

UNIVERSITY OF MISKOLC

FACULTY OF MECHANICAL ENGINEERING AND INFORMATICS

DOMAIN- AND LANGUAGE-ADAPTABLE NATURAL LANGUAGE

CONTROLLING FRAMEWORK

Ph.D. Dissertation

AUTHOR:

Péter Barabás

MSc in Information Engineering

„JÓZSEF HATVANY” DOCTORAL SCHOOL

OF INFORMATION SCIENCE, ENGINEERING AND TECHNOLOGY

Research Area

APPLIED COMPUTATIONAL SCIENCE

Research Group

DATA AND KNOWLEDGE BASES, KNOWLEDGE INTENSIVE SYSTEMS

ACADEMIC SUPERVISOR:

Dr. habil. László Kovács

ACADEMIC CO-SUPERVISOR:

Prof. Dr. Imre Juhász

Miskolc, 2013

Declarations ii

Declaration

The author hereby declares that this thesis has not been submitted, either in the same or

in different form, to this or to any other university for obtaining Ph.D. degree.

The author confirms that the submitted work is his own and the appropriate credit has

been given where reference has been made to the work of others.

Nyilatkozat

Alulírott Barabás Péter kijelentem, hogy ezt a doktori értekezést magam készítettem, és

abban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó

szerinti vagy azonos tartalomban, de átfogalmazva más forrásból átvettem,

egyértelműen, a forrás megadásával megjelöltem.

Miskolc, 2013. június 3.

 Barabás Péter

A disszertáció bírálatai és a védésről készült jegyzőkönyv megtekinthető a Miskolci

Egyetem Gépészmérnöki és Informatikai Karának Dékáni Hivatalában, valamint a

doktori iskola weboldalán az Értekezések menüpont alatt: http://www.hjphd.iit.uni-

miskolc.hu.

Témavezető ajánlása iii

Témavezető ajánlása

Barabás Péter: “Domain- and Language-adaptable Natural Language Controlling

Framework” című PhD értekezéséhez

Barabás Péter a szoftverfejlesztés és információ menedzsment területének nagy

tapasztalattal rendelkező szakértője. A doktori dolgozatában olyan területet választott,

ahol az elméleti eredmények a gyakorlat számára is nagy jelentőséggel bírnak és a

kidolgozott javaslatok hatékonyan átültethetőek a gyakorlatba.

A kiválasztott feladat, a természetes nyelvi ember-gép interfészrendszerek fejlesztése

napjaink egyik aktuális témaköre, melynek számos helyi vonatkozása van. A vizsgált

rendszer kapcsolódik a Hatvany József Informatikai Tudományok Doktori Iskola

korábbi hallgatóinak munkáihoz, ezen belül is elsősorban Dr. Baksáné Dr. Varga Erika

tevékenységéhez. Barabás Péter dolgozatában a Varga Erika által kidolgozott

alapmodellt sikerrel kiterjesztette és azt a gyakorlati alkalmazásokhoz szükséges

optimalizált algoritmusokkal kibővítette. A megvalósított mintarendszerek

teljesítményparaméterei azt mutatják, hogy a kidolgozott architektúra- és

algoritmuskeret a valós méretű feladatokban is hatékony megoldást biztosít. A

fontosabb alkalmazási területek közé tartozik a robotvezérlés, navigációs alkalmazások

és az információ lekérdező rendszerek egyaránt.

Az értekezés tézisei és a témához kapcsolódóan megjelent publikációk igazolják, hogy a

jelölt sikeresen végrehajtotta a kitűzött célt. A jelölt a kutatás eredményeiről

rendszeresen beszámolt angol nyelvű folyóiratokban, illetve hazai és külföldi

konferenciákon, ezáltal eleget téve a Hatvany József Informatikai Tudományok Doktori

Iskola publikációs követelményeinek. Az eredmények igazolják, hogy a jelölt képes

színvonalas, önálló kutatómunkára, munkáját a rendszeresség és a teljességre törekvés

jellemzi. Maga az értekezés gondos és szerteágazó tudományos munkát, a szakirodalom

alapos feltérképezését tükrözi. Az értekezés Barabás Péter saját eredményeit tartalmazza

és a Hatvany József Informatikai Tudományok Doktori Iskola által megkövetelt tartalmi

és formai követelményeknek mindenben megfelel. Mindezekre tekintettel a jelölt

számára a Ph.D. cím odaítélését messzemenően támogatom.

Miskolc, 2013. június 3.

 Dr. habil. Kovács László

 tudományos vezető

Acknowledgements iv

Acknowledgements

The dissertation exposes many years of work which I could not be able to achieve

without the support of others.

First of all, I owe my deepest gratitude to Prof. Dr. Jenő Szigeti, Head of “József

Hatvany” Doctoral School for giving me support and the necessary permissions to the

accomplishment of the doctoral procedure.

I am heartily thankful to my supervisor, Dr. habil. László Kovács, whose guidance and

support from the initial to the final level enabled me to develop an understanding of the

subject.

I am greatly thankful to my co-supervisor, Prof. Dr. Imre Juhász, whose professional

knowledge and guidance helped me to implement my Ph.D. thesis.

I am indebted to many of my colleagues at the Department of Information Technology

for helping me in organizing the events connected to the doctoral procedure.

At last but not least, this thesis would not have been possible without the unfailing

encouragement and support of my family. I am especially grateful to my wife Ágnes,

for her invaluable help in the completion of the project, and I truly appreciate the efforts

of my parents who spared no pains to create an untroubled atmosphere during my

working hours.

I dedicate this work to my son Péter, wishing him an unclouded childhood and power to

make his dreams come true.

List of Abbreviations v

List of Abbreviations

AFD Application Function Description

API Application Programming Interface

ASR Automatic Speech Recognition

CL Concept Lattice

CRF Conditional Random Field

DDL Data Definition Language

DG Dependency Grammar

DL Descriptive Logic

DML Data Manipulation Language

DTW Dynamic Time Warping

FCA Formal Concept Analysis

FDM Function Description Model

FG Formal Grammar

FOPL First-Order Predicate Logic

FS Function Signature

FSA Finite-State Automaton

FST Finite State Transducer

GPS Global Positioning System

GUI Graphical User Interface

HCI Human-Computer Interaction

HMI Human-Machine Interface

HMM Hidden Markov Model

HNLPG Hungarian Natural Language Processing Group

HOPL Higher-Order Predicate Logic

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

KQML Knowledge Query and Manipulation Language

LCRF Linear-Conditional Random Field

LG Link Grammar

NER Named Entity Recognition

NL Natural Language

NLC Natural Language Controlling

NLI Natural Language Interface

NLP Natural Language Processing

NLTK Natural Language ToolKit

NNS Nearest Neighbor Search

OCR Optical Character Recognition

OWL Web Ontology Langauge

POI Point Of Interests

POS Part-Of-Speech

List of Abbreviations vi

QLF Quasi-Logical Form

RDF Resource Description Framework

SDK Software Development Kit

SDS Speech Dialog System

SNLP Stanford NLP

SNLPG Stanford Natutal Language Processing Group

SPO Subject-Predicate-Object

SRM Semantic Representation Model

TAG Tree Adjoining Grammar

TCP Transmission Control Protocol

UIMA Unstructured Information Management Applications

VP Vantage Point

WG Word Grammar

XML eXtensible Markup Language

XSD Xml Schema Definition

Contents vii

Contents

1 Introduction ... 1

1.1 Preliminaries .. 1

1.1.1 Human-machine interfaces ... 1

1.1.2 Semantic representations .. 3

1.2 Aims and scope .. 5

1.3 Dissertation guide ... 7

2 Background ... 9

2.1 Brief history of NLP systems ... 11

2.2 Levels of natural language processing ... 12

2.2.1 Phonology level .. 12

2.2.2 Morphology level .. 12

2.2.3 Lexical level .. 12

2.2.4 Syntactic level ... 13

2.2.5 Semantic level ... 13

2.2.6 Discourse level .. 13

2.2.7 Pragmatic level ... 13

2.2.8 Summary of levels .. 14

2.3 NLP tasks and frameworks .. 14

2.4 Related works ... 15

2.5 Conclusions .. 15

3 Developing a Natural Language Controlling Framework 17

3.1 Input source module ... 20

3.2 Text parser module ... 21

3.2.1 Sentence and word tokenization ... 22

3.2.2 Spell checking ... 22

3.2.3 Named entity recognition .. 24

3.3 Summary of text parser module ... 24

3.4 Morphology module ... 24

3.4.1 Grammar representations .. 25

Contents viii

3.4.2 CL-based parsers ... 27

3.4.3 Rule-based parsers .. 29

3.4.4 Summary of morphology module ... 30

3.5 Ontology module .. 30

3.5.1 Semantic representations .. 30

3.5.2 Tasks of semantic module ... 31

3.5.3 Summary of ontology module .. 32

3.6 Function mapping module .. 32

3.6.1 Controllable application types .. 32

3.6.2 Controlling sentence types .. 33

3.6.3 Summary of function mapping ... 34

3.7 Summary of results .. 34

4 Developing semantic models and algorithms ... 35

4.1 Modified ontology model ... 36

4.2 Representation of sentence analysis tree .. 39

4.3 Representation of application function descriptions .. 42

4.4 Summary of results .. 45

5 Optimization in NLC framework .. 46

5.1 Optimization problems ... 46

5.2 Optimization in POS tagging ... 47

5.2.1 Markov POS tagger .. 48

5.2.2 Linear-chain Conditional Random Field .. 49

5.2.3 Proposed tagging method .. 51

5.3 Graph matching algorithms .. 53

5.4 Optimization tasks in function mapping .. 55

5.5 Summary of results .. 57

6 Applications of Theoretical Results ... 58

6.1 Natural Language Controlling framework ... 58

6.1.1 Text parser module ... 59

6.1.2 Morphology module ... 61

6.1.3 Adaptation of domain knowledge ... 62

6.1.4 Adaptation of function descriptions .. 63

Contents ix

6.2 Robot controlling application ... 63

6.2.1 Robot domain knowledge ... 65

6.2.2 Function set ... 67

6.2.3 Communicating with Nao robot ... 67

6.2.4 User interface of Robot controlling application 68

6.3 Navigation application using Google Maps ... 69

6.3.1 Navigation domain knowledge ... 70

6.3.2 Navigation function set ... 71

6.3.3 Calling Google Maps services .. 72

6.3.4 User interface of navigation application ... 72

6.4 Summary of results .. 74

7 Summary .. 75

7.1 Contributions .. 75

7.2 Future work .. 76

Reference List .. 78

Author’s publications ... 85

Appendix A .. 88

Appendix B .. 92

List of figures x

List of figures

Figure 1.1. Main structure of multimodal interface (source: (Wei and Hu 2011)) 3

Figure 2.1. The NLI Engine Structure (Lee et al. 1998) .. 9

Figure 3.1. Logical architecture of NLP System .. 17

Figure 5.1. Sample sentence graph for sample sentence. .. 52

Figure 6.1. Operational model of framework .. 58

Figure 6.2. Interfaces of text parser module .. 60

Figure 6.3. Steps of text parsing... 60

Figure 6.4. MorphoEngine interface and belonging models ... 61

Figure 6.5. Knowledge loader class of Domain module .. 62

Figure 6.6. Function loader class of function mapper ... 63

Figure 6.7. Structure of Robot Controlling Application .. 65

Figure 6.8. Direction concept hierarchy .. 66

Figure 6.9. Walk predicate description .. 66

Figure 6.10. Aldebaran's Nao humanoid robot ... 68

Figure 6.11. Nao interface application .. 68

Figure 6.12. Graphical user interface of robot controller application 69

Figure 6.13. Restaurant concept hierarchy .. 71

Figure 6.14. User interface of navigation application ... 73

List of tables xi

List of tables

Table 3.1. Comparison of input types .. 21

Table 6.1. Maven information of NLC framework modules ... 59

Table 6.2. Concepts in Robot Contoller Application ... 66

Table 6.3. Functions of Robot Controlling Application ... 67

Table 6.4. Concepts of navigation application .. 70

Table 6.5. Functions of Navigation Application .. 71

List of algorithms xii

List of algorithms

Algorithm 4.1. Making sentence analysis tree from morphology analysis 41

Algorithm 4.2. Algorithm of function mapping .. 44

1. Introduction 1

1 Introduction

Communication with most of computer systems happens via user-friendly but not

natural ways. People need fill out forms, click buttons, type instructions through a touch

screen instead of saying commands in natural language to the system. Natural language

processing is a more and more popular area of artificial intelligence such as robot

controlling, automotive systems, navigation systems, etc.

The main interaction form between human and computer is speech in spoken dialog

systems (SDS). Three types of such systems can be distinguished: state-based (Aust and

Oerder 1995), (McTear 1997) and (McTear 1998) frame-based (Hulstijn et al. 1996),

(Veldhuijzen van Zanten 1996) and agent-based (McTier 2002).

S-based systems are the simplest and the most commonly used. This kind of dialog

systems represents series of states. In each state, the system asks for specific

information from the user. After every state is “filled in” the system can generate

answer with several techniques, e.g. calling functions or running external applications.

In each state the processing of input aims at particular and well-defined words. State-

based approaches are used for simple tasks.

In more complex tasks frame-based techniques are used instead of states, like in

(Hulstijn et al. 1996) and (Veldhuijzen van Zanten 1996). A frame represents a task

which has slots. A slot contains a piece of information that the system needs in order to

complete the task. More slots can be filled in one time and the system can construct

questions for empty slots. A slot can be marked as required or optional. If all required

slots are filled the system can complete the task and can generate the answer.

McTier (McTier 2002) defines the agent-based system where a frame is filled

cooperating with the user and the problem is attempted to be solved together with the

user. The system and the user exchange knowledge and reason about their own actions

and beliefs to fulfill previous tasks.

My goal is to define and implement a natural language controlling framework using a

frame-based dialog system which can also be applied for robot controlling. My

framework should process text input which can be generated even by a speech-to-text

converter. The primary supported language in our system is the Hungarian, which is

very difficult to process because of its agglutinate property. The optimization of

algorithms is also very essential to produce an accurate and quick responding system.

1.1 Preliminaries

1.1.1 Human-machine interfaces

The history of computer science is strongly characterized by the permanent

development of user interaction methods. In the early beginning the dedicated monolith

computer architecture was dominating where the client terminals could provide only

1. Introduction 2

simple character-based command interfaces. The only way of communication was the

character terminal using special command languages. With the development of

graphical terminals, the next phase was the graphics oriented command interface where

a much easier understanding was provided for the users. The application of graphical

user interface (GUI) elements improved significantly the efficiency of human-computer

interaction (HCI). Nowadays, new interface channels are offered by computer systems,

like speech, motion or emotions. The dramatic change affects not only the dialog

module, but the computer architecture itself has been changed significantly. The back-

end part is distributed and heterogeneous. Servers are distributed in the cloud and the

computers are embedded into different equipments, like robots, cars and household

appliances. The development of intelligent machines is based on a huge software

development background technology. A key component of this development tool is the

human-machine interface (HMI) module.

A specific area of intelligent HMI is the ubiquitous computing. The term “ubiquitous

computing" (Schmidt 2002) describes the phenomenon of interacting in context with

artifacts and environments which are interwoven with processing and communication

capabilities. The main characteristic of this architecture is the physical integration of

the computers into objects of the living and working environment and context. This

architecture raises many methodological questions (Weiser 1993) and (Schmidt 2002).

There are many related research directions targeting some special aspects, terms of

ubiquitous computing like calm computing (Weiser and Brown 1998) and (Schmidt

2002), invisible computing (Norman 1999) and (Schmidt 2002), disappearing

computer (Wejchert 2000), (Schmidt 2002) and context-aware computing (Schmidt

2002). The key modules in context-aware computations are context acquisition, context

representation, context abstraction and adaption to context.

In (Cannan and Hu 2011), five main intelligent interaction categories are defined:

- speech (acoustic)

- optics

- bionics

- motion

- tactile.

The main task in acoustic category is speech recognition, where the spoken words are

converted into text. The application area of speech recognition is widely used in

intelligent information systems. Beside speech processing, there are many other related

application areas like the area of acoustic myography, which is basically measuring the

acoustic properties of muscles as they contract (Cannan and Hu 2011).

Another current trend in HMI is the development of multimodal interfaces. The

multimodal interface means the usage of different collaborating communication

channels in order to improve the functionality of the human-machine dialog. The

architecture of the multimodal interface is presented, among others, in (Wei and Hu

2011), and the main structure is shown in Figure 1.1. Hands-free control could be

considered as an important interface for disabled people. Hands-free HMI focuses on

1. Introduction 3

the development of novel communication channels between a machine and different

parts of the human body (Wei and Hu 2011).

Figure 1.1. Main structure of multimodal interface (source: (Wei and Hu 2011))

Within the context of multimodal HMI, many new problems arise due to the integration

issues. For example, the synchronization of speech and gesture is analyzed in (Ng-

Thow-Hing and Pengcheng Luo 2010) in more detail. The implemented framework

initially configured by assignment of specific grammars to the different gesture types.

After tagging the input text, the engine determines the best matching grammar patterns

and selects the corresponding gesture model.

The main characteristics and the current development trend for intelligent HMI

frameworks are analyzed in (Puerta 1997). Key problems are related to the following

issues:

- applying novel methods, innovations and real life testing of hypotheses

- application of collaborative techniques

- development of human-oriented applications

- efficient interface development (reusability, modularity, standardization).

1.1.2 Semantic representations

The interpretation of an input text requires the capture of the semantics, the

understanding the meaning of sentences. In order to manage and operate on the

semantics, some semantic representation model should be used. In the literature (Sowa

2000) there are four main knowledge representation methods:

- subject-predicate-object (SPO) models and semantic network models

- semantic frame models

- logic models

1. Introduction 4

- rule based models.

