooditiatough the two segments when
migration happens. The corresponding way of proeeggation is highlighted in
Figure 44.

role(p)=coordinator (R1a)

R1b, Rlc . RE
w C
R9
Rla R1b, R1
W. b, %\fi/L\\RSC o C. R8d
y
PROC ESS
R9c DISCARD
R1 R9c
a
! W R3a
R4a
RS
Rlc,
R9a, R9b
R8d
CREATE R6a-d, R7a, R7 O

role(p)=userdefined (R1a)

Figure 44 Process checkpointing and termination i€Pgcapnel

Initially a process is in Running (R) phase (seguFe 44). When notification
for migration arrives, interruption and checkpaigtis performed causing the process
to change its phase to Checkpointing (C). Rules g&rform the proper interruption
of the userdefined processes, while rules R6* afid, RR7b performs the correct
saving of the internals. After the process savednternals successfully, it simply
changes its phase to Terminating (T) in order thcete the end of checkpointing for
the coordinator. Finally, the rule R8d ensures thatprocess is discarded.

Similarly to the procedure, the corresponding waymcess initialisation is
highlighted with thick lines in Figure 45. Processeation leads the process to
Initialisation () then Waiting (W) phases througti* rules. The process is then
instructed by the coordinator to perform resump(ieg) with rule R9c. When all the
processes have successfully performed resumptioardimator instruct them to
continue running (R).

120

The migration mechanism realised by the,&R/ASM model is also analysed
in section 3.1.5.2, where the relevant phasesehilyrating processes are discussed
and compared to the original g4 model.

role(p)=coordinator (R1a)

R1b, R1c » RE,
R9
R1la R1b, Rlc_ R5c R8d
We B/ \&
~ ‘
PROC ESS
R9c DISCARD
A
R1 R9c
! W R3a
R4a
R8
Rlc,
R9a, R9b
R8d
e Réad, RTa m'

role(p)=userdefined (R1a)

Figure 45 Initialisation and resumption segment inCPgrapnel

4.1.5 Summary

Since Condor supports only fault-tolerant executmin MW applications
without checkpointing support the resulted mechana the combined Grapnel-
PVM-Condor triumvirate enables Condor to provideaxion with fault-tolerant and
migration support for PVM applications developed ByGRADE programming
environment.

The most significant features of the migration solu demonstrated in this
section are as follow:

automatic detection of resource loss

automatic checkpointing in case of resource loss
allocation of resources on demand

automatic resumption of terminated processes

Based on the features above the Grapnel applicationthe Condor
environment is able to provide the following noest

automatic self-healing in case a process aborts

automatic self-adoption for the continuously chaggiesource availability
process migration transparently for the clusterdiadiare

process migration transparently for the programmer

121

4.2 Application migration on ClusterGrid

4.2.1 Overview

In the migration solution presented in thesis 3é procedure is driven by a
special coordinator process — integrated in the BRBL application — where the
termination of this process causes the entire egidn to be shutdown. However, this
coordination process must be terminated duringagh@ication migration since link
between the clusters in a ClusterGrid are usualtyemists. To eliminate this problem
| elaborated an application migration solution @hen | mapped it to the GBynel
model. Based on the results thesis 3.2 is stated.

Thesis 3.2:The GRAPNEL application implements a consistehall state-

space migration for message-passing parallel applins by saving and
restoring the integrated coordination process. nabkles the migration of the
entire application among independent (not usingheathers’ resources)
clusters. In addition, the elaborated solution agagpself to the internal rules
of the CRapnet ASM model.

Related publications are [1][10][13][15].

4.2.2 Motivation

Process migration in distributed computational emwinents can solve the
problem of balancing the load of the nodes withaluster, or removing a process of a
parallel job from a node. However, process migrattonot enough to move processes
among clusters since in some cases the applicateon suffer from weak resource
supply within a cluster. To overcome this limitatiapplication migration is needed.

In that special cases when the whole ClusterGrimlit based on Condor job-
manager it is possible to allocate the migratirgk t® another cluster in case the two
pools are flocked to each other. This is a spemak when migration of the whole
application is not necessary. Running a GrapnelliGg@n under Condor and
migrating client processes among nodes can bernpaztbby tight cooperation of the
Grapnel Server and the checkpoint library. While #pplication is using only the
resources that are under the authorisation of xeeutor Condor pool and friendly
Condor pools, Grapnel Server can coordinate evieiytinom the submit machine.

However, Condor flocking cannot be applied in gen@rid systems where
the pools (clusters) are separated by firewalls lagwce global Grid job managers
should be used.

In such systems if the cluster is overloaded, tte,local job manager cannot
allocate nodes to replace the vacated nodes; tlodevepplication should migrate to
another less loaded cluster of the Grid. It me&as hot only the client process but
even the Grapnel Server should leave the overloaldister. This kind of migration is
called application migration opposing the proceggation where the Grapnel Server
does not migrate.