Another differentiator issue is the characteristic of the quantitative data: there are

deterministic and stochastic models (D'Argenio, Katoen, and Brinksma 1998).

In the text processing applications, the semantic network and the rule based models are

the most widely used frameworks. Nowadays, the logic based systems gain more and

more acceptance as it can provide a sound and theoretically proven background for the

operations.

Regarding the logic models, the most important tools are the predicate logic and the

descriptive logic. A predicate logic (Kowalski 1974) language consists of the following

elements:

- data types

- functions with given signature

- terms

- predicates

- well-formed formulas (logic operators, quantifiers)

- variables.

In the first order predicate logic formalism (FOPL), the arguments of further predicates

are variables and terms. In the case of higher order predicate logic (HOPL), another

predicate can be used as arguments. For example, the sentence "Gabi knows that Zoli is

reading a book" can be represented with the following higher order formula:

 Know (Gabi, Read(Zoli, book)).

The predicate logic mechanism is a very general formalism, but the representation of

temporal, dynamic and structural elements and constraints requires complicated

formulas. For representation of object-class oriented semantic models, the descriptive

logic (DL (Baader et al. 2003) is a suitable language. DL consists of new constraint

types to specify, among others, new relationship restrictions. The elements of DL are

 intersection of two concepts

 union of two concepts

 negation of a concept

 subset, specialized concept

 existence on relationship

 all constrainsts on relationship

 cardinality constraint on relationship

 cardinality constraint on relationship.

The main shortcoming of DL is the absence of dynamic-, temporal- and object-level

elements.

The frame-based model (Minsky 1975), (Varga 2011) unifies the structural and

dynamic behavior components of the problem domain. This model has a very strong

1. Introduction 5

relationship with the object oriented approaches, were the class members correspond to

slots of the frame and the methods are represented by behavior elements. A model

contains a set of interconnected frames where the connection is implemented via

relationship slots. The advantage of the frame model is the flexibility and the support of

dynamic components. Its disadvantages are the ambiguity in representation and the

absence of general constraint elements.

Semantic network is the base representation form were for many knowledge

engineering applications. It was introduced in the late 1960’s (Quillian 1968), (Varga

2011). The network consists of concept nodes and the edges correspond to different

relationships among the concepts. The big advantages of this representation form are the

great flexibility and the readability. This formalism enables the representation of any

arbitrary binary relationship, like abstract relationships (specialization, containment,…)

and any business level relationship (owner, supplier,...). The network supports the

representation of both abstract concepts and instance level concepts. One of the main

disadvantages of the model is the strict differences between node concepts and

relationship concepts. The different variants of semantic networks are discussed, among

others, in (Sowa 1992) and (Varga 2011).

In the field of text mining, the family of assertional semantic networks has a dominant

role. One of the main representatives of this group is the RDF graph (Klyne and Carroll

2004), (Varga 2011). The RDF graph is built up from triplets, where a triplet contains a

subject, a predicate and an object component. It corresponds to an atomic information

snippet. The graph corresponds to the set of related triplets. The RDF model enables

the representation of higher level predicates too, as it contains intermediate resource

node type and abstract node type. The representation of n-ary relationships requires a

more complex formalism. The RDF does not support the definition of different

constraints and the distinguishing of classes and instances. An extension of RDF with

instance level elements is the Conceptual Graph model, which enables the usage of a

concept type hierarchy in the sense of (Kovács and Sieber 2009). This kind of semantic

graph is widely used in computational linguistics where the verb is a central concept in

the graph describing the meaning of a sentence. The concept of verb is connected with

different relationships or roles to the other part of speech components (Sowa 2000),

(Varga 2011).

One of the most powerful knowledge representation models is the OWL ontology

model (Bechhofer et al. 2004). In ontology the structural part is based on a concept

graph providing different elements for abstract concepts and instance concepts. The

model contains a module for constraints given in descriptive logic language. Thus, an

ontology engine can provide the validation of the models as well as the reasoning from

different logic rules.

1.2 Aims and scope

The main goal of our research is to develop a natural language controlling framework

which uses mostly rule-based approaches. The aim is to make such a NLC system

which can easily be adapted for several domains and for different languages as well.

1. Introduction 6

The implementation of the framework should consider the alloying of existing

solutions, working NLP engine modules into the framework components. The

capabilities of the framework are fixed in advance which are:

1. Domain-adaptivity: the ability to easily learn concepts and relations of

different domains without modifying the inner structure and workflows of

framework

2. Language-adaptivity: the ability to parse natural language sentences in

different languages with only teaching language-dependent parts of framework

3. Extendibility: the ability to extend the set of functions which wanted to be

called by natural language commands

4. Open interface: the ability to reuse existing components of NLP engines and to

implement, refine any part of the framework for own needs.

In order to be able to achieve these objectives, the framework needs a semantic

representation model (SRM) and a function description model (FDM) satisfying the

following requirements:

- main building blocks of the semantic model should be concepts and their

relationships

- central concept should be the predicate

- apriori domain knowledge should be able to be represented with SRM to be

capable of making sentence analysis

- SRM and FDM should be extended with in-sentence role data for the proper

function mapping

- it should provide high levels of flexibility and extendibility.

There are numerous NLP engines which provide solutions for basic text processing

tasks like text parsing, spell checking, named entity recognitions, morphology analysis,

sentence analysis, etc. These engines are regarded as utility libraries where developers

get ready-made algorithms, methods. The task of the developer is to integrate these

solutions into the proposed framework with implementing provided interfaces.

The tasks of our project can be summarized as follows

1. The first task of the project is to create the structure of a natural language

controlling framework model considering domain- and language-adaptivity and

alloying exiting NLP engines.

2. The second task is to develop semantic models for representing domain

knowledge for sentence analysis, application function descriptions for function

mapping and algorithms to perform sentence analysis and function-mapping.

3. The third task is to find optimization problems in framework modules and to

suggest solutions to achieve execution with lower costs.

4. Finally, the framework and two of its applications should be implemented for

the verification of theoretical results.

1. Introduction 7

1.3 Dissertation guide

Considering the tasks to be solved the dissertation consists of the following chapters.

Chapter 2 introduces the topic of the dissertation and summarizes the key concepts of

NLP systems. At first, the levels and approaches of natural language processing were

studied that are important to be able to determine which levels should be interpreted in

the proposed system. The second stage is to overview of types of NLP applications and

the third is to learn about NLP tasks which should be studied how and which of them

should be included in the framework to be developed. In the last stage existing NLP

frameworks were examined in many aspects: implemented tasks, NLC process and

language support, application programming interfaces. The summary of the chapter

contains an overview about the lack of the existing frameworks and the requirements of

a novel approach for NLC frameworks.

Chapter 3 exposes the development of the natural language controlling framework,

highlighting the novel elements which fulfill the declared requirements. The chapter

declares the modules of the framework considering the language-dependency and the

proper way of connecting them. The integration of existing “classical” NLP solutions is

also examined and the correct way of their usage is proposed. In order to be able to

separate language-dependent and language-independent modules, a novel notation

system is constructed which should contain words or suffixes in a universal form. With

this supplement, different languages can be adapted to the system with implementing

only the language dependent parts of the framework. This chapter results in a new NLC

framework structure extended with a notation system.

Chapter 4 models the representation of domain knowledge and the application

functions. The framework is planned to be used in arbitrary domain context with a

proper teaching of dependent parts. The incoming sentences need to be analyzed which

is only possible if we have precognitions about the concepts of the domain. Therefore,

the adaptation means constructing concepts of the domain and the relations between

them. This chapter gives a solution as a domain knowledge representation form. The

output of the NLC system is the execution of some real functions. To be able to extend

applications with natural language control, the controllable functions need to be

collected. The framework provides a well-defined description form to define application

functions. The last part of the chapter is to determine an algorithm which maps the

sentence analysis result to the belonging application function description.

Chapter 5 studies optimization issues in framework components especially in sentence

analysis and function mapping. Domain knowledge and function descriptions are built

up in tree structures, so it is very important to be able to evaluate the cost of algorithms

that manipulates them considering the increasing nodes of structures. The necessity of

optimization is also explained by the real-time working mode of NLC-extended

systems. The optimization concerns the knowledge and function description models, the

algorithms and also gives recommendations to use specific types, structures, algorithms

in implementation.

1. Introduction 8

Chapter 6 introduces two sample applications: robot controlling and navigation

application where the new NLC framework was taught and used. Teaching means

constructing domain knowledge and function descriptions that are discussed in detail by

concrete examples.

Chapter 7 summarizes new scientific results achieved in the project. It also outlines the

directions of future research.

2. Background 9

2 Background

The main research direction related current technologies on user interfaces focuses on

the development of natural language interface (NLI). There are innumerous potential

application areas of NLI, like search engines (semantic search), question answering

(information system), controlling of robots or engines, text mining or machine

translation systems. In the recent decades several approaches were developed to

perform the natural language processing (NLP) efficiently. The main characteristic of

syntax oriented (shallow) approaches (MacCartney 2009) is that only lexical and

syntactical similarities are measured during text processing. In this case the words of

the text are assigned to dictionary entries with the largest similarity like in the BOF

model of Glickman (MacCartney 2009). Similarity is usually measured with statistical

methods. Most of these methods use document texts without any annotation (Varga

2011). In some cases, the texts are annotated with grammatical information. The main

problems of these simple approaches are that the unsupervised, not annotated methods

do not work efficiently, and on the other hand, the grammatical annotation requires a

large amount of investment.

The other direction uses a semantic oriented (deep) analysis. In this case, sentences are

transformed into some formal language expressions. The formal language framework

can be used to perform reasoning and consistency validation (MacCartney 2009). The

logic based approach can be used to manage many language elements like quantifiers

but it cannot be used to describe some other language components like vagueness,

idioms or aspect. The other main drawback of this approach is the efficiency: it cannot

manage open domain problems as the natural language is too complex for formal

description.

The task of the NLP Engine is to accept user commands formulated in natural language

sentences and convert these commands into low level program function calls. One of

the first proposals on high level NLI engines is given in (Lee et al. 1998). The engine

consists of the following components: NLP Module, Discourse Manager and KQML

Call Generator as can be seen in Figure 2.1.

Figure 2.1. The NLI Engine Structure (Lee et al. 1998)

2. Background 10

The NLP module converts the incoming sentences into QLF logical expressions. The

first step of processing is a morphological analysis. The engine determines the possible

morpheme segmentations resulting word-level morpheme graphs. A dynamic

programming approach is used to generate the morpheme graph. Based on a lexicon, the

syntactic categories are determined using an extended categorical unification grammar

formalism. The next step is a semantic analysis resulting in QLF expressions. The QLF

language is based on extended first-order logic and it has a predicate and argument list

structure and objects are symbolized with terms. The QLF language (Alshawi and van

Eijck 1989) contains temporal operators and second order arguments beside the usual

quantifiers. The following example shows a sample sentence in QLF for the sentence

“every representative voted”:

quant(forall, x, Repr(x), past(quant(exists(e, Ev(e), Vote(e,x)))).

The Discourse Manager is responsible for the management of discourse entities. The

module detects the explicit and hidden entities, concepts in the sentences, and resolves

the different references. The module uses the method of discourse copying. The output

of the KQML module is the function call to specific system services. The call contains a

parameter list containing among others the sender, the operation and the parameters.

The call is executed by the executor engine.

A new approach is presented in (Strassel et al. 2010) related to the DARPA’s Machine

Reading project. The kernel NLP engine of the project is called FAUST (Flexible

Acquisition and Understanding System for Text). The approaches emphasize the role of

semantics, the domain ontology needed to understand the text. The knowledge base is

stored as a collection of first-order formulas describing domain specific rules. The

engine contains a powerful reasoning engine to infer specific sentence-level

interpretation. The engine uses the Stanford NLP engine to perform the linguistic

analysis.

Some standard NLP engines are available on the Internet, the most widely used ones are

OpenNLP, Natural Language Toolkit (NLTK), Stanford NLP and Unitex. The Stanford

NLP engine (StanfordNLP 2013) provides a general framework for text processing. It

includes the following modules: tokenization, part-of-speech tagging, named entity

recognition, parsing, and co-reference. The project improved the language engine of the

Unitex project (Paumier et al. 2010). The Unitex engine is a general text processing

framework containing the following modules: preprocessing, tokenization and

dictionary-based morphology analysis.

The importance of optimal architecture and IT techniques is explained well in (Paumier

et al. 2010). The paper describes a successful collaboration between academic and

industrial partners on development of a NLP engine for iPhone devices. The performed

internal optimization resulted in a significant speed up of processing. The average time

spent to process a sentence dropped from 811 ms down to 15 ms (Paumier et al. 2010).

2. Background 11

2.1 Brief history of NLP systems

The history of natural language processing has started around 1950 when Alan Turing

has published his paper called “Computing Machinery and Intelligence” (Turing 1950)

proposing the criterion of intelligence. Now, it is called Turing test, where a human

judge makes real-time written conversation with a human and a computer. The

computer program can pass the test if the human judge cannot distinguish between the

application and the human.

Machine translation was the first natural language related application, some early

projects can be found already some years before 1950 in (Hutchins 2005). Systems

simply used dictionary-lookup for searching words, for translation them or for

reordering to satisfy the requirements of target languages. These systems generally

produced poor results which led to define a more adequate theory of languages.

The authors of “Georgetown experiment” in 1954 declared that the machine translation

would be solved within a half decade after they have implemented the automatic

translation of more than sixty Russian sentences into English (Hutchins 2004).

In 1957 Chomsky published his paper titled “Syntactic Structures” (Chomsky 1957) in

which the idea of generative grammar was documented. It results some gain into the

field of machine translation. Meanwhile, other NLP application areas emerged like

speech recognition.

Researchers became more optimistic after the extremely well results of SHRDLU

(Winograd 1972) which was a natural language system working in “blocks worlds” with

limited vocabularies in 1960’s. The next application of NLP systems was ELIZA

(Weizenbaum 1966) written by Joseph Weizenbaum between 1964 and 1966. ELIZA

has simulated a psychotherapist using almost no information about thoughts or emotions

but providing interesting human-like interactions.

The statement that the machine translation will be solved within three or five years, was

overestimated and the ALPAC report (J. R. Pierce 1966) in 1966 led to make funds

dramatically reduced since the results stayed under expectations after a ten years long

research.

In the 70’s “conceptual ontologies” has begun to be written by many programmers.

Ontologies transform real-world information into computer-understandable data like in:

MARGIE (Shank 1975) SAM (Cullingford 1981), PAM (Wilensky, 1978), TaleSpin

(Meehan, 1976), QUALM (Lehnert, 1977), Politics (Carbonell, 1979), Plot Units

(Lehnert 1981). This time many chatterbots have been developed like PARRY, Racter

or Jabberwacky. LUNAR was developed as an interface to a database which contains

the lunar rock samples. In the late 70’s the semantic issues, communicative goals and

plans and discourse phenomena came to the front.

From the end of 1980’s the increase of computational power and the less expensive cost

led to the usage of statistical models in NLP with more interest.

2. Background 12

2.2 Levels of natural language processing

A natural language processing system can be ranked by the number of levels of the

language it utilizes. Levels give a synchronic model of the language contrary to an

earlier sequential model which supposes that the levels of language processing follow

each other sequentially. Researches recommend regarding levels more dynamic which

can interact in variety of orders. In the following the description of levels is presented

sequentially but the meaning is essentially conveyed by each level of language.

2.2.1 Phonology level

In phonology level speech sounds within and across words are examined. Three types of

rules can be defined in this level:

- Phonetic rules: used for sounds within words

- Phonemic rules: used for variations of pronunciation of spoken words together

- Prosodic rules: used for determining intonation across a sentence and

fluctuation in stress.

Phonological analysis can be performed in such NLP systems where the input is spoken

sentences and sound waves are encoded into a digitized signal like a written text form.

2.2.2 Morphology level

Words are composed of morphemes that are the smallest units of meaning. The aim of

morphological level is to classify input words into separate morphemes. The meanings

of morphemes are not changed across words, therefore an unknown word can be broken

into constituent morphemes to determine and to understand the meaning of it. There are

many kinds of languages where the morphological analysis differs. E.g., in English

language words are mostly in their original form, they are inflected only in some cases:

in plural form of nouns (+s), past tense of verbs (+ed), etc. In agglutinative languages

like Hungarian, the situation is more difficult, the meaning is manifested by the

inflection of words instead of e.g., the place in word order. Hungarian words can have

prefixes (like in verbs), and many kinds of suffixes (inflection, ending) which determine

the meaning of words. The key piece of meaning is the proper specification of stems

and suffixes.

2.2.3 Lexical level

In lexical level the meaning of individual words should be interpreted. It can be

performed in several ways like assigning a single part-of-speech tag to each word. If a

word can only have one possible sense or meaning it can be replaced by its semantic

representation. In that case if more part-of-speech tags are determined for a word, the

context should choose which one may be used.

Lexicons can be used in lexical level which can be quite simple or arbitrarily difficult.

In simple representations a lexicon contains pairs comprising words and their part-of-

speech tags, while in more difficult cases a lexicon can store semantic classes,

limitations on semantic arguments, etc.

2. Background 13

2.2.4 Syntactic level

The aim of syntactic level is to analyze words in a sentence and to uncover the

grammatical structure of the sentence. The analysis needs the existence of a grammar

and also a parser. The output of syntactic level is a kind of representation of the

sentence which denotes the dependency relationships between words. Sentences can be

fully parsed or can only the phrasal and the clausal dependencies be determined

depending on nature of NLP application. In such languages where the word order has an

important role, the syntax conveys the meaning. In languages with free word order the

meaning is influenced mainly by morphological, lexical and semantic levels.