4.2.3 Design issues

In order to leave the pool - i.e. migrate the whegdplication to another pool —
some extra capabilities are needed for the GRAPAlgfllication. These are as follow:

e Deciding when to initiate application migration

122

e Performing self checkpointing of the GRAPNEL serpsrcess
e Performing checkpointing of opened file descriptors

The migration among the clusters is mapped to gi@noking, termination,
resubmission and recovery steps which are detailélde next few sections. In order
to resubmit the application an external Grid congmir{e.g. broker) must contribute
to the file movement and resubmission procedureesihe application is not running.
The following issues must be addressed in ordeeadise the support of application
migration:

e Deciding whether to initiate resubmission
e Performing automatic resubmission by Grid ApplicatManager

4.2.3.1Initiation of application migration

Based on the reason for application migration, tifferent initiation methods
are distinguished:

e Explicit initiation, when external participant nidéis the application to
perform shutdown with application wide checkpoigtin

e Implicit initiation, when the application decides sinder predefined
circumstances

As it has been detailed in section 4.1 processat@n is initiated by the local
scheduler by a terminate notification when the nigdgbout to be vacated. Since the
master process — GRAPNEL server in this case —eropning the checkpoint
coordination, termination of this component imgliccauses the whole application to
be shut down. Based on the concept, applicationratiigpn can be initiated by
terminate notification sent to the master procdssh® GRAPNEL application. This
way of initiation is called the explicit servicegueest.

Alternatively, an implicit service request can lbecaatically generated by the
GRAPNEL server itself. Decision on automatic apdien migration is based on the
available and required resources provided by tihesgheduler for the application.
GRAPNEL server continuously monitors the state tsf user processes. When
available nodes drop below the minimum requiredth®y application, some of the
processes are checkpointed and shutdown by thelinator, application suspends its
execution and the coordinator is waiting for newchiaes to be allocated for its
pending processes. In case the application is adsplefor a predefined time, the
coordinator decides to shutdown all its processes exit. This way of initiation is
called the implicit service request.

In case explicit service request is performed, imEator of application
migration is usually the Grid Broker component &letd below) of the ClusterGrid.

In a computational Grid various resources areectdld where typically one
Grid Broker component coordinates the utilisatidntiee underlying resources i.e.
clusters. Grid Broker usually monitors the aggredgterformance and availability of
the clusters and performs the mapping of applioatito resources based on the
application requirements and the actually measpextbrmance. The broker selects
the cluster which the application must be assigiwedr removed from. In case of
dynamic resource allocation policy the broker magide to remove a job from its

123

cluster and resubmit it to another one due to mesoavailability conditions in the
clusters.

The Grid Broker in this context is not aware of teckpointing capability of
the application, so removing the application arslibenitting is the same as a restart
of the job. However, based on the automatic apgdicavide checkpointing and
restart support integrated into GRAPNEL applicati@xecution is going to be
continued from the point where it was terminatetie Tintegrated support can be
considered as an optimisation for execution.

4.2.3.2Self-checkpoint capable server process

In order to support application migration the baseguirement for the
application is to produce a consistent, global kpemt. For a GRAPNEL
application, checkpointing of the user processedoise as it is described in section
4.1. To leave the cluster, the server process efafiplication must be checkpointed
additionally.

The server process coordinates the creation of ys®cesses and
communication links among them i.e. the topologyl$o manages file operations of
the user processes and the whole checkpoint merhadiherefore it has all the
required knowledge to rebuild the application auraption phase once the server has
come to life. The one and only issue to be adddessenow to checkpoint the
coordinator (server) process.

When the initiation of application migration happeall the user processes are
checkpointed and shutdown. In this state:

e there are no pending messages among the processes,the last
message from the user processes towards the semver notification
about the termination

e there are no communication links, since only onevese process
remained in the application

e consistent checkpoint information for all user @sses is stored
The coordinator at this point performs the follog/steps:
e disconnects the message-passing layer i.e. eaits BVM

e as a standalone process, stores the status ofptte fde descriptors
and closes them

o finally, activates the checkpointing library to ate a checkpoint of the
server process and then exits

In case the application is submitted, the firstcess to come alive is always
the server one. This is ensured by the applicatseif. The first instance of process
checks whether it is the first one and invokesethiey procedure of the server code if
that is the case.

After resubmission to a new cluster, when the seoele is started to be
executed, it first checks for checkpoint informatidf it is found, reopening working
files and re-enrolling into PVM is performed. Atighpoint server process is in the
same state as it was on that cluster where useegses finished checkpointing and
shutdown.

124

Based on the previous mechanism, the migrationeofes process of the
parallel application is converted to the migratioha single standalone process.
Checkpointing and resumption of user processepar®rmed before and after the
migration of the server process, respectively.

4.2.3.3Migration of working files of the application

In the GRAPNEL application files are handled by GRAPNEL server
process. Whenever a user process is about to ofilenaservice is redirected for the
server process which then performs the actual ageaf the files and returns a
reference number. Similarly, reading, writing amolstg are also realised in a central
way.

While process migration does not affect the hagdioi opened files, for
correct migration of the entire application, migwat of the working files are also
necessary since the server also exits upon apphcanigration. This mechanism
requires the following steps to be elaborated:

e checkpointing of the opened file descriptors at time of server
shutdown

e mapping of referenced full file names to actua fiames
e reopening of working files

Checkpointing of the opened file descriptors does mequire saving the
content of the files since no rollback of the exexnuis realised. In GRAPNEL server,
since all opened files are registered by the sgmu@cess, a file table is managed. For
each user process opened file descriptors aredstothe memory of the server. When
saving the states of the opened files only the thlele must be archived with file
position information added as an extra parameter.

Mapping of full file names referred by the user edd file names created by
the program is required for the case when workingctbry differs on the new cluster
after migration performed. When a job is submitteda cluster the job-scheduler
allocates a working directory for it and executes jpb. Opening a file can be realised
by using absolute or relative names. In the forame, the process usually queries the
pathname of the working directory once at its ahiphase. Using the same directory
name after a migration would cause the job to lwetad. To resolve this conflict the
GRAPNEL server performs the mapping of the dirgcttames and the filenames as
well.