2.2.5 Semantic level

Semantic level focuses on the possible meanings of a sentence considering the

interactions among word-level meaning in the sentence. Resolving semantic ambiguous

words is an important task of semantic level processing, where a word has multiple

senses, similarly to syntactic disambiguation in syntactic level, where a word had

multiple part-of-speech. Semantic disambiguation allows only one sense of polysemous

words which will be included into the semantic representation of the sentence. The

disambiguation process needs the remaining part of the sentence to determine which

sense of a word should be chosen. Several methods can be found which solves

disambiguation tasks, some of them require frequency information for each sense in a

corpus, some requires consideration of local context, others uses pragmatic knowledge

of the domain.

2.2.6 Discourse level

Levels until discourse level work on words of sentences, it can also be called as

sentence-level processing. The discourse level works on longer units. It does not mean

that more sentences will be interpreted like they would be concatenated, but the

sentences as a whole should be analyzed. The two of the most common processing types

in discourse level are the anaphora resolution and the discourse structure recognition.

Anaphora resolution replaces the semantically vacant words like pronouns with the

belonging entity to which they refer. Discourse structure recognition categorizes

sentences of the text into small pieces of which sentences belong to the same discourse

component. For example a book can be deconstructed into discourse components such

as: preface, acknowledgements, introduction, chapters, etc.

2.2.7 Pragmatic level

The pragmatic level is more complex and work-intensive than all other levels.

Pragmatics is often thought as the underlying meaning of the text that depends on such

knowledge about world which comes from outside the document. A computer needs to

have the same knowledge like people have, about the world to be able to understand

pragmatic, but computers can do it with more difficulty than people can. Information

retrieval researchers think that the only way to add pragmatic level into NLP system is

to gather all knowledge of a world to use as a reference guide or knowledge base in

2. Background 14

information systems. The problem with this concept is that building such a huge

knowledge takes very long time, it is very costly and looks only the existing knowledge

regardless of new information.

2.2.8 Summary of levels

Mainly the lower levels of processing are implemented in current NLP systems. Most

applications do not require the implementation of higher levels, accordingly, lower

levels are more thoroughly researched and implemented. Lower levels work with

smaller units like morphemes, words and sentences which mostly rule-governed

contrary to regularity-governed higher levels dealing with text and world knowledge.

Lower levels of analysis use statistical approaches, whilst symbolic approaches can be

used in all levels, although higher levels are implemented in NLP systems very rarely.

2.3 NLP tasks and frameworks

There are numerous tasks in the field of NLP subset of which frameworks usually

implemented. Some of the tasks have real applications while others are only building

blocks in larger units. The most relevant tasks in NLP researches are

- Automatic summarization

- Co-reference resolution

- Discourse analysis

- Machine translation

- Morphological segmentation

- Named entity recognition

- Natural language generation

- Natural language understanding

- Part-of-speech (POS) tagging

- Parsing

- Question answering

- Sentence breaking a.k.a sentence boundary disambiguation

- Speech recognition

- Speech segmentation

- Topic segmentation

- Word segmentation

- Word sense disambiguation.

Most of the previous tasks are realized by famous NLP frameworks like NLTK (NLTK

2012), Apache UIMA (Apache 2013) or Stanford NLP (StanfordNLP 2013).

NLTK can be used for developing Python programs to process human language data. It

provides many easy-to-use interfaces over 50 corpora and lexical resources like

WordNet. NLTK implements classification, tokenization, stemming, tagging, parsing

and semantic reasoning libraries. NLTK supports mostly English language but tasks of

it can be adapted for other languages as well.

2. Background 15

Stanford NLP (SNLP) framework has been developed by Stanford Natural Language

Processing Group (SNLPG) before many years. SNLP consists of Java-based statistical

NLP toolkits for various major computational linguistic problems. Stanford CoreNLP is

part of SNLP which is an integrated suite of NLP tools for English which includes:

tokenization, POS tagging, NER, parsing and co-reference resolution. Besides

CoreNLP, SNLP has individual NLP modules which also provide the above tasks.

SNLP supports mostly English, Arabic, Chinese, French and German languages.

Adaptation of Stanford Parser is available for Hungarian language in magyarlanc

project (Zsibrita, Vincze, and Farkas 2013).

Apache UIMA is the most robust framework, among others, components of it are also

available for both Java and C++. In UIMA annotator components should be configured

and pipelined which do the actual work of analyzing unstructured information. Own

annotators can be implemented or existing ones can also be extended. UIMA analysis

engine provides the following NLP tasks: language identification, tokenization, POS

annotation, shallow parsing and named entity recognition.

2.4 Related works

One of the best-known results of Hungarian NLP is the free iSpell dictionary with

Hunspell (Németh 2011) spell checker and morphology analyzer which provides

accurate spell checking for OpenOffice, Mozilla Firefox browser, Thunderbird email

client, Google Chrome, Internet Explorer, Opera browsers and for users of many other

applications. A Hungarian lexical database and morphology grammar is presented by

(Trón et al. 2006).

Hungarian Natural Language Processing Group (HNLPG) has also many related

researches belonging to the area of NLP. They developed an extension (Szarvas, Farkas,

and Kocsor 2006) to the MALLET (McCallum 2002) conditional random field (CRF)

named entity recognizer (NER) which contains a parametrisable feature extractor

package and adapters for UIMA framework (Apache 2013). Magyarlanc (Zsibrita,

Vincze, and Farkas 2013) is a toolkit for linguistic processing of Hungarian language. It

contains a sentence splitter and tokenizer which are the extensions of MorphAdoprner

(MorphAdorner 2009), a POS tagger and lemmatizer which uses a modified version of

Standford POS tagger (StanfordNLP 2013), stopword filtering and dependency parser

which is a version of Bohnet parser (Bohnet and Niver 2012) adapted to Hungarian.

The main achievements of HNLPG are the construction of Szeged TreeBank (Csendes

et al. 2005), a dictionary which contains syntactic analysis and annotation of sentences

and the Hungarian Ontology a.k.a Hungarian WordNet (Alexin et al. 2006) which is a

natural language concept set on the basis of WordNet.

2.5 Conclusions

The analysis of existing frameworks shows that the main tasks of NLP are properly

implemented and frameworks can also be adapted for several languages like Hungarian.

2. Background 16

HNLPG decided to adapt some NLP tasks such as tokenization, parsing to fulfill the

requirement without implementing whole modules.

In general, the most complex task of investigated NLP frameworks is the parsing or

sentence analysis. Most of the frameworks do not continue the processing since it

should be the task of applications. In natural language controlling systems a required

task could be the mapping of parsing result into a function call.

The main objective of our research is to develop a natural language controlling

framework which extends the set of tasks of existing NLP frameworks with the ability

of controlling applications with natural language commands and queries.

In order to be able to realize the function mapping, the semantic model of domain

knowledge, the function description mode and the algorithms of sentence analysis and

function mapping should be developed.

Regarding requirements defined in section 1.2 the NLC framework should also be

domain- and language-adaptive. Investigated frameworks support several languages but

they do not separate tasks into language-dependent and independent parts. The proposed

NLC framework should differentiate modules based on this category and should

propose a solution to bind the two groups together. Certainly, the adapted tasks of

existing frameworks could also be integrated into the proposed NLC framework.

3. Developing a Natural Language Controlling Framework 17

3 Developing a Natural Language Controlling Framework

The primary goal of our project is to define the architecture of a natural language

controlling framework which satisfies the requirements in section 1.2. The processing

workflow is more complex than it could be handled in a single module. The complexity

of software engineering can be managed with the usage of layered design approach. One

of the first proposals in this field is the paper of Goldstein and Bobrow (Goldstein and

Bobrow 1980). They argue that a layered modeling structure is more suitable to

represent an evolving design. The model uses a network to describe the design process,

where nodes represent the modules and procedures. The layered architecture provides a

more efficient management of versions, isolated modular design, implementation,

testing and larger scale reusability. The layered architecture can be used to develop

flexible applications that are decomposed into subtasks (Sharma, Jalote, and Trivedi

2005).

The logical structure of the proposed NLP system is presented in Figure 3.1. In next

sections the requirements and tasks of main modules will be discussed in detail

regarding to domain- and language-adaptivity.

Figure 3.1. Logical architecture of NLP System

3. Developing a Natural Language Controlling Framework 18

The requirements of the proposed natural language controlling framework are the

following (R1)

1. Domain-adaptivity: the ability to easily learn concepts and relations of

different domains without modifying the inner structure and workflows of

framework. The domain knowledge should be loaded into the ontology module

through its application programming interface (API). The API layer also

provides access to semantic information for framework layer which hides the

realization details from developers and users.

2. Language-adaptivity: the ability to parse natural language sentences in

different languages with only teaching language-dependent parts of framework.

Since the modules can be splitted into language-dependent and –independent

modules, only thr text parser and the morphology module should be re-

implemented for different-languages. The belonging API provides well-defined

interfaces for implementing language-dependent parts of modules.

3. Extensibility: the ability to extend the set of functions which wanted to be

called by natural language commands. The extension can also involve the

extension of domain knowledge when new concepts are defined for new

functions. Ontology and function mapper APIs provide methods which satisfy

the current requirement.

4. Open interface: the ability to reuse existing components of NLP engines and to

implement, refine any part of framework for own needs. There are several NLP

engines in the market which have proper solutions for subtasks of frameworks

like spell checking, morphology analysis, etc. The task of the developer is to

integrate these services into his own implementation using the suggested

interfaces which are provided by the API layer of the framework.

5. Modularity: the ability to decompose related tasks into independent but

connected modules. The modular architecture also provides the reusability and

exchangeability of implementations of individual tasks.

As can be seen in Figure 3.1 the natural language controlling can be regarded as a

transformation of a text given in natural language into an application function call. It

can be formalized as follows

 (3.1)

where

- T : is the set of sentences in natural language

- A : is the set of application functions.

Natural language texts can be composed from sentences which are built up from

sequence of words whilst words are collated with using a finite sequence of symbols

over a given alphabet. The rules which define how the sentences can be formed using

words are called syntax or grammar. Formally,

 (3.2)

3. Developing a Natural Language Controlling Framework 19

 { } ,

 { } ,

where

- c : is a character of the alphabet

- Σ : is the finite character set of the language

- Σ
*

: is the set of all words over the alphabet

- w : is a given word

- W : is the finite sequence of words

- W
*

: is the set of all sentences over the language

- S : is the set of sentences

- s : is a given sentence.

The application functions defined in (3.1) can be decomposed into sets of operations

belonging to individual modules. Each module has its own tasks which transforms the

output of the previous module to produce the proper output. The composition of (3.1) is

given with

 () () () ()

 ()
(3.3)

where

- : is a module function

- oi : is the output of the i
th

 module.

The composition has the following properties:

- associative: () () ,

- does not commute: .

Combining (3.1) and (3.3) constraints

 ()

(3.4)

are imposed. There are four modules defined in NLC framework. Each module has a set

of functions the composition of which gives the results or output of modules. The

defined modules are

- text parser ()

- morphology ()

- ontology ()

- function mapper ().

The starting point of processing in the NLC framework is the reception of a textual

input in a specified language. The production of input is not part of the project but it can

affect the later processing like spell checking. Thus the join of input source module

3. Developing a Natural Language Controlling Framework 20

() to the proposed framework should also be analyzed to show the effects and

roles in NLC processes.

Consecutive sections describe the requirements and the tasks of each module regarding

the effect for making module output.

3.1 Input source module

The input source module is responsible for transforming the human input, which can

come from various devices, into text. The input device can be a speech recognizer, a

scanner, a handwriting recognizer, a keyboard input or any other equipment which can

produce textual output. The common feature of these devices is that they should

generate digitized text from some analogous signal where the conversion can have some

error rate. The text generation can be denoted formally by

(3.5)

where

- : is the analogous input

- T : is the converted text

- si : is the i
th

 sentence of text.

The error rate can be counted from misrecognized parts of the text (sentence or the

word). The reference sentence of a sequence is described in (3.6). In general the error

can be written as

| | | | | | |
 |

 | | | |

(3.6)

|{ |

 }|

|{ }|
 (3.7)

where

- : is the error rate of conversion

- w : is the number of all words

- T’ : is the reference conversion which contains the correct sequences of

sentences.

Different types of input devices have special mistakes. For example in case of keyboard

input, the mistyping gives faults in the input text, while in case of handwriting the

misrecognition of similar shapes gives the error in the input. The speech recognition is

much more difficult than previous methods. The error correction algorithms may

depend on the input type to achieve the most accurate output with the highest efficiency.

A spell checker is usually used in those systems where text cleaning processes are

needed. Table 3.1 compares the most frequent input types by errors, algorithms,

accuracy and usage convenience.

3. Developing a Natural Language Controlling Framework 21

Table 3.1. Comparison of input types

 Typing OCR Handwriting Speech

Device Keyboard Scanner, camera Tablet, Pen Microphone

Source of

errors

Human

mistyping

Recognition

error,

text source

mistakes

Recognition

error,

handwriting

mistakes

Recognition

error

Used

algorithms
-

Walsh

Transformation

Projection

Histogram

Zoning

Neural

Networks,

Genetic

Algorithms

Greedy Point

Match

HMM, DTW

Correction

algorithms

Edit distance

(Levenshtein,

Damerau)

Edit distance,

Bayesian

methods

Phrase-based

models

Language

models

FST,

Word Graphs,

Phonetic

distance-based

methods

Best

recognition,

conversion

accuracy

100% 70%-98% 70%-95%

50%-95%

(Mihajlik

2010)

Convenience

of device type

for NLI

engine in the

scale of 1-4

2 1 3 4

3.2 Text parser module

The text parser module gives the interface of the NLP system towards the users. The

natural language input can be of several kinds, like text, speech, handwriting, etc. Each

type of input has its own characteristic; their common feature is that they can be

transformed into text.

The main goal of the text parser module is to recognize the building blocks of the

incoming text and produce as accurate output for later modules as possible. Considering

the primary aims, requirements of the text parser module can be summarized as follows

- Extendibility: text parsing is far language-dependent, since each language can

have its own alphabet and vocabulary. Text parser module should be extendable

with customized implementations for specific languages.

- Low response time: the framework should work in real-time environment, thus

every algorithm and task should run with using the least execution time.

- Low memory cost: the module should use such solutions for the

implementation of the algorithm which uses as low memory as possible

providing optimal response time.

- Support Hungarian language: Hungarian language is an agglutinative

language. This kind of languages is usually not supported by famous NLP

3. Developing a Natural Language Controlling Framework 22

engines. The framework should provide a solution for the implementation of

related operations.

Accordingly, the text parser module should implement the following tasks:

- Sentence tokenization: the input text is a single unit which has to be

decomposed into sentences. The sentence tokenization is not a trivial problem,

since the sentence boundaries, specifically ‘dot’ is overloaded and a solution is

needed to be found to decide which one is a sentence delimiter.

- Word tokenization: after sentence terminations are detected, words of each

sentence should be highlighted.

- Spell checking: the mistyped words should be recognized and the corrected

version should be provided via spell checking. It has to be executed word by

word. A misspelled word can have more possible corrected alternatives in which

cases context-sensitive approaches can lead to a success.

- Named entity recognition (NER): there are numerous entities in a language

which are special like numbers, dates, countries, cities, companies, etc. These

data should be handled in a more different way than normal words. Named

entities should be labeled with the type of the entity to make later analysis more

efficient.

The text parser module has been composed from four operations

 (3.8)

where:

- : is the operation of sentence tokenization

- : is the operation of word tokenization

- : is the spell checking operation

- : is the named entity recognition process.

The order of operation is defined in (3.8), the order of their execution cannot be

changed or reordered.

3.2.1 Sentence and word tokenization

In order to be able to process NL input the text has to be parsed at first, then splitted

into sentences and the sentences into words. The parsing mechanism can be quite

complex, since the ‘.’ boundary. There are existing segmenters in famous NLP engines

(NLTK 2012), (StanfordNLP 2013), (Apache 2013) and (MorphAdorner 2009) which

usually do not support Hungarian language. Most of these solutions can be adapted for

our language, like the Hungarian Natural Language Processing group has done with

Morphadorner’s segmenter (Kumar 2009) in “magyarlanc” project (Zsibrita, Vincze,

and Farkas 2013).

3.2.2 Spell checking

To provide the most accurate selection of the application function in the end of natural

language controlling process, the NLC modules individually should provide as accurate

3. Developing a Natural Language Controlling Framework 23

results as possible. It is increasingly applied to text parser module, since it produces the

base elements of the natural language input. If words of sentences are mistyped, the

morphology module will not result in the correct analysis, the belonging concepts will

not be found and the application function execution will not be done. In order to avoid

this bubbling effect a spell checker has to be used which corrects the

mistyped/misrecognized words.

A spell checker can work in two ways:

- automatic: replace the incorrect word automatically with the correct one, which

has the highest goodness value from a list of words

- manual: generates a list of possible correct words and the user has to choose

one from this list.

In a user-friendly NLC system, the spell checker should work automatically without

asking users to decide which alternative is correct for a word. The manual checking

could decrease the usability. Spell checking should only work with using dictionaries

therefore a new notation

 (3.9)

has to be introduced, where

- : is a dictionary containing words of the language.

The spell checking process is formalized

 . (3.10)

The spell checking should basically satisfy the following rules

 ()

 ()
(3.11)

Formula (3.11) ensures that the output of the parser will contain only such words that

are in a known vocabulary of the language. There are such situations when it is not

enough to fulfill the previous rules. E.g., a speech recognizer produces the output

“By a couple of tea for me, please.”

Here can be seen that every word is correct, but the word ‘by’ is not yet in correct form.

The result of correction should be ‘buy’, but it can only be recognized from the context.

Another reason for applying a context-sensitive spell checker is to choose the correct

alternative from the set of words. Here we could define some similarity functions but

combining with the context the result could be made more accurate. The realization

technique of determining the probability value is not part of this project, many solutions

can be found like Bayesian classifier, clustering-based methods, etc. which can be

applied.