Reopening working files are done at the resumppbase of the GRAPNEL
server. When the application is resubmitted tova clester and the GRAPNEL server
process is recovering itself, reopening the filewl aeassignment of their file
descriptors are done as a final step in its owamgsion phase, but before resumption
of any user process. Reopening working files candadised by system calls, the
required parameters are stored by the file tabtbte@fSRAPNEL server process.

4.2.4 Flow of migration

The central Grid Broker component of a Cluster®ad access to the clusters
and takes care of the execution of the paralleliegtpn. The Broker tries to optimize
the execution time of the application and the tgtgaut of the ClusterGrid
presumably. In order to support this optimisatiqgpleation migration can be a
solution.

125

The Broker must be able to detect the need foriggigdn migration to submit

and re-submit the application, to force the appibcato checkpoint itself, to identify
working files and to transfer them among the déférclusters as shown in Figure 46.
In case of application migration the following saen is executed:

1.
2.
3.

User submits his/her application

Grid Broker allocates a target cluster

Grid Broker generates submit file for the cluster

Submit file for an application stores the definitiof executable, input- and
output files, parameters and resource requirenmemtsng others. The format
of the submit file depends on the actual clustbrgoheduler the application is
about to be submitted.

GRAPNEL
Application
!
Grid Broker
2. Removal of application 4. Submission of
from the queue 0 application to the queue
1. Detection of low 5. Auto self-recovery
resources on cluster L of GRAPNEL application
w 3. Transfer binaries, &)
] S checkpoint files, working 5] =
~ E n files ~ E n
~ ~
Cluster A Cluster B

© N

Figure 46 Phases of application migration in Clustesrid

Grid Broker submits the application to the tardaesier

Grid Broker decides to perform total migration Sfeon Figure 46)

The Broker component continuously monitors theustatf the cluster and
initiates application migration in case the loadts cluster is inadequate (i.e.
overloaded or underloaded).

Termination of the application is initiated by tBeoker (Step 2 on Figure 46)
Broker notifies the local scheduler to terminate jbb and the local scheduler
notifies the application by sending a terminateification to the server
process.

Grid Broker stores the content of the working dioeg of the application

Grid Broker reassigns the application to a newtelus

Copying the content of the working directory to tieavly allocated cluster is
performed by the Broker (Step 3 on Figure 46)

Working directory contains the collection of alledkpoint files, application
working files and executable. The files represerdpasistent state with the
application at this point.

10.Grid Broker regenerates the submit file for the mdwster
11.Resubmission is done (Step 4 on Figure 46)

126

Broker submits the job for execution to the jobestier of the newly
allocated cluster.

12. At this point, GRAPNEL application recovers its entton from the point
where it was terminated last time (Step 5 on Figiie

Based on the scenario of application migrationcah be seen that only
minimum effort is needed by the Grid Broker to isélthe service provided by the
integrated GRAPNEL checkpointing and migration feavork.

4.2.5 Modelling

Application migration introduced in section 4.2 agplicitly part of all the
three elaborated (GRund CRyrapneiand CRip) models. The corresponding ASM rules
make sure that the each of the application prose@seluding the coordinator) are
going through the necessary phases in the modgtakibn of an application consists
of two execution segments: termination and resuwmpflermination segment ensures
that the application is checkpointed and terminatade resumption segment starts a
new process, it becomes coordinator, rebuilds fitselspawns and rebuilds all
userdefined processes. Each userdefined procedshbedriven by the coordinator
through the two segments when migration happeng ddrresponding way of
application migration is highlighted in Figure 47.

role(p)=coordinator (R1a
() () R1b, R1c >

Rila
W. R1b, R1¢
R8c *
PROC ESS
R9C > RE R9d DISCARD
A
R1 R9c
a
! W R3a
R4a
RS
Ric,
R9a, R9b
R8d
CREATE R6a-d, R7a, R7A

role(p)=userdefined (R1a)

Figure 47 Application checkpointing and terminationin CPgyeapnel
Initially each process of the application is in Ring (R) phase (see Figure
47). When decision for migration happens, coordinahstructs each process to

checkpoint and to terminate itself similarly to tlbase when process migration
happens (see section 4.1.4). When userdefined ggesare all discarded, coordinator

127

initiates its self-saving mechanism by changingh® phase Checkpointing {Cand
discards itself.

role(p)=coordinator (R1a) R

RSc ./~ __Rsd

| CC
R8c v
PROC ESS
R9C RE R9d DISCARD
A
R1 R9c
! W R3a
R4a
RS8
Ric,
R9a, R9b

PROC ESS R8d

CREATE R6a-d, R7a, R7 ae

role(p)=userdefined (R1a)

Figure 48 Application resumption in CPyapnel

Initialisation of coordinator ensured when the &atlon is started by the
scheduler next time. Coordinator is lead throughghases called Initialisation (I) and
Waiting (W) by the rules R9* and R1* (see Figure 48). Coaatbn resumes itself
(REc) through rules R1* and finally, respawns and r&suiuserdefined processes
similarly to the initialisation procedure in casé mrocess migration (see section
4.1.4). When ready, it continues in normal modg.(R

4.2.6 Summary

In this section the final result of the work is geated, since application
migration mechanism described and demonstratekisnsection is defined as one of
the main goals of the whole dissertation.

Looking into the Use Cases defined in section 2.b8e of the most
significant scenarios in a ClusterGrid environmentthe migration of the entire
parallel application from one cluster to anothethaut active participation of the
middleware components of the source and targeteckisThe outcome of the work
presented in this section is that middleware arglieaiion transparency is achieved,
since the whole migration fits in the normal openatof the local job-schedulers and
the user is neither forced to alter the source cbdee algorithm.

As the scenario shows, to utilise application ntigraGrid Brokers must be
slightly adjusted, since the Broker must be awdrthe checkpointing capability of
the application. However, it was not among the gjoékhis dissertation.

128

The main features of the application migration ¢sn summarised by the
following points:

built-in coordinator checkpoints its processes whbeimg terminated
self-checkpoint of the coordinator is performed
built-in coordinator discovers the existence ofakp®int information
application rebuilds its global state by itselflwmihe help of a built-in
coordinator

The novelties of the solution presented in thigisaccan be summarised by
the following points:

e automatic self-checkpoint and recovery mechanisnveld from library-
level parallel checkpointing

e generation of checkpoint information by the apglaaitself derived from
application-level parallel checkpointing

e Dbuilt-in checkpointing service migrates among Git@s, i.e. clusters

As a summary, the required use cases defined tibsez.1.3 are supported

successfully in a way that no modification of thegrating algorithm and no
modification of the cluster components are required

129

5 Discussion and Conclusion

Implementation status

The process migration mechanism introduced in tissedation has been
developed for both P-GRADE and TotalCheckpointso®he P-GRADE version was
also demonstrated in several events like EuroF@8'26onference (Klagenfurt,
Austria) [16], Hungarian Grid Day (Budapest, HungarSuperComputing’2003
(Phoenix, USA), and the IEEE Cluster Computing’20(3ong-Kong, China)
[14][15].

In these demos, three clusters were connected (MEZAAKI, Technical
University of Budapest, and University of Westm@i3tto provide a friendly Condor
pool system. A parallel urban traffic simulationpgation was submitted on the
SZTAKI cluster. Then the cluster was artificiallyayloaded P-GRADE migrated all
the processes except the Grapnel Server to Wesanindfter resuming the
application at Westminster, the procedure was tepgeand the application migrated
to the cluster in Technical University of Budap&ihce the migration framework, the
Mercury Grid monitor [1] and the PROVE visualizatitool [1] were integrated into
the P-GRADE Grid run-time environment, the migratof the application was on-
line monitored and visualized.

For application migration mechanism prototypes &kse been implemented
for P-GRADE and TCKPT, by which successful remogad resubmission of a
parallel application were performed on Condor @ust The enhanced version of
TCKPT only reached the design phase.

Performance

Regarding the performance of checkpointing, thekstasf migration are
checkpoint writing, reading, allocation of new resmes and some coordination
overhead. The time spent for writing or reading ¢heckpoint information through a
TCP/IP connection definitely depends on the sizéhefprocess to be checkpointed
and the bandwidth of the connection between thesiddowever, writing and reading
checkpoint files can be done locally and the fibesr be spread among the nodes
through a networked file system.

The overall migration time of a process includes tasponding time of the
resource scheduling system e.g. while Condor vacatmachine, the matchmaking
mechanism finds a new resource, allocates it,alisgs PVM daemons and notifies
the application. Finally, cost of synchronisatidmmessages among the processes and
some cost used for coordination are both negligibilece it is measured to be less
than one or two percent(s) of the overall migratiore.

Future work

There are two main directions that have been ajreadsidered. The first one
is to apply the introduced methods and techniquedvi®l applications. The main
challenges are comes from the lack of support fgnachic process creation,
termination and signalling. While the specificatidor MPI-2 contains dynamic
process creation, there is still no widely accepteglementation (like MPICH for
MPI-1). Another future direction is to integrateGRADE and TCKPT checkpointer
into a Grid Checkpointing Architecture (GCA) devyadal by PSNC (Poznan

130

Supercomputing and Networking Center) through stetided interfaces. There are
already some steps done towards this directiof@ JJ@2][23][23].

Conclusion

The work described in this dissertation aims atvigiag a solution for
consistent, global state transfer of message-pasparallel algorithms in Grid
environments.

The initial steps of the dissertation aim at deifnithe environment
(components), applications and their features. rAftee proposed environment is
detailed definition of some use cases is introduddwse use cases determine what
services are intended to be supported by the foming work described in this
dissertation.

Subsequently the compatibility and integrity coiwdis are defined to be
fulfilled by the checkpoint and migration service order to reach middleware
transparency. Conditions are formalised by usingtistet State Machines (ASM) in
order to give a precise definition. An analysistloé related work is performed to
compare the various checkpointing and migratiotstoénalysis concluded that none
of the examined works satisfy every condition at$hme time.

A new ClusterGrid checkpointing method is introddichat defines the most
important design criteria in order to provide cstemt, global state transfer of
unmodified algorithms in a Grid environment withoahy additionally required
support on cluster level. The g&Rn. ASM model has been elaborated by defining
universes, signatures, initial state and the cpoeding rules. This model has been
validated against the definitions of the Clusted@teckpointing method to show that
the defined CRoungis @ correct model of the method.

As a proof of the concept, two different tools argoduced. The first one is
the GRAPNEL checkpointing and migration frameworhiet is an integrated tool
that resides in parallel applications developedheyP-GRADE. The main principles,
structures of the framework and the flow of chedkpog have been introduced. The
CPyrapnel ASM model has been elaborated. As a next stepast been shown that
CPyrapneimodel is a correct refinement of the gesf¢ model.