3. Developing a Natural Language Controlling Framework 24

When the context of a sentence is determined the algorithm should check that the word

is a part of that context or not. If not, the most similar word should be found for the

replacement of the misrecognized word in the natural language input.

3.2.3 Named entity recognition

Named entity recognition is also a main and important task of NLP engines. There are

special words in each language like numbers, dates, companies, addresses, etc. which

should be handled in a way that differs from that of normal words. Subsequent modules

should not process them fully; they can only use the label which NER has glued to it.

Formally, the NER makes the following transformation

 { }

 ()
(3.12)

where L is the set of labels of entities like NUMBER, DATE, COMPANY, etc.

Since different domains can contain different entities, the extendibility requirement of

NER task should also be satisfied. The API layer of the text parser module has to

provide a solution for customizing used NER instances.

3.3 Summary of text parser module

Text parser module is responsible for receiving natural language sentences, tokenizing

them into sequences of words, spelling false words and labeling the special words as

named entities. The output of the module can be summarized using the previous

statements as follows

 { }

 {()} .
(3.13)

3.4 Morphology module

Morphology is a basic part of natural language processing. It is relevant increasingly in

case of agglutinative languages, like Hungarian. In languages like English, words are

transformed only in a few cases: plural, third person singular verbs, past tense. There

are some exceptional plural nouns also. After all, English texts can be analyzed and

processed much easier than Hungarian texts, where the meaning of a word depends

highly on the suffixes. The detection of base forms (stems) of words in a sentence is

crucial to determine the meaning of a sentence.

Morphology module should provide two main tasks in NLC system:

- Morphology analysis: words of incoming sentences should not only be

stemmed but the transformation rules should also be recognized. This task has a

high relevance among operations of NLC system.

- Inflection: it is the inverse process of analysis. A stem of a word can be

inflected with using a set of rules. It is relevant when NLC system wants to

generate answers in a natural language.

3. Developing a Natural Language Controlling Framework 25

Morphology module in NLC systems has special roles: it represents the border between

language-dependent and language-independent modules. To ensure that the later

modules do not depend on languages the following requirements should be satisfied:

- Providing code system for stems: a concept can be represented with one or

more stems in written form. In concept level it is no matter how a concept is

written in different languages, the meaning is the same. Therefore a code system

should be built up in the morphology module consisting of code-stem pairs.

Adding a new language support means inserting stem values for existing codes

into the stem-code dictionary. Later modules should use only the codes instead

of language-dependent stems.

- Providing code system for POS values: since POS values can also be used by

later modules, they have to be standardized. Each supported language should use

the same POS codes, stored in a POS-code dictionary, in the result of analysis.

- Providing code system for suffix/inflection rule values: in morphology

analysis of a word suffixes with inflection rules are defined besides POS values.

Later modules use the inflection rules also, so the same inflection rule notation

should be used among different languages.

Morphology module receives the output of the text parser module and makes

morphology analysis of each word in the incoming sentence. Three code dictionaries

should be defined in module:

 (3.14)

where

- Xstem : is the set of codes belonging to stems

- XPOS : is the set of POS codes

- Xsuff : is the set of suffix codes.

The analysis process is denoted as

 { } {({(}) }

(3.15)

Morphology analysis can be a resource intensive and time consuming task, so it is very

important to investigate the alternatives of the realization considering the real-time

property of the NLC system. In next subsections the grammar representations and parser

methods are analyzed.

3.4.1 Grammar representations

A classic formalism for representing grammar is the Formal Grammar (FG) mechanism.

In FG, Σ denotes the set of characters in the language. The symbol Σ* is for the finite

sequence of characters. The language L is defined as a subset of Σ*. The language L can

be given with a grammar G, where G is a tuple (N, T, P, S) with

3. Developing a Natural Language Controlling Framework 26

- T : is the set of terminal symbols from Σ

- N : is the set of new non-terminal symbols

- S : is the symbol for a sentence

- P : is the set of production rules.

The language L(G) denotes the set of sequences from Σ* that can be derived from S

using P. Based on the complexity of the rule-set, Chomsky (Chomsky 1965) has defined

four base classes. These four classes are defined as follows: regular grammar with the

simplest rules; context-free grammars; context-dependent grammar and recursively

enumerable grammars. A widely investigated problem is the role of natural languages

within the Chomsky classification. Chomsky has argued (Chomsky 1963) that NL has

context dependent characteristics. Others, like (Gildea and Jurafsky 1995) consider NL

as a subclass of regular languages as every NL is a finite language, thus finite regular

automata can be applied to parse the sentences. One practical drawback of the regular

approach is that the related regular automaton is too huge for implementation.

The most widely used representation formalisms for formal grammars are the finite

deterministic automata (FSA), the stack automata and the TAG architecture. In the case

of FSA, every node of the automata corresponds to a non-terminal element of the

grammar, while the directed edges are assigned to the terminal symbols (Manning and

Schütze 1999). In the case of stack automata, the automaton has a special memory to

save the previous states. The TAG (Tree Adjoining Grammar) uses a hierarchy to store

the grammar description. The TAG hierarchy is given with a tuple (N,T,I,A), where T

denotes the terminal symbols, N is for the non-terminal symbols, I is a finite set of

initial trees and A is the set of auxiliary trees. The leaves of the trees are either terminal

symbols or non-terminal symbols that can be substituted by another auxiliary tree. The

trees can be adjoined via the substitution leaves.

The cognitive linguistics appeared first in the 1970's. One of the main pioneers of this

approach is Langacker (Krenn and Samuelsson 1997). The cognitive approach assumes

that the human language reflects the general cognitive processes of the human mind.

Several specific grammars were developed, usually with some stochastic learning

mechanism. The Word Grammar (WG) proposed by Hudson (Hudson 2007) belongs to

this category. WG represents the grammar with a knowledge graph including all four

levels of the human language, namely the semantic level, the syntax level, the

morphology and the phonology.

A different approach is implemented in the Dependency Grammar (DG) proposed by

Tesniere (Tesniere 1959). The DG uses dependency description between the words of a

sentence. The dependency has a head (verbs) and some dependents. The dependency

relation corresponds to grammatical functions. The dependency relationship is described

with a dependency tree called stemma. The stemma is well-formed if (Robinson 1970)

- One and only one element is independent

- All others depend directly on some element

- No elements depend directly on more than one

3. Developing a Natural Language Controlling Framework 27

- If A depends directly on B and some element C intervenes between them (in the

linear order of the string), then C depends directly on A or B or some other

intervening element.

A similar formalism is used in the Link Grammar (LG). The link grammar uses only

binary relationships, i.e. complex relationships within a sentence are represented with

relationships between two words of the sentence.

3.4.2 CL-based parsers

The inflection transformation has a very complex form. In our approach the rule is

given with a set of distinct basic transformation rules. An atomic rule corresponds to an

unambiguous simple conversion rule. Here are some examples for atomic rules.

- *(#,t) : a character ’t’ is appended to the end of the word

- *ab(i,o)*(a,át) : the first occurrence of ’abi’ is replaced with ’abo’ and the

ending ’a’ is replaced with ’át’.

In natural languages, the transformation rule depends on the base word. Thus, the

inflection transformation can be considered as a classification problem, where the base

word is assigned to the best matching transformation class.

In the literature, inflection is usually controlled by a production rule system, where the

dominating solution is the application of FST or HMM (Manning and Schütze 1999)

methods. In our project, a different approach was tested, namely the toolset of Formal

Concept Analysis (FCA) (Manning and Schütze 1999). The output of the FSA process

is a lattice of formal concepts. This lattice represents the discovered concepts and the

generalization and specialization relationships among the concepts. With the application

of special class label attributes, the concept lattice can be used as a classification

method. The input for the FCA analysis is a formal concept defined with K(OK,AK,IK)

triplet where

- OK : is the set of objects

- AK : is the set of attributes

- IK : is a binary relationship between objects and attributes.

Two mapping functions are defined between objects and attributes with

 () { | }

 () { | },
(3.16)

where

 . (3.17)

A pair of closed object-set and attribute-set is called formal concept:

 () () () . (3.18)

Among the sets of formal concepts a partial ordering can be defined with

3. Developing a Natural Language Controlling Framework 28

 () () (3.19)

A pioneer work on application of concept lattices for classification is the proposal of

Zhao and Yao (Zhao and Yao 2006). In their approach, the attribute set of the context is

extended with a class label. This label attribute denotes the class membership of the

objects. The class label of a node is the aggregation of class labels in the dominated sub-

lattice. A concept in the lattice is consistent if its class label contains only one class. A

concept is the most general consistent one if it is consistent but neither of its super

concepts is consistent.

In the inflection rule concept lattice, the attributes of the context correspond to the

labeled character sequences of words. A label contains positional data on the sequences.

The intension of a concept is given by a set of labeled substrings called generalized

word. The generalized word at a new concept is constructed with intersection of the

corresponding generalized words. A default class value is also defined here as the class

with the highest support within the dominated concept nodes. According to (Zhao and

Yao 2006), a concept lattice can be converted into a decision tree for determining the

class attribute from the content attributes. The generated decision tree is a binary rooted

tree, where each node is assigned to a generalized word. The classification process at a

given node works in the following steps:

1. If the node is consistent, the search terminates and the current transformation

rule is applied.

2. If the node is inconsistent, the child nodes are tested.

3. If no child node exists, the default rule is applied; otherwise all child nodes are

tested.

4. The test determines a match similarity value for every child. The child with

maximum similarity is selected as the next target node.

The construction of the classification lattice is based on a corresponding training set.

The training set contains samples on inflection rules, like (labda, labdát). In this

example, the first word is the base word ‘ball’ and the second is the word in accusative.

The parser module contains, beside the inflection engine, another unit to manage

different suffixes. In the language, there is a relative rigid rule on combination of

different suffixes. As the order of the components can be described with a regular

grammar, a Finite State Automaton (FSA) was implemented to control the ordering of

the morphemes. The FSA contains a finite set of states where every state here

corresponds to a morpheme. There is an edge from morpheme A to morpheme B if AB

is grammatical sequence of suffixes.

The third unit in the grammar module is the stem dictionary. The language has a set of

valid stems which can be inflected with different suffixes. As this set is a list of static

words it can be implemented with a trie (or prefix) structure. The trie structure is a

special tree to store words. Words with the same prefix part share the same tree section

started at the root. This structure is very suitable for efficient storage and search

operations as the same prefix part is stored only once for several words.

3. Developing a Natural Language Controlling Framework 29

3.4.3 Rule-based parsers

In NLP systems the morphology has quite a huge role to process input with higher

accuracy. There are two main functions of morphology which generally applied in

natural language processing: stemming and inflection. In the following the stemming

will be discussed in detail.

There are many rule-based stemmer approaches for English language since the1960’s.

One of the most popular is the Porter-stemmer (Porter 1980) because of its simplicity

and efficiency. Consonants and vowels are distinguished by algorithms, where if a letter

is not a consonant then it is a vowel. A consonant is denoted by c, a vowel by v. The list

of consonants of length greater than 0 will be denoted by C, and the list of vowels of

length greater than 0 will be denoted by V. Using previous notations any word can be

formalized with one of the following forms:

 .

(3.20)

These formulas can be represented by a single form

 [] [] (3.21)

where [X] denotes arbitrary occurrence of its content. The form can further be

simplified with using tag (VC)
m
 which represents the VC repeated m times. So the final

formula can be written as follows:

 []() []. (3.22)

The stemming is performed in 5 steps using rewriting rules. Steps have a predefined

order and each step contains alternative rules. The rules define suffix replacements

belonging to a given condition. A rule is denoted by the form

 () (3.23)

A rule can be applied if the ending of the word fits to S1, and after cutting S1 off the

condition is fulfilled by the remaining stem.

A condition generally can be given in terms of m, e.g.

 () (3.24)

The condition part can also contain the following

- *S : is the stem ends with S

- *v* : is the stem contains a vowel

- *d : is the stem ends with a double consonant

- *o : is the stem ends with cvc, where the second c is not W, X, Y

- expressions: and, or, not.

3. Developing a Natural Language Controlling Framework 30

If more than one rule can be applied then the rule with the longest ending will be the

winner. After a successful application of a rule set, the algorithm jumps to the next rule

set. If no rule fits in a set the process will continue with the next one. After processing 5

rule sets, the algorithm will terminate.

A general affix representation language has also been developed by Porter, called

Snowball which can handle prefixes besides suffixes. Using Snowball (Porter 2005) 14

European languages have stemmer including Hungarian. Tordai-stemmer (Tordai and

de Rijke 2005) is a Hungarian stemmer based on Snowball (Porter 2005). There are

many alternatives of Porter-stemmer like Lovins-stemmer (Lovins 1969), Paice-Husk-

stemmer (Pacie 1994) or Krovetz-stemmer (Krovetz 1993).

Since natural languages are usually quite difficult to process, the accuracy of stemmer

algorithms cannot be a 100%. Even people can make mistakes for some ambiguous

words. Generally, three kinds of mistakes can be distinguished: under-stemming, over-

stemming or misconstruction. The last two error types can be reduced with using an

exception dictionary.

3.4.4 Summary of morphology module

The implementation of the morphology module is quite complex due to the grammar

rules of different languages. There is no one common solution which supports all

languages in one, thus the current module should be planned to be easily adaptable for

several languages without touching other modules of the framework. Hence a common

interface with the specified language should be implemented and it is developed with

two main operations: analysis and inflection. This kind of approach is suitable mainly

for agglutinative languages like Hungarian, but with some specific integration analytic

and fusional languages can also be fit into the system.

There are many stemmers and parsers of different languages which can be applied in a

NLC framework. The rule-based approaches are proposed to be integrated because of

their simplicity and efficiency which are needed for ensuring real-time processing.

3.5 Ontology module

One of the key components of the NLP engine is the ontology module which takes the

morphology output consisting of codes and transforms into sentence analysis tree.

Sentence analysis can be achieved only in view of concepts of a given domain. Without

such semantic knowledge base, analysis can be made using statistical methods which do

not lead to as accurate result as the proposed one. There are several alternatives to store

the ontology knowledge base which will be discussed in next sections.

3.5.1 Semantic representations

In the case of semantic networks, concepts are represented as nodes in a graph and the

binary semantic relations between the concepts are represented by named and directed

edges between the nodes. Semantic network models usually include a graphical

representation component too. One of the most important members of this family is the

RDF graph model. An RDF graph is a set of triplets, each consisting of a subject, a

3. Developing a Natural Language Controlling Framework 31

predicate and an object. Each triplet represents a statement of a relationship (predicate)

between the concepts (subject and object) denoted by nodes that are connected by a

directed link (pointing to the object).

Frame-based systems use entities like frames and their properties as a modeling

primitive. Value restrictions (facets) can be defined for each attribute (slot), and the

values (or fillers) of these slots can either be atomic values or other embedded frames.

The notion of frame was originally introduced by Minsky in (Minsky 1975). According

to his definition, a frame is a data structure for representing a concept, which can be

unique or generic.

First-order predicate logic (FOPL) is a flexible, well-understood and computationally

tractable approach to knowledge representation, which uses a wholly unambiguous

formal language interpreted by mathematical structures. It is a system of deduction that

extends propositional logic by allowing quantification over individuals of a given

domain of discourse. Predicates are symbols that refer to the relations that hold among

some fixed number of objects in a given domain. Objects are represented by terms,

which can be defined as constants, functions or variables. FOPL constants refer to

exactly one object, and are conventionally depicted as single capitalized letters.

Description logic (DL) is considered the most important knowledge representation

formalism unifying and giving a logical basis to the well-known traditions of semantic

networks, frame-based systems, semantic data models and object-oriented

representations. It is semantically based on, and hence is a subset of FOPL. The DL

syntax (Baader et al. 2003) contains two disjoint alphabets of symbols that are used to

denote atomic concepts, designated by unary predicate symbols, and atomic roles,

designated by binary predicate symbols; where the latter are used to express

relationships between concepts. Terms are then built from the basic symbols using

several kinds of constructors.

3.5.2 Tasks of semantic module

Previous modules made syntax processing on natural language input. The output of the

morphology module is analyzed further semantically in ontology modules. The goal of

the domain ontology model is to describe the knowledge of a chosen domain to help to

understand the semantic of incoming sentences. People can easily know which the

meaning of words of the sentence is, because they have a knowledge that we have to

model.

The main flows of the domain ontology module are

- Building the domain ontology model

- Detecting concepts of a sentence

- Analyzing an incoming sentence

- Generate output to the function mapper module.

There are several methods in soft computing that can help to process a sentence. In

natural language area statistical methods are not enough in case of such difficult

3. Developing a Natural Language Controlling Framework 32

languages like Hungarian. This means that besides syntactic processing, we have to

model the domain knowledge at first to be able to analyze the incoming sentence. The

novel semantic model and the sentence analyzer algorithm can be found in Chapter 4.

3.5.3 Summary of ontology module

Ontology module has high importance in NLC process, since the meaning of the

incoming sentence tries to be retrieved. Sentence analysis needs apiori knowledge about

the domain which is built up in the ontology module. Domain-adaptivity is one of the

key requirements of our NLC system so ontology module provides it with the

corresponding interfaces and methods. Since the morphology module ensures language-

independency for the ontology module, it uses only codes from the code system of the

previous unit and therefore basically no new implementation of ontology processing is

needed. Certainly, the open interface requirement allows this for developers, but it can

be called as a possible but not required property.

3.6 Function mapping module

NLI engine has to be planned in such a way that several applications can be built which

can accept natural language input and can control different systems. The first step in

describing application functions is to collect the possible controllable systems and to

categorize them. It is very important to prepare the NLI engine for the demands of lots

of possible applications. In the following a short overview can be read about

controllable application types and systems along with their properties.