As a second solution, the TotalCheckpoint checkpain framework is
introduced that is independent from the P-GRADEgpamming environment and
supports native PVM applications. Similarly to theevious model, GRy has also
been elaborated and the equivalence tg-8has been shown, too.

Finally, based on the GRAPNEL checkpointing framgw@rocess and
application migration is elaborated.

131

6 Acknowledgement

The work behind in this dissertation covers apprately a decade in my life.
During this time | was working with numerous peopfe lots of national and
international projects to whom | am really grateful their cooperation, support and
help. Without giving an endless list of people Iukblike to express my thanks to
several of them who contributed the most to myettssion.

First of all, | would like to thank my advisor, BétKacsuk, for offering me a
research position first in MTA KFKI-MSZKI and laten MTA SZTAKI. His
guidance and support has helped me to become archse He taught me to be able
to express and write down my thoughts. During #st tecade, he always found the
way how to motivate me when required. As a leadeh® laboratory, he ensured the
background for my research and encouraged me ttispbuand to work on new
solutions.

| would like express my thanks to Zsolt Németh, ocofleague, who gave
important support in elaborating the theoreticatkgaound of my dissertation.
Without his support, it would have taken twice aschntime as it took me to reach the
end of the dissertation. He continuously stayedrigelne as a consultant and he was
the one who led me into the secrets of modellingAbgtract State Machines (ASM).
He continuously revised my papers, my thoughtsideads. | am really grateful to him
for listening to me and commenting my ideas evemrwhe could hardly keep the
deadline of his actual work.

| would like to thank all the members of the Laliorg of Parallel and
Distributed Systems in MTA SZTAKI to their ideasdagomments, support and
cooperation. Special thanks to Robert Lovas, NerBadhorszki, Gabor Do6zsa,
Daniel Dréotos who devoted huge amount of time teetts the P-GRADE parallel
programming environment and to Zoltan Farkas, &tfilsaba Marosi, Gabor Gombés
who helped me developing the TotalCheckpoint systeweral years of research and
development ensured that the work presented indibgertation works in practice as
well.

My father and my mother contributed far most fas thissertation. Supporting
my life and my studies for more than 20 years metthing for which | will always be
grateful in my life. Giving a safe background le¢ flocus on my studies and later on
my work in computer science.

Finally, | would like to thank my wife, Andrea Kosgné Szabd. She gave me
a stable background by surrounding me with a lovamgily including with three kids.
Here | have to mention that ensuring calmness aece with three quick and smart
little children is not an easy task. She continlpemcouraged me and was patient
when necessary. Without her support | would natitde to achieve my PhD.

132

7 References

[1] P. Kacsuk, G. DOzsa, J. Kovacs, R. Lovas, N. PadtkgrZ. Balaton and G. Gombas: “P-GRADE:
a Grid Programming Environment”, Journal of Grich@mting Vol. 1. No. 2, pp. 171-197. 2004.

[2] Kovacs, J., Kacsuk, P.: “The DIWIDE Distributed Dglger”, Quality of Parallel and Distributed
Programs and Systems, special issue of Journahmaill® and Distributed Computing Practices,
PDCP Vol.4, No. 4, Eds: P.Kacsuk, G.Kotsis, pp.-33%, 2001

[3] J. Kovacs: "Transparent Parallel Checkpointing &figration in Clusters and ClusterGrids",
International Journal of Computational Science Bndineering, IJCSE, 2006, (to appear)

[4] Jozsef Kovacs, Peter Kacsuk, Radoslaw Januszew&kicjan Jankowski: "Application and
Middleware Transparent Checkpointing with TCKPT @lusterGrid", Future Generation
Computer Systems, selected papers of DAPSYS2066g§ted)

[5] J. Kovacs, R. Mikolajczak, R. Januszewski, G. Jarska "Application and middleware
transparent checkpointing with TCKPT on Clustergridroceedings of 6th Austrian-Hungarian
Workshop on Distributed And Parallel Systems, DAB206, Innsbruck, Austria, September 21-
23, 2006, pp. 179-189.

[6] G. Jankowski, J. Kovacs, R. Mikolajczak, R. Januskgé N. Meyer: "Towards Checkpointing
Grid Architecture”, Parallel Processing and Applibththematics — Conference on Parallel
Processing and Applied Mathematics, PPAM2005, PaozRaland, Lecture Notes in Computer
Science, Vol. 3911/2006, pp. 659-666, Springer 6208BN 978-3-540-34141-3

[7] G. Jankowski, R. Januszewski, J. Kovacs, N. Me¥er,Mikolajczak: "Grid Checkpointing
Architecture - a revised proposal”, Proc. of thedsreGRID Integration Workshop, pp. 287-296,
Pisa, 28-30, November, 2005

[8] Kovacs Jdzsef, Farkas Zoltan, Marosi Attila: "Edegépont tdmogatds PVM alkalmazésok
szamara a magyar ClusterGriden", Networkshop, $z&f5

[9] Jozsef Kovacs: “Making PVM applications checkpdit¢afor the Grid” Proc. of the Microcad
2005 Conference, Section N, Miskolc, 2005, pp. 228-

[10]J6zsef Kovacs: ,Process Migration in Clusters ardst@r Grids”, Distributed and Parallel
Systems: Cluster and Grid Computing, Kluwer Intéomeal Series in engineering and Computer
Science, Vol. 777, Dapsys 2004, Budapest, Hunggryl103-110.