3.6.1 Controllable application types

Lots of existing systems can be enumerated here which can be extended with natural

language interface. NLI engine has to be prepared for a lot of possible applications

which can be controlled with natural language. The controlling part is very compound

and can be analyzed after the main application types will be collected and discussed.

The main application types which can be extended with NLI are: information systems,

database systems, web portals, web shops, search engines, navigation systems, expert

systems, GUI applications, Windows applications, office applications, VoIP

applications, designer applications and robot controlling development systems (IDEs).

In information systems the main task is to query the information after the database is

created and filled. Many database systems can be extended with a natural language

search interface where the user can enter the question in a natural language format and

the system answers it with a result of the query.

There are many web portals and web shops where the natural language communication

will be very convenient. Instead of many clicks we can find and order a product as we

would do it in a real shop. Besides queries data creation, modification and deletion can

be needed in this case. For example, if we have a cart in a web shop we can put (create)

items into it, we can modify them or remove them from the cart.

3. Developing a Natural Language Controlling Framework 33

In search engines the information retrieval is the most important thing so the query-like

sentences are dominant, like in navigation systems and expert systems, too. If the

database creation will be made through NLI, the DDL, DML operations can also be

used.

In GUI applications many functions can be controlled by a natural language. Here the

specific function calls, the object manipulations are frequent with using results of

queries. E.g. a form designer can accept commands to create form elements, to position

them, to modify their properties etc. Here the natural language text has to be converted

to specific function calls. Besides these, the states of objects have to be stored and can

be queried anytime.

Robot controlling is typically that kind of area where users give commands to the robot

and it will execute them. Constructing controlling commands in this case depends on

the knowledge or capabilities of robots, since we cannot instruct the robot to such a

thing which cannot be understood by it.

Development systems are one of the most difficult areas because natural language

command has to be converted into a source code of a programming language.

In designing function mapper the categorization of controllable systems can be achieved

to be able to determine the common function types which have to be implemented in the

NLI engine.

3.6.2 Controlling sentence types

Human communication consists of a lot of things, like spoken sentences, mimicry,

ostentation, etc. In natural language interface design sentences are the most important

components, since the NLI engine will not be able to analyze the visual information of

people (leastways not this version). The sentences can be classified into five categories.

A “declarative sentence” or “declaration”, the most common type, commonly makes a

statement. An "interrogative sentence" or “question” is commonly used to request

information, but sometimes not like in case of rhetorical questions. An "exclamative

sentence" or “exclamation” is generally a more emphatic form of statement expressing

emotion. An "imperative sentence" or “command” tells someone to do something. An

optative sentence is not as common as the other four sentence types and many appear as

fixed sayings. We can use an optative sentence when we want to express a wish, hope or

desire.

The different types of sentences can be bound to different operations as commands in

computer systems. Commands can be chained where the concepts of a natural language

sentence can be bound to one or more commands and the result is generated after the

end of processing the command chain.

The proposed model for the representation of application function descriptions and the

mapping algorithm is discussed in Chapter 4 in detail.

3. Developing a Natural Language Controlling Framework 34

3.6.3 Summary of function mapping

In order to build an NLC framework which fulfills the extendibility requirement in case

of application functions, deep investigations are demanded on controllable systems.

Several types of applications can be found with the potential of extension with NLC. A

common property of these systems is that a function description set should be defined

and bound to the concrete functions to be called. Hence function descriptions should

contain semantic information also, like predicate concepts, constituents, etc. besides

programmatic properties like names of functions, parameters, parameter types, methods

to be executed, etc. The function mapping module should use the notation of the

ontology module in order to satisfy the language-independency and adaptivity as well.

3.7 Summary of results

In this chapter the structure of our NLC framework has been introduced. The new

scientific results can be summarized as follows:

Thesis 1. [6][8]

A novel structure of the natural language controlling framework model has been

developed fulfilling requirements specified in recommendations (R1). The architecture

of the framework is based on the developed formal information flow model. The

framework contains four modules in a linear structure. The proposed architecture

provides domain-adaptivity, language-adaptivity and high extensibility with an open

interface. These properties provide a high level reusability of the framework in software

development in the field of human-machine interfaces.

4. Developing semantic models and algorithms 35

4 Developing semantic models and algorithms

One of the important stages of our project is to find a proper representation form of

domain knowledge by means of which natural language sentences can be analyzed. The

aims of current chapter are summarized as follows: (R2)

1. Defining a semantic model for the representation of domain knowledge

extended with part of sentence and morphological information.

2. Constructing a function description model extended with constituent information

for the proper mapping of sentence analysis into function description.

3. Developing a sentence analysis algorithm which converts the morphology

analysis into a sentence analysis tree.

4. Developing a function mapping algorithm which maps the sentence analysis to

the proper function description.

Ontology-based semantic modeling is widely used at higher levels of information

processing. The term ontology can be defined as an explicit “specification of

conceptualization” (Gruber 1995). Set of concepts and terms can be defined by ontology

to define and represent the knowledge of domain. The ontology has the following parts:

- Concepts, relationships and other entities which are relevant for modeling a

domain

- Definitions of representational vocabulary which provide meaning and

constraints on the usage.

The key element of ontology is a methodology that determines what the primitives of

the conceptualization are and how to determine these primitives from the domain. Based

on (Erdmann 2001), an ontology can be given formally with a quintuple

 () (4.1)

where

- C: is a set of concepts (classes)

- A: is a set of attributes for concepts in C

- : is the specialization relationship among concepts

- : is the type signature of attributes

- F: are formulas in predicate logic to describe the rules of concept management.

The set of logic formulas has two components: the first is the set of universal rules and

the second is the domain specific rules. It is widely accepted that the set of universal

rules should include

 () (4.2)

 () () () (4.3)

4. Developing semantic models and algorithms 36

 () () () (4.4)

In some ontology models, the ontology also contains, beside the concepts, objects as

separate elements that can be given as

- D : is a set of objects with a new relation

- .

In this case, the universal rule

 () ()

 ()
(4.5)

is also part of the rule system. The next step is to modify Erdman’s model to satisfy the

requirements to make sentence analysis using ontology.

4.1 Modified ontology model

In domain ontology model concepts are the main elements. There are the next concept

types in the model:

- Abstract concept

- Predicate concept

- Individual concept.

Abstract concept groups those child concepts which belong to the same category.

Abstract concept is such a concept which can mostly have abstract or individual concept

child elements. Only ISA connection may be between abstract and another abstract or

individual concept which means that the child concept is a specialization of the abstract

concept.

Predicate concept is such a concept which describes an action. Predicate concepts can

be built up usually from a verb or infinitive. The central element of a sentence is the

predicate which can have many connecting concepts, like subject, object, adverbs, etc.

A very important part of the sentence analysis is to find the predicate. Other words of

sentences can be interpreted when we know how they are connected to the predicate:

which can be the subject, object, etc. Model of predicates can limit or filter the

possibilities and can speed up analysis. Any other concept types can be connected to a

predicate. The most interesting part of a connection is the edge. It stores information

about the form or format of connecting concepts.

The individual concept is a concrete concept which has no more special child elements.

The individual concept must have a parent abstract concept. The individual concept is

connected to the abstract concept with an ISA connection.

The edges between the concepts can also store very important information, which refers

to the morphological (syntactic) analysis and codes defined in that module. Including

morphology info in the domain model, the time cost of sentence analysis can be

reduced.

4. Developing semantic models and algorithms 37

The central concept of the sentence analysis is the predicate. Any other part of the

sentence is determined after finding the predicate which also specifies the available set

of belonging concepts. E.g., in the case of predicate ‘eat’, we can associate the

connected concepts such as food, restaurant, time, etc. In the analysis the goals are

- Identifying the concepts in the predicate-based sentence

- Finding the role of the concept in the context of predicate (such as subject,

object, adverbs of place, etc…).

In most sentences identified concepts assign the roles directly in which cases the

keyword highlighting approach is suitable. It explains those situations when users do

not speak a language as a native language, the used inflections, grammar are not

accurate, but the meaning can be understood well. At the same time there are such

examples where inflections, prefixes and prepositions have high importance in the

proper analysis.

Therefore, the knowledge model should contain the following required elements

- Concepts which are assigned by stems of words

- Morphology labels that help to identify the role of the concept in the sentence

- Relationships between concepts which build a hierarchical structure of the

domain knowledge.

The benefit of using morphology labels is dual:

- It helps to choose from in-sentence roles when more instances of the same

concepts are identified in a sentence, like in the following example,

“Navigate from Miskolc to Budapest!”

Miskolc and Budapest are equally city concepts which are themselves not

enough to determine the in-sentence role. ‘From’ and ‘to’ prepositions are

needed to refine the analysis.

- If a concept is unknown but its morphology label is available, it can help to

identify the concept of which instance or child can be the unknown concept

based on the in-sentence role.

Regarding previous requirements, the domain knowledge model has properties of

ontologies and properties of Minsky’s frame-based representation (Minsky 1975)

together. The model can be denoted as:

 () (4.6)

where

- C : is the set of concepts

- R : are the directed relations between concepts.

The concept set can be built up from distinct sets of three kinds of concepts such as

 (4.7)

4. Developing semantic models and algorithms 38

where

- CP : is the set of predicate concepts

- CA : is the set of abstract concepts

- CI : is the set of individual concepts such as objects.

Relations form a subset of the Cartesian product of concepts and the relations have three

specialized forms

 (4.8)

 (4.9)

where

- R : is the set of relations

- Rpred : is the set of predicate relationships

- Risa : is the set of specialization relationships

- Rattr : is the set of attribute relationships.

The individual relationships can be further constrained with the following rules

 { } (4.10)

 { } (4.11)

 { } (4.12)

A concept has some well-defined properties like slots in the frame-based knowledge

representation. A concept can be denoted with the triplet

 () (4.13)

where

- n : is a unique name which identifies the concept

- Ω : is the list of the parts of speech for the concept

- : is a set of stems belonging to the concept.

Language-adaptivity and language-dependency of the sentence analysis and the function

mapping module can be ensured with defining a set of technical code for stems, POS

codes and suffix codes introduced in (3.14).

The language-dependent textual representation can be retrieved with a proper query of

the stem code. There are several cases where the predicate concepts are composed of

more parts like “how far is …”, “what color is …”, etc. which should always be

handled together. Here the description of the general predicate “is” needs to be extended

with the related part of the predicate. The stem part of the concept can be denoted with

 { } () (4.14)

where

- ωstem : code of stem

4. Developing semantic models and algorithms 39

- ωext : code of extension stem.

Relationships have also to be augmented to be able to treat in-sentence roles during the

analysis. We can define five top-level categories of constituents: predicates, subjects,

objects, adverbs and adjectives.

Constituents are denoted with

 { }. (4.15)

The child concept in a relation can be labeled with the part of sentence information and

the morphology label which implies the in-sentence role. The following function can be

defined which assigns the previous properties to a related concept pair:

 { ()| } (4.16)

where

- ri : is a relation between concepts

- κ : is the constituent of the child concept.

Applying (4.16) the definition of the attribute connection can be refined as

 { } () ({ })

 .
(4.17)

4.2 Representation of sentence analysis tree

Initially, we have a set of codes belonging to words labeled with morphological

information. A word resulted by morphology analysis can be denoted as

 {({()})} (4.18)

where

- ωstem : is the code of a stem

- ωpos : is the POS code of a stem

- A : is the set of inflection analysis.

In agglutinative languages there is a function called inflection which transforms the

initial word with a given rule as

 () (4.19)

where

- w : the initial word

- α : the inflection rule

- w’ : the inflected word.

The morphology analysis contains the list of rules which should be applied for the stem

one by one to get the inflected result.

 { } (4.20)

4. Developing semantic models and algorithms 40

 () (4.21)

 | | (4.22)

The analysis of a word can result in more alternative solutions in the following cases:

- homonymy: where words have different unrelated meanings sharing the same

spelling

- polysemy: where words have different related meanings sharing the same

spelling.

Morphology handles words separately which should provide all possible cases of

analysis described in (4.20). Later the semantic module will choose which solution fits

to the context.

The goal of sentence analysis is to transform the morphology analysis into a sentence

analysis tree.

 (4.23)

 () (4.24)

 () (4.25)

 (4.26)

where

- Stree : is the sentence analysis tree

- Ns : is the nodes of tree

- →s : edges between nodes in tree.

Since the sentence analysis should always contain predicate, the following rule should

be fulfilled by the sentence analysis tree

 (
)

 (4.27)

 (4.28)

The sentence analysis is performed by Algorithm 4.1.

4. Developing semantic models and algorithms 41

Algorithm 4.1. Making sentence analysis tree from morphology analysis

Input: morphologically analyzed sequence of words in XML format

Output: sentence analysis tree

concepts = DetectConcepts(sentence)

predicate = FindPredicate(concepts)

interrogative = FindInterrogative(concepts)

if predicate is null then

 predicate = defaultPredicate

predicateConnection = FindPredicateConnection(predicate)

ChildConcepts = { }

AttributeMap = { }

foreach child ChildrenOf(predicateConnection) do

 foreach c concepts do

 if c is processed or c is predicate or c is interrogative or not isChild(child, c) then

 continue

 suffix = SuffixOf(c)

 foreach κ ConstituentsOf(child) then

 if (suffix ∩ SuffixOf(κ) ≠) then

 ConstituentOf(c) = κ

 if c not in ChildConcepts then

 ChildConcepts = ChildConcepts + c

if interrogative is not null then

 iConstituents = FindConstituentsForInterrogative(interrogative)

 if HasSuffix(interrogative) then

 foreach sc FindConceptToSuffix(predicateConnection, SuffixOf(interrogative)) do

 attributeConnections = FindAttributeConnections(sc)

 foreach a attributeConnections do

 foreach ac ChildrenOf(a) do

 foreach acc ConstituentsOf(ac) do

 if iConstituents contains acc then

 defaultConcept = FindDefaultConcept(sc)

 ChildConcepts = ChildConcepts + defaultConcept

 AttributeMap[defaultConcept] = interrogative

 else

 pos = PositionOf(interrogative)

 parent = find concept in concepts where position = pos+1

 if parent is null then

 iChild = FindChildConceptForInterrogative(predicateConnection, interrogative)

 ConstituentOf(iChild) = ConstituentOf(interrogative)

 ChildConcepts = ChildConcepts + iChild

 else

 attributes = FindAttributeConnections(parent)

 if attributes is not empty then

 foreach a attributes do

 foreach ac ChildrenOf(a) do

 foreach acc ConstituentsOf(ac) do

 if iConstituents contains acc then

 ConstituentOf(interrogative) = acc

 AttributeMap[parent] = interrogative

 else

 iChild = FindChildConceptForInterrogative(predicateConnection, interrogative)

 ConstituentOf(iChild) = ConstituentOf(interrogative)

 ChildConcepts = ChildConcepts + iChild

BuildTree(ChildConcepts, AttributeMap)

4. Developing semantic models and algorithms 42

4.3 Representation of application function descriptions

In mathematics a function is defined as a relation between some input and a set of

output which satisfies that every input is related to only one output.

 (4.29)

In application development functions that are also called procedures can also receive

input such as mathematical functions and do some actions where they are utilized. A

procedure is usually does not have output as a return value, a function does. Formally

the application function can be defined as

 { }

(4.30)

where

- P : the set of parameters

- : is the set of actions which should be executed using parameters.

The goal of function mapping is to transform sentence analysis into a function

description in order to be able to execute the real action related to the description. Two

main tasks can be defined to satisfy the function mapping:

1. Find the proper function description to sentence analysis.

2. Map nodes (concepts) of sentence analysis to function parameters.

Function definition should be extended with such information which belongs to the

semantic representation to make function mapping possible. It can be described by

 {({ })} (4.31)

where

- cP : is a predicate concept

- Π : is the set of parameters.

To be able to map nodes of the sentence analysis tree into parameters, description

should also be completed with some constituent information like

 ({ }) (4.32)

where

- c : is the concept belonging to the parameter

- {κ} : is the set of constituents belonging to the parameter

- fr : is the compulsory function which assigns mandatory value to the

parameter.

 { } (4.33)

Using (4.33) most of the concepts can be mapped and function mapping requirements

are satisfied. However, there is a problem which is not handled properly yet with the

4. Developing semantic models and algorithms 43

previous approaches: when more instances of the same concepts can be found in the

analysis tree, their mapping is ambiguous. In such situations the concept with its parent

concept can assign the belonging function parameter. E.g., there are more adjectives of

quality or quantity in the sentence analysis, the marked concept designates the function

parameter as can be seen in following example.

“Exchange 20 American dollar to euro!”

(“Válts át 20 amerikai dollárt euróra!”)

Here we can see only one amount of currency. There is the following function:

Exchange(source, target, source_amount, target_amount).

Since the same constituent like adjectives of quantity belongs to both amount

parameters, only the knowledge of the constituent is not enough to the proper mapping.

We should specify for source_amount parameter that the belonging concept is the

object of the sentence, and for the target_amount parameter that the belonging concept

is the adverb of result or the adverb of goal of the sentence. The modified formal

definition of the function description is

 ({({ })} |{ }|) (4.34)

where {κd}: is the set of dependent constituents. The function mapping is performed by

Algorithm 4.2.

4. Developing semantic models and algorithms 44

Algorithm 4.2. Algorithm of function mapping

Input: sentence analysis tree in XML format

Output: mapped function name with parameter values

Functions = find all function descriptions

Predicate = FindPredicateConcept(tree)

Parameters = { }

Scores = { }

foreach func Functions do

 score = 0

 if Predicate in predicates of func then

 score = score + PREDICATE_SCORE

 if count(parameters of func) = 0 then

 Scores[func] = score

 Continue

 ParamValues = { }

 foreach p parameters of func do

 pConcept = ConceptOf(p)

 Concepts = find concepts in tree where concept=pConcept

 foreach c Concepts do

 foreach κ ConstituentsOf(p) do

 if κ = ConstituentOf(c) then

 if hasDependencies(κ) then

 foreach d dependencies(κ) do

 dConcept = find concept in analysis where constituent=d

 if dConcept is not null then

 ParamValues[indexOf(p)]=valueOf(dConcept)

 if p is required then

 score = score + REQ_PAR_SCORE

 else

 score = score + OPT_PAR_SCORE

 else

 ParamValues[indexOf(p)]=valueOf(c)

 if p is required then

 score = score + REQ_PAR_SCORE

 else

 score = score + OPT_PAR_SCORE

 Scores[func] = score

 Parameters[func]=ParamValues

winnerFunc = find function where Score[function]=max

rp = find required parameters in Parameters[winnerFunc] where value is null

if rp is not empty then

 q = generate question for rp

 result=q

else

 result=winner function with parameter values

4. Developing semantic models and algorithms 45

4.4 Summary of results

In this chapter the developed knowledge and function description models have been

introduced. The new scientific results can be summarized as follows.

Thesis 2. [2][3][6][8]

A novel semantic model is developed which satisfies the requirements (R2) of the

knowledge representation format in our proposed natural language controlling system.

The model is an extension of ECG model proposed by (Varga 2011). The implemented

extensions (three new types of nodes, three novel edge types completed with morphology

and POS labels) ensure a more efficient knowledge transformation between input

sentences of a language and the function call generator module. The novelty of the

developed function signature model is the inclusion of POS information for function

mapping. A deterministic algorithm has been implemented to convert the sentence

analysis tree into API function calls.

5. Optimization in NLC framework 46

5 Optimization in NLC framework

Natural language controlling is a complex problem with many small but resource

intensive tasks. In order to be able to apply the framework in industrial environment it

should satisfy the real-time requirement which means that the delay between text typing

and function execution should be tolerable. This requirement can be performed only if

time consuming tasks and algorithms of the framework are optimized. Accordingly,

optimization should also consider time cost reduction, memory/storage usage and the

accuracy of processes, since a system could be unusable if its time cost is optimized but

it produces low accuracy.

Building blocks of optimization are

()

 (5.1)

where

- c : is the total cost of execution [-]

- ct : is the time cost of execution [ms]

- wt : is the weight of execution cost [1/ms]

- cr : is the resource cost (memory/storage) of execution [B]

- wr : is the weight of resource cost [1/B]

- ca : is the accuracy of execution [-].

It can be seen from (5.1) that the time and resource costs are in inverse proportion to the

accuracy, which means that the aim is to achieve the highest accuracy besides the

lowest time and resource costs.

The goal of this chapter is to specify the optimal algorithms in natural language

controlling and to give recommendations for minimizing costs defined in (5.1).

5.1 Optimization problems

Regarding the involved metrics, the optimization problems can be classified into two

main groups: single-criterion and multi-criterion problems. Optimization algorithms

usually work with real-valued functions, thus they can be applied for single-criterion

problems. In the case of multi-criteria optimization, we meet some new problems to be

solved (Ghosh and Dehuri 2005). A multi-criterion optimization has no single global

optimum, but a set of different ones. As no general method exists for multi-criteria

problems, the usual solution method converts the set of metrics into a single aggregated

metric. The first fundamental question is how to generate a common aggregated cost

value from the set of available cost components. Usually, the weighed sum of the

components is used for the aggregation operation, i.e.

 ̅ ∑

 (5.2)

5. Optimization in NLC framework 47

The main question of this approach is the appropriate selection of the weight factors as

they determine the importance of different metric components. During the weight

selection, we should care to normalize the different dimensions of the different metrics.

Beside the weighted sum approach, the literature contains some other aggregation

methods too (Ghosh and Nath 2004), such as

- -perturbation

- goal programming

- Tshybeshev-method

- min-max method.

In the optimal case, the result of the single-criterion optimization yields a Pareto-

optimum value (Ghosh and Nath 2004). In this approach, a dominance relation is

defined on the metric (cost) vector. A Pareto-optimal solution is such a point in the

search space which is not dominated by any other points in the space. The dominance

determines a partial ordering among the elements of the search space, thus the elements

can be structured into a lattice.

Considering the applied optimization methods, the following main categories can be

defined:

- brute force method: all possible solution candidates are enumerated and

evaluated

- direct formal optimization: the cost function is a continuous, differentiable

function; the derivate of the cost function is equal to zero at the optimum points

- evolutionary methods: the combination of stochastic and direct methods is

used to localize the different local optimum in the hope to converge to the global

optimum

- specific heuristic method: the specialty of he investigated problem domain is

incorporated into the optimization method.

Nowadays, evolutionary methods are the most widely investigated methods in the

literature (Ghosh, Dehuri, and & Ghosh 2008).

5.2 Optimization in POS tagging

The morphology information alone is usually not enough to infer the semantic role of

the word within the text. The sentence level structure encodes the required additional

information to determine the semantic role. At the sentence level, the grammar role

determines the functional role of the word together with the relationships to the other

words. A human sentence can be interpreted as a complex structure containing parts

with different semantic grammatical roles. A usual sentence contains for example a

predicate part and a subject component. These roles are the part of speech (POS) units

of the sentence. A simple parser usually uses about 20 different roles while the more

sophisticated models distinguish more than a 100 POS variants. The set of common

POS roles includes, among others, the following items: NN (singular noun), NNS

(plural noun), VB (verb base form), VBD (verb pass tense), PN (personal pronoun), AT

(article), IN (preposition), RB (adverb) or JJ (adjective) (Manning and Schütze 1999).

5. Optimization in NLC framework 48

In the tagging process, the words of an input sentence will be assigned to a

corresponding POS unit.

The main difficulty in the tagging process arises from the ambiguity of the words: a

word may have different meanings and a word sequence may have different POS

tagging. The next sentences give examples for these difficulties:

 Peter [NN] move [VB] into [IN] a[AT] new [JJ] city [NN]

 (There is) [VB] a [AT] move [NN] in [IN] (New York) NN

5.2.1 Markov POS tagger

The usual approach in tagging is to consider the word sequence as a random Markov

process. The Markov chain model assumes that the state value at the moment t depends

only on the state value of the previous moment t-1. The second key assumption is that

this probability is stationary, i.e. it is the same for every t value. This means that the

probability of a tag sequence can be given with the neighborhood probabilities (i.e. a

state depends only on the parent state)

 (|)
 (|) ()

 ()

∏ (|) (|)

 ()
 (5.3)

where the symbols are as follows

- w1..n : word sequence between positions 1 and n

- t1..n : tag sequence between positions 1 and n

- wi : word at positions i

- ti : tag at positions i.

Thus the most possible tag sequence belonging to a given input word sequence is

calculated with

∏ (|) (|)

 (5.4)

The probability values between the neighboring states are estimated with the relative

frequency values. An efficient implementation of tagging optimization is the Viterbi

algorithm (Freitag and McCallum 2000). The Viterbi algorithm uses a dynamic

programming approach to find the optimal transition route. It stores in a matrix the cost

value for every possible intermediate states. An intermediate state is characterized with

a time index and with a tag index. Based on the stationary assumption, the p(ti|ti-1) value

is independent of the position, it depends only on the tag values, i.e.

 (|) (|) (5.5)

where t
k
 and t

l
 denote the corresponding tag values in the tag dictionary. The cost of the

intermediate state with index (i+1, j) is calculated with

 () { () (|)| (|
)} (5.6)

5. Optimization in NLC framework 49

The HMM method belongs to the family of generative models, where the joint

distribution is the base formula to calculate the conditional probabilities. Another

approach is represented by the discriminative model which focuses directly on the

conditional probability. The Linear-chain Conditional Random Field (LCRF) (Lafferty,

McCallum, and Pereira 2001) is an efficient alternative to HMM methods.

5.2.2 Linear-chain Conditional Random Field

The main idea of CRF is to segment the variables into smaller disjoint groups, where

every group is independent of the other groups. This process is called factorization. In

LCRF, the conditional probability is calculated with (Sutton and Mccallum 2012)

 (|)

 ()
∏ {∑ ()

}

 (5.7)

where Z() is the normalization function, f() is the feature function and  is the parameter

vector. The domain of feature engineering refers to the selection of appropriate feature

functions. The number of feature vectors may be very large in practical applications, for

example in (Sha 2003) about 3.5 million features were used. For a given feature and

vector set, the above mentioned Viterbi algorithm can be used to determine the most

probable tag sequence.

In LCRF, a separate step is the selection of the appropriate parameter vector. For

calculation of the maximum likelihood feature vector, a numerical optimization is used.

The proposed method usually optimizes the conditional log likelihood value. To avoid

overfitting, the following regularized log likelihood is suggested for parameter

optimization

 () ∑ ∑ ∑ (

)

 ∑ (

) ∑

(5.8)

where the upper index j denotes the training data index and  denotes a penalty factor.

At the optimum parameter value, the derivate of the objective function is equal to zero.

The solution of the system of equations is

∑ ∑ (

)

 ∑ ∑ ∑ (

) (

)

(5.9)

that yields the optimum parameter vector.

The main shortcoming of this model is that it considers a sentence as a linear chain. The

classical grammar models like TAG (tree adjoining grammar) are based on this

approach. The TAG formalism proposed by (Joshi, Levy, and Takahashi 1975) defines

initial and auxiliary trees. A tree encodes the set of possible sequences, where an

5. Optimization in NLC framework 50

element of the sequence can be replaced with other subsequences (adjunction

operation). For languages with strict word order, the sequence model is a good

approach. However, the analysis of the sentence structures in Hungarian language

shows that the sequence orientation is not the perfect model for languages with no

dominant word orders. In these languages, all permutations of the words may be valid.

The explicit encoding of all possible permutations would result in intractable grammar

trees. To provide a more suitable formalism, a graph oriented model is proposed in our

system.

Another key problem in the tagging operation is finding the correct segment boundaries.

A word belonging to different segments may have the same grammatical properties, like

in the sentence

Tegnap telefonált Peti Zoli barátjának.

(Peter phoned Zoli's friend yesterday.)

After the morpheme analysis, both words Peti and Zoli will be labeled as NN, thus both

are candidate subjectives of the sentence. The correct segmentation should find the

following segments within the sentence

- predicate : telefonált

- subject : Peti

- dat_object : Zoli barátjának

- adverb: tegnap.

Segments may be of simplex structure or of complex one. For example, in a higher

order statement a sub-statement can be used as a POS unit

Mondtam neked, hogy gyere pontosan.

(I have told you to come in time.)

This example also shows the fact that sometimes some POS roles are implicitly given,

they have no explicit word representative. The subject I is encoded in the inflection of

the verb. Thus the POS segment structure of the sentence is:

- predicate : mondtam (past)

- subject : én (hidden , implicit)

- dat_object : neked

- object : hogy gyere pontosan

- object-predicate : gyere

- object subject : te (hidden, implicit)

- object-adverb : gyorsan.

The management of free word-order was addressed in some previous grammar models

too. One important group of these kinds of models is the family of dependency

grammars. The dependency grammar (DG) (Tesniere 1959) is based on modeling the

dependency between different POS units. For example, a predicate unit requires a

subject and an object POS unit. The dependency is an asymmetric relationship, the head

corresponds to the independent part of the relationship. A similar approach is presented

5. Optimization in NLC framework 51

in the word grammar (Hudson 2007), which is based on the dependency grammar. In

this model, the language can be represented with a network of propositions. This

approach can be applied, among others, in the neurolinguistics domain.

5.2.3 Proposed tagging method

The semantic structure of sentences is given with a multi-level graph. In the graph

model a graph is given with

 { } (5.10)

where GN denotes the set of nodes. A node may be either a simple node or a graph

again. There is a special node called kernel node K. The symbol l is for the identifier

label of the graph. Every graph corresponds to a segment of the sentence. Within the

segment, there is a dependency relationship between the kernel node and the other

nodes. The kernel node is always the source node of the dependency relationship. The

GD set of edges corresponds to the dependency relationship between the items,

 { | } (5.11)

In the graph, every non-kernel node depends only on the kernel. Each node in the graph

is given with a set of attribute tuples. An attribute tuple includes the elements

- a role name of the node

- morpheme tags of the corresponding words (Am)

- probability of a given morpheme tag set (Ap)

- flag to denote whether the node, role is optional or not (Ao).

The set GP describes the precedence relationship between the elements of {GN  K}.

The set GP may be empty denoting that no word order rule can be discovered, every

word order is valid. To each element of Gp, a probability value is assigned.

For the sample sentence, the morpheme analyzer returns the following morpheme

structure:

- tegnap : [FN] + [NOM] | [HA]

- telefonált : [IGE] + [MIB] + [e3]

- Zoli : [FN] + [NOM]

- Peti : [FN] + [NOM]

- barátjának : [FN] + [PSe3] + [DAT].

Based on this list, a graph model can be generated as it is shown in Figure 5.1. The solid

line corresponds to the dependency relationship, while the dashed line shows the

precedence relationship among the graph nodes.

5. Optimization in NLC framework 52

Figure 5.1. Sample sentence graph for sample sentence.

The graph structure contains the segmentation structure of the sentence. The kernel

node of the main segment is a predicate node (double-line border) and the kernel of the

sub-segment is a non-predicate word (single-line border).

In the graph model, the words assigned to the graph nodes correspond to the elements wi

of the sentence. The role name of the edges pointing to the node denotes the tag name ti.

The morpheme structure is a set of atomic morpheme units. The conditional probability

p(a|r) for every morpheme unit can be calculated with the sum of the corresponding

tuple probabilities. Based on the graph, the tag role value can be estimated both from

the morpheme structure and from the precedence relationship. For the morpheme-based

probability, we use the Bayes-formula

 (|) {
 () ∏ (|)

 ()
} (5.12)

Having the independency assumption, the morpheme probability for a tag sequence is

equal to the product of the probabilities of the components as

 (|) ∏ (|)

 (5.13)

The precedence probability for the tag sequence is given with

 (|) ∏ ()

 (5.14)

where pp comes directly from the graph model. The sum of the morpheme and of the

precedence probabilities defines the weight of a tag sequence by

 (|) (|) (|) (5.15)

For a given word sequence, the algorithm selects the tag sequence of maximum weight

by

{ (|)} (5.16)

5. Optimization in NLC framework 53

In order to reduce the cost of the brute force search operation, a dynamic optimization

method can be used similar to the Viterbi algorithm.

5.3 Graph matching algorithms

In grammar analysis, the tree structure is the most important representation structure. In

our framework, trees are used to store the discovered part of speech units and the

dependency relationships between the units. The schemata of different functions are

also stored in tree structure. The function space is described with a set of corresponding

schema trees. During the mapping of the POS-tree into the function-trees, a tree

matching algorithm is applied. The goal of this phase is to find the best matching

schema tree for the input POS tree.

Regarding the matching algorithms, we can distinguish

- exact methods

- nearest neighbor (fuzzy) methods.

In the case of exact search, the target tree must be the same as the query tree. In our

problem domain, this is not the case, as the schema tree contains all possible elements

from which some of them are optional. Instead of managing all possible combinations

of required and optional elements and performing exact search, our implementation

stores an extended schema and uses a nearest neighbor search (NNS).

On the field of NNS, the methods depend on the object domain. If the objects are

members of a one-dimensional vector space, the usual index structures, like B-tree

indexing (Kovács 2004) can be used. In the case of multi-dimensional vector space a

more complex structure is required. The R-tree or S-tree structures (Guttman 1984) are

common solutions for this problem. In the R-tree structure, the object space is divided

into a hierarchy of rectangular areas. The nodes of the R-tree correspond to the

rectangles, a child node corresponds to a sub-rectangle. For the administration of child

nodes, the coordinate values of the corners are stored, thus for a query object, the

container child can be selected with a simple computation.

In the case of general metric spaces, where the objects cannot be represented with

appropriate vectors, distances between the objects are the only information we can work

with. The VP-tree structure (Kovács 2010) or one of its variants is a widely used

structure for this case. In VP-tree, during the segmentation of the object space, the

distance value to a selected (vantage) point is used to separate the objects into two

subsets.

Beside the VP-tree index structure, another option is the k-d-tree approach. The k-d-tree

has the same structure as the one dimensional index tree, but here different levels of the

tree are assigned to different dimensions. The assignment is performed in a cyclic

manner.

A special variant of the k-d-tree is the prefix tree (Weiner 1973). In the prefix tree,

different levels correspond to different positions within the structure. Every position

within the complex structure can be used as a separate dimension.

5. Optimization in NLC framework 54

As it can be seen, in each tree index structure, the distance values between the objects

are the key elements for the positioning of objects. The distance between two tree

objects can be calculated with different methods. Usually, a metric distance is preferred,

where

 ()

 ()

 () ()

 () () ()

(5.17)

For complex structures, it is usually hard to find an appropriate metric distance. The

distance between two structures is based on the aggregation of the distances between the

components. Taking sets, the usual distance is the Hausdorff distance (Rucklidge 1996)

which is calculated with

 () { () ()} (5.18)

From our viewpoint, the drawback of the Hausdorff distance is that the distance value

depends only on some selected elements, the similarity between the majority of the

elements is not important.

Another approach is the mapping-based distance measure. Having a structure preserving

mapping between the two tree structures, the number of paired nodes determines the

distance value between two elements

 ()
|{ | () }| |{ | () }|

| | | |
 (5.19)

In this interpretation, the P symbol denotes the set of matching pairs. For every pair

(x,y) x is a node in tree X and y is a node in tree Y. A pair (x,y) is a matching pair, if

- the labels of both nodes are the same (() ()), and

- the parents are members of the same pair: (() ()) .