[11]J6zsef Kovacs, Péter Kacsuk: “A migration framewéok executing parallel programs in the
Grid”, In: Grid Computing — Second European Acrasd§& Conference, AxGrids 2004, Nicosia,
Cyprus, Lecture Notes in Computer Science, Vol 53pp. 80-89, Springer-Verlag, 2004

[12]J6zsef Kovacs, Péter Kacsuk: "Improving fault-takdr execution for parallel applications under
Condor”, microCAD International Scientific Confe University of Miskolc, Miskolc,
Hungary, March 18-19, 2004, pp. 251-256

[13]J6zsef Kovacs, Péter Kacsuk: "Parhuzamos prograwdoidorlasa a Grid-en”, University of
Miskolc, Doktoranduszok foruma, Gépészmérnoki kaksiokiadvanya, 2003, pp. 158-164

[14]R. Lovas, J. Kovacs, G. Gombas, N. Podhorszki,&at®n, P. Kacsuk, |I. Szeberényi, T. Delaitre,
A. Gourgoulis: "Migration and Monitoring of P-GRADFParallel Jobs in the Grid”, IEEE
International Conference on Cluster Computing, H&pgg, 2003. pp 8-11.

[15]P. Kacsuk, R. Lovas, J. Kovacs, G. DOzsa, N. Padkor “Metacomputing support by P-
GRADE”, GGF8 Workshop on Grid Applications and Ragming Tools, 2003

[16]P. Kacsuk, R. Lovas, J. Kovacs, F. Szalai, G. Ganha Podhorszki, A. Horvath, A. Horanyi, .
Szeberényi, T. Delaitre, A. Terstyanszky, A. Goulgo “Demonstration of P-GRADE job-mode
for the Grid”, EuroPar 2003 Parallel Processingstitee Notes in Computer Science, Springer-
Verlag, LNCS 2790, pp 1281-1286, Klagenfurt, Auste003

[17]Jozsef Kovacs, Peter Kacsuk: “Server based migraifoparallel applications”, 4th DAPSYS
Conference, Linz, Austria, 29th September-2nd QGut@®02, pp: 30-37

[18]J6zsef Kovacs: “Parhuzamos programok checkpoirgol&s migracidja klasztereken”,
Networkshop’2002, Eger, Eszterhdzy Karobjdkola, 26th-28th March 2002

[19]Jozsef Kovacs: "Formal analysis of existing cheakjimgy systems and introduction of a novel
approach”, CSCS 2006, Szeged, Hungary, June 2006r@d with Best Talk Award)

133

[20]Jozsef Kovacs: "PVM & Condor checkpointing”, Conddfeek 2004, April 14-16, 2004,
University of Wisconsin, Madison

[21] G. Jankowski, R. Januszewski, R. Mikolajczak, Jvaas: "Scalable multilevel checkpointing for
distributed applications - on the integration pogisy of TCKPT and psncLibCkpt”, CoreGRID
Technical Report, TR-0019, March 2006

[22] G. Jankowski, R. Januszewski, R. Mikolajczak, Jvaas: "Scalable multilevel checkpointing for
distributed applications - on the possibility oftagrating Total Checkpoint and AltixC/R",
CoreGRID Technical Report, TR-0035, May 2006

[23] G. Jankowski, R. Januszewski, R. Mikolajczak, Jvadas: "Grid Checkpointing Architecture - a
revised proposal”, CoreGRID Technical Report, TR&May 2006

[24]V. S. Sunderam: "PVM: A Framework for Parallel Bistited Computing”, Concurrency: Practice
and Experience, 2, 4, pp.:315-339, December, 1990.

[25]A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B.ndeek and V. Sunderam, "PVM: Parallel
Virtual Machine — a User’'s Guide and Tutorial foetiWork Parallel Computing.” MIT Press,
Cambridge, MA, 1994.

[26] D.A. Bader and R. Pennington, "Cluster ComputingpHKcations”, The International Journal of
High Performance Computing, 15(2):181-185, May 2001

[27]C. Catlett and L. Smarr, Metacomputing, Commundcetiof the ACM, 35 (1992), pp. 44{52.

[28]I. Foster, C. Kesselman, S. Tuecke, “The Anatomytt@ Grid. Enabling Scalable Virtual
Organizations”, International Journal of Supercotepépplications, 15(3), 2001

[29] Vic Zandy's checkpointer: www.cs.wisc.edu/~zandptck
[30] The esky checkpointing tool by David Gibson: htgsky.sourceforge.net

[31]J.S. Plank, M.Beck, G. Kingsley, and K.Li, “LibckpEransparent checkpointing under Unix”, In
Proc. of Usenix Technical Conference 1995, New &rde LA, Jan. 1995

[32]M. Litzkow, T. Tannenbaum, J. Basney, and M. Livii@heckpoint and Migration of UNIX
Processes in the Condor Distributed Processinge®ystTechnical Report #1346, Computer
Sciences Department, University of Wisconsin, Apgd7

[33]D. Thain, T. Tannenbaum, and M. Livny, "Condor @hd Grid", in Fran Berman, Anthony J.G.
Hey, Geoffrey Fox, editors, Grid Computing: Makiiige Global Infrastructure a Reality, John
Wiley, 2003

[34] Condor homepage: http://www.cs.wisc.edu/condor

[35]D. Drétos, G. Dozsa, and P. Kacsuk, “"GRAPNEL to i@rElation in the GRADE Environment”,
Parallel Program Development for Cluster Comp. Mdtdlogy, Tools and Integrated
Environments, Nova Science Publishers, Inc. pp-Z68 2001

[36] E. Borger, “High level system design and analysiag abstract state machines”, ASM Workshop,
Magdeburg, September 1998

[37]E. Borger, “High Level System Design and Analysieng Abstract State Machines”, in D. Hutter
et al. (eds.), Current Trends in Applied Formal hels (FM-Trends 98), LNCS 1641, Springer,
pp. 1-43, 1999.

[38]E. Borger, “Why use evolving algebras for hardwanel software engineering?”, SOFSEM'95,
LNCS, 1995

[39] Y.Gurevich, “Evolving algebras 1993: Lipari guid&,Borger, editor, Specification and Validation
Methods, pages 9-36, Oxford University Press, 1995

[40]Y.Gurevich, “Abstract state machines captues seatplaigorithms”, Technical Report MSR-TR-
99-65, Microsoft Research, 1999

[41]E. Borger and D. Rosenzweig, “The WAM - definitiand compiler correctness”, Logic
Programming: Formal Methods and Practical Appl@agi 1994

[42]E. Borger and I. Durdanovic, “Correctness of coingiloccam to transputer code”, Computer
Journal, 39(1):52-92, 1996

[43]E. Borger and W. Schulte, “Programmer friendly madwdefinition of the semantics of java”,
Formal Syntax and Semantics of Java, LNCS, Sprjig88

134

[44]E. Borger and U. Glasser, “A formal specificatiohthe pvm architecture”, B. Pehrson and I.
Simon, editors, IFIP 13th World Computer Congresiymel, pages 402-409, 1994

[45]Y. Gurevich, “May 1997 draft of the asm guide”, fiaical Report CSE-TR-336-97, University of
Michigan, EECS Department, 1997

[46] Y. Gurevich, “Evolving algebras: An attempt to diger semantics”, G.Rozenberg and A.Salomaa,
editors, Current Trends in Theoretical ComputeeiSae, pages 266-292, World Scientific, 1993

[47]Egon Boérger and Robert Stark, “Abstract State Maesi A Method for High-Level System
Design and Analysis”, Springer-Verlag, 2003.

[48] P-GRADE Parallel Program Development Environmetip: iwww.lpds.sztaki.hu/pgrade

[49]Elnozahy, E. N., Alvisi, L., Wang, Y., and Johnsah, B. 2002. A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. 84, 3 (Sep. 2002), 375-408. DOI=
http://doi.acm.org/10.1145/568522.568525

[50] S.Kalaiselvi and V.Rajaraman, A Survey of CheckpomAlgorithms for Parallel and Distributed
Computers, Sadhana, Vol.25, Part 5, October 202@88-510

[51]M. Treaster. A Survey of Fault-Tolerance and F&dtovery Techniques in Parallel Systems.
ACM Computing Research Repository (CoRR), (cs.DCb01@02), January 2005.
http://citeseer.ist.psu.edu/treaster05survey.html

[52]Zomaya A Y H 1996 Parallel and distributed compmyitimndbook (New York: McGraw-Hill)
[53]Ralston A, Reily E D 1993 Encyclopedia of compwgience 3rd edn (New York: IEEE Press)

[54] Gracjan Jankowski, Rafal Mikolajczak and Radoslamu$zewski "Checkpoint restart mechanism
for multiprocess applications implemented under G@l project.” In Proceedings of the
CGW2004, 2004.

[55]A. Beguelin, E. Seligman, and P. Stephan. "Appiicatievel fault tolerance in heterogeneous
networks of workstations.” Journal of Parallel @idtributed Computing, 43(2):147155, 1997.

[56]K.M. Chandy and L. Lamport. "Distributed snapshdbetermining global states of distributed
systems”, ACM Transactions on Computer Systems;&175, February 1985.

[57]R. Strom and S. Yemini. Optimistic recovery in diaited systems. ACM Transactions on
Computing Systems, 3(3):204—-226, 1985.

[58]L. Alvisi. Understanding the message logging pagadfor masking process crashes. PhD thesis,
Cornell University, Department of Computer Scierk@96.

[59]E. N. Elnozahy and W. Zwaenepoel. Manetho: fauleremce in distributed systems using
rollback-recovery and process replication. PhDitheRice University, Department of Computer
Science, 1994.

[60]Bhargava B, Lian S-R, Leu P-J 1990 Experimentaluation of concurrent checkpointing and
rollback-recovery algorithms. Proc. |IEEE 6th InanE on Data Eng. pp 182-189

[61]Elnozahy E N, Zwaenepoel W 1992 Manetho: Transpaadback recovery with low overhead,
limited rollback and fast output commit. IEEE Tra@®mput. 41: 526-531

[62] William Gropp, Ewing Lusk, and Anthony Skjellum: 8ihg MPI”, 2nd Edition, MIT Press, ISBN
0-262-57132-3

[63] Al Geist, Ewing Lusk, William Gropp, William SaphiSteve Huss-Lederman, Tony Skjellum,
Andrew Lumsdaine, and Marc Snir.: "MPI-2: Extenditiyge Message-Passing Interface”, In
EuroPar96, February 1996

[64] George Stellner, "Consistent Checkpoints of PVM Wgations”, In Proc. 1st Euro. PVM Users
Group Meeting, 1994

[65]J. Leon, A. L. Fisher, and P. Steenkiste, "FaiesBVM: a portable package for distributed
programming with transparent recovery”’. CMU-CS-@3+1February, 1993

[66]Iskra, K. A., van der Linden, F., Hendrikse, Z. \@yereinder, B. J., van Albada, G. D., and Sloot,
P. M. 2000. The implementation of dynamite: an mmvinent for migrating PVM tasks. SIGOPS
Oper. Syst. Rev. 34, 3 (Jul. 2000), 40-55. DOIp:#doi.acm.org/10.1145/506117.506123

[67]J. Casas, D. Clark, R. Konuru, S. Otto, R. Proatyd J. Walpole, "MPVM: A Migration
Transparent Version of PVM”, Technical Report CE=6092, 1, 1995

135

[68]C.P.Tan, W.F. Wong, and C.K. Yuen, "tmPVM - Taskghditable PVM”, In Proceedings of the
2nd Merged Symposium IPPS/SPDP, pp. 196-202, 1999.