In the proposed system, the prefix tree approach was implemented. The root node of the

index tree is an abstract node. The root node in the prefix tree has as many child nodes

as many different labels occur in the root elements of the POS-trees. The child nodes of

any parent node in the prefix tree correspond to the different possible label values in the

child instances of the parent instances. A child node is tested only if its parent has

already been matched. This algorithm enables a reduced fuzzy matching as

- the root must be matched always

- if a node is matched, its ancestors are matched, too.

For efficiency analysis, we calculate the cost function of the proposed method. For

quantitative analysis, we use the following notations:

- M : is the size of the query tree

- N : is the number of schema trees in the database

5. Optimization in NLC framework 55

- P : is the number of different predicate labels

- L : is the average number of child nodes

- K : is the number of different child labels for a given parent label.

In testing a query tree, the schema trees can be filtered by the predicate label. The

subset of schema trees related to a given predicate label can be selected with a

 (()) (5.20)

execution cost. The child nodes are tested with a cost

 (()) (5.21)

taking two levels of child nodes, the total time cost is estimated with

 ((()

(() ()))) (5.22)

where c1 denotes a node matching cost. The storage cost can be estimated with

 () (5.23)

For the VP-tree model, the search operation has a

 ((() (() ()))) (5.24)

cost. In the formula, R is the replication factor. As it is not guaranteed that a top-down

search path yields the nearest element, this path may be repeated several times (Kovács

2010). If P is relatively large compared with N, the prefix-tree structure provides a more

efficient execution cost.

5.4 Optimization tasks in function mapping

The difficulty of function mapping is caused by ambiguous mapping between sentence

analysis and function signatures (FS). There are concepts in the domain which can fit

into many FS, predicates do not assign an individual FS, there are missing parameters in

the sentence and similar troubles make mapping much harder.

To be able to manage these situations the mapping process should be formalized. A

mapping between the sentence analysis tree and FS can be defined by

 { }
(5.25)

where S is the sentence analysis tree and fi is the i
th

 function signature from set of

function signatures F. Let us define a fitness function Φ which calculates the

correspondence value between sentence S and a given function signature fi as

 () (5.26)

The goal of function mapping is to find the winner function Φw which has the highest

fitness value

5. Optimization in NLC framework 56

 | | (5.27)

Constructing the proper fitness function is the key component of this module,

where the following statements have to be taken into consideration:

1. A sentence analysis tree has only one predicate and can have more other

concepts. (We work only with simple, extended sentences.)

2. A predicate can be assigned to one or more FS.

3. A concept of the sentence analysis tree should be mapped to one of the

parameters of FS.

4. A concept can be mapped only to one parameter of FS in the same time.

5. A concept may not belong to any parameter.

6. A FS can have required and optional parameters, where finding of required

parameters are more important. If a required parameter is missing, the method

belonging to FS cannot be executed.

7. If a parameter has dependency node, only sentence analysis node with proper

parent can be mapped.

Let us define a sentence analysis tree as

 () { } { } (5.28)

where P is the predicate concept and ci is a non-predicate concept, is the link

between concepts in the tree. The following statements are valid for analysis tree.

 (5.29)

The set of FS is defined by

 { } (Π) { } Π { } (5.30)

where Γ is the set of predicates and Π is the set of parameters.

A parameter defined in (5.31) has some attributes like name, position, type and

mandatory. In construction of fitness function only the mandatory property can have a

significant role the others are used in preparing execution of the method belonging to

the given FS.

 () { } { } (5.31)

where Θ means the constituents of parameter. A constituent may also have zero or more

dependencies

 { } (5.32)

Fitness value points can be given for a FS in the following scenarios:

1. Predicate of the sentence is found among predicates of given FS.

2. Non predicate concept can be mapped to any of the parameters of the given FS.

3. If a parameter has a dependency, fitness score can be applied only if the concept

and its parent together are fit.

5. Optimization in NLC framework 57

4. Higher score will be applied if the actual parameter is required.

Since a predicate of S can be matched for many functions, the relevance is an important

factor when choosing the proper function. The less number of functions matches with a

given predicate the higher is the predicate relevance. A Tf-idf algorithm can be used to

determine the relevance of a predicate by

 () ()

 ()
| |

|{ }|

 () () ()

(5.33)

In mapping score system we have 3 different scores: predicate relevance (x), number of

found required parameters (y), number of found parameters (z).

The resultant value can be computed with weighted values of the above scores as

 (5.34)

5.5 Summary of results

In this chapter the key processes of NLC was examined concerning cost and accuracy.

The POS tagging, sentence analysis and function mapping has been analyzed since

these tasks give the highest part of the cost. The accurate solution to tasks is also

relevant, since e.g. if POS tagging produce a false result, the sentence analysis and

function mapping will also fail. The optimization results can be summarized as follows.

Thesis 3. [2][3][9][15]

I have determined the key cost components in the natural language controlling

framework. The proposed multi-criteria cost model includes execution time, accuracy

and resource consumption factors. Algorithm optimization was performed for the POS

tagging, sentence analysis and function mapping modules. The proposed graph-based

algorithm provides an efficient execution for the implementation of the framework in

large-scale domains.

6. Applications of Theoretical Results 58

6 Applications of Theoretical Results

The last task of my research was to implement the natural language framework modules

and to present two sample applications that use the proposed framework in order to

verify the applicability of theoretical results. The sample applications have different

domains: robot controlling and navigation domain and they have their own function

sets. The operability of applications proves the domain-adaptivity property of

controlling framework. Applications receive Hungarian text input the source of which

can be either a keyboard or a speech recognizer.

6.1 Natural Language Controlling framework

The process of building applications using natural language input is composed of three

stages. At first, modules of the framework should fully or partly be adapted. Adaptation

means implementing language-dependent modules for the corresponding language or

adding, such as text processing tasks depending on the nature of the application, e.g.

city, address recognition in case of navigation-related texts.

The framework is planned to be able to use existing NLP engines for making text

segmentation, morphology analysis, named entity recognition, etc. Modules of the

framework provide well-defined interfaces which can individually be implemented and

used in concrete applications. All modules have a built-in implementation for

Hungarian language which can arbitrarily be replaced by other implementations.

Figure 6.1. Operational model of framework

The implementation of the first two modules of the framework, the text parser and

morphology modules, should be redeveloped in order to be applicable for different

languages not only for the built-in Hungarian. The implementation of the last two

modules which process semantics and application-function mapping can universally be

used, since it has the same tasks for all languages. The only task in these modules is the

adaptation of the domain knowledge and the function descriptions which are interpreted

dynamically. Therefore the components of the framework do not have to be changed,

only the proper configuration has to be set.

6. Applications of Theoretical Results 59

The framework is developed in Eclipse Indigo SR2 IDE using Java version 1.6.0_45.

The operational model of the framework is shown in Figure 6.1. The modules can be

accessed from the following maven repository which is placed on one of department’s

servers: https://193.6.5.42/nexus/content/groups/nli.

The following table summarizes the needed maven information which can be set as

dependencies in developing natural language applications using the framework.

Table 6.1. Maven information of NLC framework modules

Module/jar Maven information

Text parser - API

<dependency>

 <groupId>hu.miskolc.uni.iit.nli</groupId>

 <artifactId>nli-text-api</artifactId>

 <version>1.0.0-SNAPSHOT</version>

</dependency>

Built-in text parser

implementation

<dependency>

 <groupId>hu.miskolc.uni.iit.nli</groupId>

 <artifactId>nli-text-service</artifactId>

 <version>1.0.0-SNAPSHOT</version>

</dependency>

Morphology - API

<dependency>

 <groupId>hu.miskolc.uni.iit.nli</groupId>

 <artifactId>nli-morpho-api</artifactId>

 <version>1.0.0-SNAPSHOT</version>

</dependency>

Built-in morphology

implementation

<dependency>

 <groupId>hu.miskolc.uni.iit.nli</groupId>

 <artifactId>nli-morpho-service</artifactId>

 <version>1.0.0-SNAPSHOT</version>

</dependency>

Domain knowledge - API

<dependency>

 <groupId>hu.miskolc.uni.iit.nli</groupId>

 <artifactId>nli-domain-api</artifactId>

 <version>1.0.0-SNAPSHOT</version>

</dependency>

Domain knowledge

implementation

<dependency>

 <groupId>hu.miskolc.uni.iit.nli</groupId>

 <artifactId>nli-domain-service</artifactId>

 <version>1.0.0-SNAPSHOT</version>

</dependency>

Function mapper - API

<dependency>

 <groupId>hu.miskolc.uni.iit.nli</groupId>

 <artifactId>nli-func-api</artifactId>

 <version>1.0.0-SNAPSHOT</version>

</dependency>

Function mapper

implementation

<dependency>

 <groupId>hu.miskolc.uni.iit.nli</groupId>

 <artifactId>nli-func-service</artifactId>

 <version>1.0.0-SNAPSHOT</version>

</dependency>

6.1.1 Text parser module

The text parser module has the following subtasks which should be implemented:

https://193.6.5.42/nexus/content/groups/nli

6. Applications of Theoretical Results 60

- Sentence/word segmentation, parsing: the incoming text should be parsed into

a sequence of sentences and the sentences should be divided into sequences of

words

- Named entity recognition: special words like cities, companies, numbers,

dates, etc. should be labeled with a category tag

- Spell checking: the mistyping of individual words should be analyzed by a spell

checker.

Since each language has its own vocabulary, boundaries, named entities, etc. this

module needs to be implemented fully for each. The framework should provide well-

defined interfaces for the above tasks and the proper implementation should be injected

when the application is built. Since the framework uses Spring 3 framework,

dependency injection can be achieved easily with some XML configuration.

Text parser module provides the following interfaces:

Figure 6.2. Interfaces of text parser module

The module uses the actual implementation of the previously defined interfaces and

produces the XML output from the natural language text input in the following steps

Figure 6.3. Steps of text parsing

6. Applications of Theoretical Results 61

The output of the module contains the detected sentences, each corrected word of

sentences in separate nodes and entity labels for words if they exists. XSD 1 in

Appendix B is used for the validation of the output of the text parser module.

6.1.2 Morphology module

Morphology module gets the output of the text parser module as an input. The interface

of the current module contains the following functions:

- Word analysis: words of the incoming sentence should be stemmed, resulting

the stem and suffixes of words

- Word inflection: stems can be inflected using given rules, e.g. for answer

generation.

Morphology analysis is a complex task which depends on the grammar rules of the

given language. A completely general solution cannot be developed for all languages in

one, since the syntax and grammar is generally differ between languages. Therefore, the

morphology module should be implemented for each input language and the framework

uses the injected implementation of the interface in Figure 6.4.

The output of the morphology module should contain all possible analysis for each

word, since in morphology level it cannot be decided which one is the correct

alternative; it is one of the tasks of the semantic level.

Figure 6.4. MorphoEngine interface and belonging models

Regarding language dependency, the morphology module manages two kinds of code

tables:

- Word codes: each stem concatenated with a prefix has a unique code and the

actual value in the given language is stored besides them

- POS codes: part of speech tagging should use codes form this set which consists

of base codes and suffix codes as well. List of POS labels can be seen in

Appendix A.

The development of the morphology module should take care for the following

subtasks:

6. Applications of Theoretical Results 62

- Adding word values to existing word codes. If a word code would be missed, the

new record should be added to the list with null values for other languages. It

can be changed later.

- Implementing MorphoEngine interface with existing NLP engines/modules or

with a self-developed one.

- Configuring the application to use the proper implementation.

Our built-in morphology engine uses a Hungarian dictionary from Szószablya project

(Halácsy et al. 2003) and the analysis is based on database query operation. It consists

of not only the words of the domain but also of the most of Hungarian words. The

output of module is also in XML form, which can be validated with

XSD 2 in Appendix B.

6.1.3 Adaptation of domain knowledge

The next step in natural language text processing is the sentence analysis which utilizes

the morphologically labeled sequence of words. Unfortunately, only this information is

not enough for the proper and accurate analysis, because there are many situations,

where e.g. the suffix does not assign the role in the sentence. Even people can only

make accurate sentence analysis when they know the concepts and their relations to

each other.

The third module of the framework is prepared to make the sentence analysis of the

incoming sentence only if the concepts of the domain and their relations are well-

known. The format of description of concepts and relations is also XML and should

contain data as

- Abstract, predicate, attribute and individual concept descriptions

- Relationships between previously defined concepts.

The details of descriptions can be read in Chapter 4, the only explanation is that the

code values, which belong to stems, should be used in application descriptions instead

of concrete stem values of the specified language. The framework provides a method

which can read the XML description, parses the tree and makes the suitable model in

memory to be able to make the sentence analysis. Application developers should use the

following classes for this purpose:

Figure 6.5. Knowledge loader class of Domain module

Multiple knowledge files can be loaded together if the domain concepts are split into

more files. At the same time, the whole knowledge base can be cleared by calling the

clear() method.

Another knowledge type should be loaded into the system which is the constituent list

of the language. It contains information defined in Chapter 4, the only extension is that

6. Applications of Theoretical Results 63

here the technical codes should also be used in language-dependent parts, such as values

of interrogatives to ensure the language independency of the module.

The output of the domain module consists of the sentence analysis tree of the incoming

sentence. The nodes of tree are the found concepts with additional information like

- in-sentence role

- concept value

- usage in later processing.

The relation between concepts is derived from the structure of the analysis tree. The

root node of analysis is usually the predicate concept and the belonging concepts are

placed in its sub-tree. Each parent-child relationship is represented in a node-child node

structure in the analysis tree. One of the most frequently applied parent-child patterns is

the attributive one. The schema XSD 3 in Appendix B describes the valid structure of

the sentence analysis.

6.1.4 Adaptation of function descriptions

The last task in tuning the NLC framework for a specific application is the construction

of application function descriptions (AFD) and loading them into the framework. AFDs

denote the context of real functions as described in Chapter 4. Arbitrary AFDs can be

loaded into the framework using the class in Figure 6.6 or can be unloaded one at a time

or altogether. Certainly, all AFD files are validated with the corresponding XSD in the

loading phase.

Figure 6.6. Function loader class of function mapper

For extending applications with natural language control an interface application should

usually be developed classes and methods of which are referred in AFDs since most of

the applications have no public APIs that can be called directly from the function

mapper module.

In the next sections two sample applications will be introduced which use our NLC

framework adapted to different domains.

6.2 Robot controlling application

Communication with most of computer systems happens via user-friendly but not

natural ways. People have to fill out forms, click buttons, type instructions through a

keyboard instead of saying commands in a natural language to the system. Natural

language processing is a more and more popular area of artificial intelligence and it has

a wide application area like robot controlling. The combination of these two areas

improves significantly the functionality of robotic assistants which became more

common in environments such as offices, houses and industries. Increasingly, the

6. Applications of Theoretical Results 64

communication with robots wanted to be much easier and in more natural ways like via

spoken dialogs.

There are numerous researches which combine the fields of natural language processing

and robotics. Sondheimer (Sondheimer 1976) is focused already in 1976 on the problem

of spatial reference in natural language machine control. Nilsson’s SHAKEY system

(Nilsson 1984) from 1984 is able to understand simple commands given in a natural

language. Sato and Hirai (Sato and Hirai 1987) worked on language-aided instruction

for teleoperational control, where specific words can be utilized to make the

specification of teleoperational functions for instruction of remote robot system simpler.

Torrance (Torrance 1994) made a natural language interface for an indoor office-based

mobile robot in navigation area. Lobin (Lobin 1992) points out some theoretical aspects

of natural language communication with robots from the perspective of computer

linguistics. Badler (Badler et al. 1991), Chapman (Chapman 1991), Vere and Bickmore

(Vere and Bickmore 1990) control autonomous agents within simulated 2D and 3D

environments in a natural language.

RHINO (Burgard et al. 1998) is a robotic guide in a museum which can move and

describe particular exhibits. It can only recognize simple phrases without supporting

true dialogues. RHINO’s ancestor was Polly, a vision-based robot which interaction

mechanisms were more primitive. MAIA robot (Antoniol et al. 1994) could carry

objects from one place to another. It could be controlled by simple spoken commands.

Jiro-2 (Asoh et al. 1999) is a mobile office assistant which can convey information and

guide people through an office environment. A frame-based SDS is used by Jiro-2 and it

communicates in Japanese. AESOP 3000 (Versweyveld March 1998) is a surgical robot

which is controlled by voice in a heart surgery and does not provide a full SDS.

Robots in (Lemon et al. June 2001) and (Perzanowski et al. June 2001) use multi-modal

interfaces which comprise both speech, keyboard and point-and-click input also.

Accuracy of robot controlling systems can be increased using multi-modal interfaces

contrary to unimodal systems. Flippo discusses multimodal interfaces detailed in

(Flippo August 2003).

There are many robot controlling systems that work similarly to our proposed system.

Our frame-based dialog system differs mainly in the description of slots and mapping

rules. We use sentence analysis-based mapping, where words are mapped to a slot not

only by the word itself but considering in-sentence roles as well. Concepts of the

domain should be defined to achieve proper sentence analysis which cannot be made

only with statistical methods.

The structure of the application can be seen in Figure 6.7.

6. Applications of Theoretical Results 65

Figure 6.7. Structure of Robot Controlling Application

The highest user experience can be achieved, when the user can talk to the robot instead

of writing and the robot executes the commands of the human. In case of Hungarian

language the speech recognition, mostly the speaker-independent ASR, is in its

childhood and there does not exist an exact, fast and accurate enough solution which

can meet the requirements of a real-time usage. There are some by-pass solutions with

using of which speech can be recognized with restrictions. Nuance (Nuance 2013) has

some promising products like Nuance Recognizer or Dragon which increasingly

supports Hungarian language.

In the sample application the Nuance Recognizer is used to convert speech into written

text. Well-defined grammar XML files should be built which describes the word

sequences that the robot is able to recognize. The drawback of this solution is that only

those sentences can be recognized which are defined in the grammar. The benefit of this

representation is that the grammar can be arbitrarily recursive so the number of

combinations can be increased. Certainly it has a price: the process of recognition will

be slower.