[69]Pawel Czarnul: "Programming, Tuning and Automatarafelization of Irregular Divide-and-
Conquer Applications in DAMPVM/DAC” in InternatiohaJournal of High Performance
Computing Applications, 2003, Vol.17, No.1

[70]Dan Pei, Wang Dongsheng, Zhang Youhui, Shen Meimi@uasi-asynchronous Migration: A
Novel Migration Protocol for PVM Tasks.” ACM SIGOR3perating Systems Review, 33(2): 5-15
(April 1999).

[71]Georg Stellner. CoCheck: Checkpointing and Proddigsation for MPI. In Proceedings of the
International Parallel Processing Symposium, pd&g&-531, Honolulu, HI, April 1996. IEEE
Computer Society Press, 10662 Los Vaqueros CiRl®, Box 3014, Los Alamitos, CA 90720-
1264. http://citeseer.ist.psu.edu/steliner96coctidok

[72]Georg Stellner and Jim Pruyne. Resource Managemedt Checkpointing for PVM. Proc
EuroPVM95, pp. 130-136, Hermes, Paris, 1995. litifeseer.ist.psu.edu/stellner95resource.html

[73]Goux, J., Kulkarni, S., Yoder, M., and Linderoth,2000. An Enabling Framework for Master-
Worker Applications on the Computational Grid. Iro€edings of the Ninth IEEE international
Symposium on High Performance Distributed Computihigdc'00) (August 01 - 04, 2000).
HPDC. IEEE Computer Society, Washington, DC, 43.

[74]Chen, Y., Plank, J. S., and Li, K. 1997. CLIP: &d#tpointing tool for message-passing parallel
programs. In Proceedings of the 1997 ACM/IEEE Crerfee on Supercomputing (Cdrom) (San
Jose, CA, November 15 - 21, 1997). Supercompu®ngACM Press, New York, NY, 1-11. DOI=
http://doi.acm.org/10.1145/509593.509626

[75]Osman, S., Subhraveti, D., Su, G., and Nieh, J2208e design and implementation of Zap: a
system for migrating computing environments. SIGARSer. Syst. Rev. 36, Sl (Dec. 2002), 361-
376. DOI= http://doi.acm.org/10.1145/844128.844162

[76] Sriram Sankaran, Jeffrey M. Squyres, Brian Barr@tidrew Lumsdaine, Jason Duell, Paul
Hargrove, and Eric Roman. The LAM/MPI CheckpointRet Framework: System-Initiated
Checkpointing. In LACSI Symposium, October 2003.

[77]J. Duell, P Hargrove, snd E. Roman. The Design lamglementation of Berkeley Lab's Linux
Checkpoint/Restart, 2002.

[78]zhang, Y., Wong, D., and Zheng, W. 2005. User-lehatckpoint and recovery for LAM/MPI.
SIGOPS Oper. Syst. Rev. 39, 3 (Jul. 2005), 72-81. OI=D
http://doi.acm.org/10.1145/1075395.1075402

[79]Gropp, W., Lusk, E., Doss, N., Skjellum, A., "A HigPerformance, Portable Implementation of
the MPI Message Passing Interface Standard”, Ba@tmputing, North-Holland, vol. 22, pp.
789-828, 1996. http://citeseer.ist.psu.edu/gropp@gierformance.html

[80]G.F.Fagg and J.J.Dongarra, "FT-MPI:FaultTolerantl i@Bpporting Dynamic Applications in a
Dynamic World", EuroPVM/MPI User's Group Meeting020) Springer-Verlag, Berlin, Germany,
2000, pp.346-353. http://citeseer.ist.psu.edu/faggpi.html

[81]Beck, Dongarra, Fagg, Geist, Gray, Kohl, Migliardi, Moore, T. Moore, P. Papadopoulous, S.
Scott, V. Sunderam, "HARNESS: a next generatiotribiged virtual machine”, Journal of Future
Generation Computer Systems, (15), Elsevier SciBni¢e 1999.

[82] Starfish: Fault-Tolerant Dynamic MPI Programs omsérs of Workstations. Adnan Agbaria and
Roy Friedman. In the 8th IEEE International Symposion High Performance Distributed
Computing, 1999.

[83]Graham E. Fagg, Keith Moore, Jack J. Dongarra, |&Bt@ networked information processing
environment (SNIPE)", Journal of Future Generat@omputer Systems, (15), pp. 571-582,
Elsevier Science B.V., 1999.

[84]zhang Youhui, Wang Dongsheng, Zheng Weimin, “"Chetking and Migration of parallel
processes based on Message Passing Interface3rd heux Clusters Institute (LCI) Conference,
St. Petersburg, Florida, October 23-25, 2002.

[85]NIIF ClusterGrid Project, http://www.clustergridfriu

[86]G. Coulouris, J. Dollimore and T. Kindberg, Distribd Systems: Concepts and Design. Addison-
Wesley, Pearson Education, 2001.

136