The speech recognizer or the keyboard generates the input of the NLC framework

which is well-adapted with domain knowledge and function descriptions.

6.2.1 Robot domain knowledge

The robot domain knowledge is quite limited, only those concepts and relations are

added that are required to execute the function defined in the function set. The

following table summarizes the concepts of the robot.

6. Applications of Theoretical Results 66

Table 6.2. Concepts in Robot Contoller Application

Concept type Values

Predicate

concepts:

stand, sit, lay, sorry, wave, nod, exclaim, make excercises, see,

close eyes, say hello, walk, turn, introduce, welcome, raise,

lower, twist, look,

Abstract concepts:
body_part, limb, head, leg, arm, hand, elbow, direction, unit,

person, side

Individual

concepts:

forward, backward, left, right, back, up, down, here, around,

meter, centimeter, degree, step, Ági, Peti, Szabi, Attila, left

one, right one

Between abstract and individual concepts mostly ‘isa’ connection is defined. For the

direction abstract concept Figure 6.8 shows the individuals.

Figure 6.8. Direction concept hierarchy

The next example in Figure 6.9 shows the definition of ‘walk’ concept with belonging

concepts. The sentence analysis can be fulfilled using such kinds of knowledge

definitions.

Figure 6.9. Walk predicate description

direction

forward backward left right back up down here around

6. Applications of Theoretical Results 67

6.2.2 Function set

The domain knowledge is determined based on the set of available functions. If this set

will be extended, the domain knowledge may be completed as well. In the sample

application the following functions are realized to control the humanoid robot.

Table 6.3. Functions of Robot Controlling Application

Function Description

Bow Robot can bow its bust after introduction is completed.

HideVideo Robot can „close its eyes” which means hiding camera window in

application.

Introduce Robot can introcuce itself with saying like: „Hello, my name is Nao.”

LayDown Robot can lay down from any position.

Look Robot can look in any direction with rotating its head.

Lower Robot can lower its arms or legs in specified directions with specified

scale.

No Robot can move its head horizontally like showing “No”.

Raise Robot can raise its arms or legs in specified directions with specified

scale.

ShowVideo Robot can “open its eyes” which means showing camera window in

application.

SitDown Robot can sit down from any position.

StandUp Robot can stand up from any direction.

TaiChi Robot can make some cool exercises such as TaiChi movements.

Turn Robot can turn in any direction with specified angle.

Walk Robot can walk in any direction until specified length.

Wave Robot can wave its arm.

Welcome Robot can welcome people to say: “Welcome XYZ.”

Yes Robot can move its head vertically to show understanding.

6.2.3 Communicating with Nao robot

Aldebaran’s Nao (Aldebaran 2013) humanoid robot, shown in Figure 6.10, has a

software development kit, which provides an application programing interface in

several programing languages like C++, Python, C#. In the current version, Java API is

also supported, but when application was implemented, there was no Java support yet.

A by-pass solution had to be found to communicate with Nao from the natural language

interface framework written in Java.

6. Applications of Theoretical Results 68

Figure 6.10. Aldebaran's Nao humanoid robot

The solution was to develop an interface application in C# which connects to the robot

and calls its API methods. The C# application gets commands via socket

communication where the interface application acts as socket server and the NLC

framework has a socket client part.

The socket messages have a simple structure which consists of the command name and

parameters. A sample socket message for the walk function is the following:

Walk|0.4|forward#

This instructs the robot to walk 40 centimeters forward. The delimiter is ‘|’ between

function names and parameters and sign ‘#’ is the terminate symbol of the message. The

interface application calls the corresponding NaoQi API function and Nao makes the

movement. In Figure 6.11 the user interface of Nao interface application is illustrated.

Figure 6.11. Nao interface application

6.2.4 User interface of Robot controlling application

Robot controller application has a simple graphical user interface described in Figure

6.12. It has two main parts: a dialog panel and an input area.

6. Applications of Theoretical Results 69

The conversation panel contains the questions, commands and the application answers

in natural language format. A conversation entry consists of four parts:

- The entry type icon, which shows whether the entry is textual or speech.

- The name of the user who has sent the conversation entry. It can be: Ember or

Robot.

- The content of conversation entry in natural language format.

- The time of entry when it has been displayed in the panel.

Users can write natural language texts into the textbox of the input area. The command

can be sent by pressing the ‘Enter’ key or pressing the ‘Küld’ button. After sending a

command, it will be processed and answered by the application.

If the command has missing parameters or the application does not understand the

command, a question entry will be shown in the conversation panel.

Figure 6.12. Graphical user interface of robot controller application

6.3 Navigation application using Google Maps

Controlling navigation systems with a natural language is also a practical application

area for using our NLC framework. There are similar products in the market which are

usually called automotive solutions (Nuance 2013). The main features of these

applications are:

- Voice destination entry

- Point-of-interest search

- Street name read out

- Command and control

- Traffic read out

- Location based services.

The language support of these automotive systems are limited, English, Dutch, French,

Italian, German, Spanish, Polish, Czech, Danish, Russian and some other European

(Robot control application)

(Discourse window)

(Question/answer text:) (Send)

6. Applications of Theoretical Results 70

languages are supported, the Hungarian is not among them mainly because of the hard

speech recognition.

The aim of the navigation sample application is to show how such a system like Google

Maps can be extended with natural language control using NLC framework proving its

domain-adaptivity property.

6.3.1 Navigation domain knowledge

Since the primary goal of the application is to show the applicability of the framework

for several domains, the concept set is not complete, it consists of only several point-of-

interests, actions, etc. The knowledge can certainly be extended anytime by adding new

nodes into the concept tree.

Table 6.4 shows some examples for concepts of the system.

Table 6.4. Concepts of navigation application

Concept type Values

Predicate

concepts:

drive, find, go, is, navigate, eat, read, sleep, teach, etc…

Abstract concepts:
restaurant, school, swimming pool, museum, hotel, food, city,

etc…

Individual

concepts:

Miskolc, Budapest, megyei, MOL, etc…

The concept tree belonging to a predicate concept can be more compound than in case

of the robot controlling application, since a function here can have more parameters.

Figure 6.13 shows the restaurant concept hierarchy which contains the actions,

nationalities, objects as well as the central abstract concepts.

6. Applications of Theoretical Results 71

Figure 6.13. Restaurant concept hierarchy

6.3.2 Navigation function set

The primary navigation functions are the default in systems like this, but some extra

features make the application more user-friendly and interesting. Such functions are,

e.g. a call number of POI, show route on map dynamically, etc. The following functions

are available in our application.

Table 6.5. Functions of Navigation Application

Function Description

Call User can call the phone number of a POI if it is found in Google Maps

places data.

Distance User can query the distance between two cities, addresses, POI from

current position.

Place User can query location information from POIs.

PlaceData User can ask for details of POIs.

Position User can query his/her actual position.

Route User can get the route information between two endpoints. (city,

address, POI, etc…)

Show User can ask for showing routes, places and distances on the map.

ShowRoute User can ask for route on the user interface between two endpoints.

6. Applications of Theoretical Results 72

6.3.3 Calling Google Maps services

Google Maps web services can be accessed through HTTP requests. Parameters which

are extracted from the natural language text should be added as request parameters. The

HTTP answer contains JSON or XML data which describes locations, direction, POI

data, etc…

There are four different APIs of Google Maps which are used in the navigation

application, such as

- Directions API: it provides the route between two endpoints regarding the

mode of transport

- Distance Matrix API: it provides the distance between two points regarding the

mode of transport

- Geocoding API: it provides the geocoordinates for a given city or address. The

reverse geocoding is also possible with this service

- Places API: it provides point-of-interests round about an origin within a given

distance regarding the mode of transport. Places API has a child API called

place details which results the detailed information about the given places such

as events, phone number, name, email, website, etc.

The application implements the lexical NLP level with the use of a memory structure

which remembers the executed commands and can search and bind references in the

actual command to the previously performed one. With this kind of trick, a dialog with

many sentences can be handled. The dialog is terminated if a new request type arrives.

E.g., if the user asks: “How far is Budapest?”, and after he/she says or types “Show on

map!” then the application knows what to be visualized.

6.3.4 User interface of navigation application

The structure of the user interface is shown in Figure 6.14. There are six main parts of

the interface that are marked by black circles: actual position, conversation panel, input

area, route panel, progress indicator and map panel.

6. Applications of Theoretical Results 73

Figure 6.14. User interface of navigation application

The actual position region contains the address of our current location. If no GPS

locator is used, then it has a constant value which is set in the application properties file.

It can also be set during installation.

If we use the GPS locator of a smart phone, then if our position has changed, the actual

position text area will contain the address calculated from the received latitude and

longitude coordinates. This field is read only.

The conversation panel contains the questions, commands and the application answers.

A conversation entry consists of four parts,

- The entry type icon, which indicates whether the entry is textual or speech

- The name of the user who has sent the conversation entry. It can be: Human or

GPS

- The content of conversation entry in natural language format

- The time of entry when it has been displayed in the panel.

Users can write natural language texts into textbox of the input area. The command can

be sent by pressing the ‘Enter’ key or pressing the ‘Küld’ button. After sending a

command, it will be processed and answered by the application.

If the command has missing parameters or the application does not understand the

command, a question entry will be shown in the conversation panel.

If users query about route plans, like “Hogy jutok el…”, a route plan will be provided as

primary system answer. The route plan contains the origin and the destination positions

and the steps of the route, like in a GPS tool. The route plan contains the distances in

the last column, too. The route plan always appears in the route panel. The system

writes “Mutatom az útvonalat.” string into the conversation area to indicate that the

primary answer should be found in another panel.

❶

❷

❸

❹

❺

❻

(Google Maps navigation application)
(Current position)

(Discourse window)

(Progress indicator)

(Question/answer text:)

(Route)

(Map)

(Send)

(File, Help)

6. Applications of Theoretical Results 74

The application uses Google Maps Web Services which are asynchronous, so there can

be delay between the question and the answer. To show that something is happening in

the background and the application is not frozen, a progress indicator is used and

animated till the web service answer arrives.

The most spectacular answer of the application is a map shown in the map panel. The

user can query anytime to show a route or the searched POI or POIs on the map. He/she

has only to ask “Mutasd!” or “Mutasd a térképen!”. On the map several things can be

shown:

- A POI which has been searched

- Array of POIs if the result contains more items. The limitation can be set in

application properties

- A route between two places or cities

- A route towards a searched place from our current position.

The size and rendering of the map depends on the current width and height of the

application window. If a map is shown in the panel and the window size is increased,

the quality of map will fall off. In next map request, the new map will already be in a

good resolution since the size of the map should be sent in the service request.

6.4 Summary of results

In this chapter the proposed framework developed in Java language has been described.

In order to demonstrate the theoretical results two sample applications have been

implemented using the proposed NLC framework. The new scientific results can be

summarized as follows.

Thesis 4. [7][8]

A prototype Text-to-Function API library was developed to demonstrate the efficiency

of the proposed natural language controlling framework. The functionality of the

library was tested in different industrial solutions on two different domains (humanoid

robot controlling, Google Maps navigation). The experiments show that the

implemented systems meet the industrial requirements concerning the accuracy and the

response time.

7. Summary 75

7 Summary

In this dissertation a natural language controlling framework introduced in Figure 3.1 on

page 17 is developed. The framework satisfies four major requirements.

1. Domain-adaptivity: the ability to easily learn concepts and relations of

different domains without modifying the inner structure or workflows of the

framework

2. Language-adaptivity: the ability to parse natural language sentences specified

in different languages with only modifying language-dependent parts of

framework

3. Extendibility: the ability to extend the set of functions which wanted to be

called by natural language commands

4. Open interface: the ability to utilize existing components of NLP engines and

to implement, refine any part of the framework for own needs.

Accordingly, the present research has realized the following tasks:

1. The structure of natural language controlling framework model had to be created

considering domain- and language-adaptivity and combining exiting NLP

engines. (see Chapter 3).

2. Semantic models and application function descriptions had to be developed for

representing domain knowledge, for sentence analysis, for function mapping and

algorithms had to be implemented which perform sentence analysis and

function-mapping (see Chapter 4).

3. Optimization problems had to be examined in framework modules and

recommendations had to be suggested to achieve execution with lower costs and

higher accuracy (see Chapter 5).

4. The framework and two sample applications had to be implemented for the

demonstration of theoretical results (see Chapter 6).

7.1 Contributions

The developed natural language controlling framework is suitable for extending various

systems with natural language control. The new scientific results which are achieved

during the completion of the project are summarized as follows.

Thesis 1. [6][8]

A novel structure of the natural language controlling framework model has been

developed fulfilling requirements specified in recommendations (R1). The architecture

of the framework is based on the developed formal information flow model. The

framework contains four modules in a linear structure. The proposed architecture

provides domain-adaptivity, language-adaptivity and high extensibility with an open

7. Summary 76

interface. These properties provide a high level reusability of the framework in software

development in the field of human-machine interfaces.

Thesis 2. [2][3][6][8]

A novel semantic model is developed which satisfies the requirements (R2) of the

knowledge representation format in our proposed natural language controlling system.

The model is an extension of ECG model proposed by (Varga 2011). The implemented

extensions (three new types of nodes, three novel edge types completed with morphology

and POS labels) ensure a more efficient knowledge transformation between input

sentences of a language and the function call generator module. The novelty of the

developed function signature model is the inclusion of POS information for function

mapping. A deterministic algorithm has been implemented to convert the sentence

analysis tree into API function calls.

Thesis 3. [2][3][9][15]

I have determined the key cost components in the natural language controlling

framework. The proposed multi-criteria cost model includes execution time, accuracy

and resource consumption factors. Algorithm optimization was performed for the POS

tagging, sentence analysis and function mapping modules. The proposed graph-based

algorithm provides an efficient execution for the implementation of the framework in

large-scale domains.

Thesis 4. [7][8]

A prototype Text-to-Function API library was developed to demonstrate the efficiency

of the proposed natural language controlling framework. The functionality of the

library was tested in different industrial solutions on two different domains (humanoid

robot controlling, Google Maps navigation). The experiments show that the

implemented systems meet the industrial requirements concerning the accuracy and the

response time.

7.2 Future work

The developed framework would be practical to be tested and tuned with real, large

domain data, e.g., by building the knowledge of a concrete GPS device. The

examination of the connectivity of the semantic module with systems, like WordNet, is

also among my future plans.

I would like to complete the developed framework to be able to parse, analyze and

process compound sentences besides simple extended sentences as well. The text parser

and the morphology module are already prepared for achieving the previous goals, but

the algorithms of the semantic and the function mapper module need to be revised.

7. Summary 77

The conditions of the language-adaptability are produced by the framework, the

adaptation of the framework for different kinds of languages (flective, isolating and

agglutinative), like English, Slovak, German or Spanish, is planned in the near future.

Nowadays, the cloud-based web services widely spread all over the world. I would like

to examine whether and how could the framework be operated as a cloud-based service.

Reference List 78

Reference List

Aldebaran. 2013. “NAO.” Aldebaran. Retrieved June 6, 2013 (http://www.aldebaran-

robotics.com).

Alexin, Zoltán, János Csirik, András Kocsor, Márton Miháltz, and György

Szarvas 2006. “Construction of the Hungarian EuroWordNet Ontology and its

Application to Information Extraction.” Pp. 291-292 in Proceedings of the Third

International Global WordNet Conference (GWC-06). Jeju Island, Korea.

Alshawi, H. and J. van Eijck. 1989. Logical Forms In The Core Language Engine.

Antoniol, G., B. Caprile, A. Cimatti, R. Fiutem, and G. Lazzari 1994. “Experiencing

real-life interaction with the experimental platform of MAIA.” in Proceedings of the 1st

European Workshop on Human Comfort and Security.

Apache, UIMA. 2013. (http://uima.apache.org).

Asoh, H., T. Matsui, J. Fry, F. Asano, and S. Hayamizu 1999. “A spoken dialog

system for a mobile office robot.” Pp. 1139-1142 in Proc. of Eurospeech'99. Budapest.

Aust, H. and M. Oerder 1995. “Dialogue control in automatic inquiry systems.” Pp.

121-124 in Proceedings of the ESCA Workshop on Spoken Dialogue Systems. Vigso,

Denmark.

Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider.

2003. The Description Logic Handbook: Theory, Implementation, Applications.

Cambridge, UK: Cambridge University Press.

Badler, N. I., B. L. Webber, J. Kalita, and J. Esakov 1991. “Animation from

Instructions.” Pp. 51-93 in Making Them Move: Mechanics, Control, and Animation of

Articulaited Figures. San Mateo, CA: Morgan Kaufmann.

Bechhofer, S., F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. Patel-

Schneider, and L. Stein 2004. “OWL Web Ontology Language Reference, W3C

Recommendation.”

Bohnet, B. and J. Niver 2012. “A Transition-Based System for Joint Part-of-Speech

Tagging and Labeled Non-Projective Dependency Parsing.” Pp. 1455-1465 EMNLP-

CoNLL.

Burgard, W., A.B. Cremers, D. Fox, D. Hahnel, G. Lakemeyer, D. Schulz, W.

Steiner, and S. Thrun 1998. “The interactive museum tour-guide robot.” in

Proceedings of the Fifteenth National Conference on Artificial Intelligence. Madison,

Wi.

Cannan, J. and H. Hu. 2011. “Human-Machine Interaction (HMI): A survey.”

University of Essex, UK.

Chapman, D. 1991. “Vision, Instruction, and Action.” Cambridge, MA: MIT Press.

Reference List 79

Chomsky, N. 1957. Syntactic Structures. The Hague: Mouton & Co.

Chomsky, N. 1963. Formal properties of grammar. MIT Press.

Chomsky, N. 1965. Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.

Codd, E.F. 1974. “Seven steps to rendezvous with the casual user.” Pp. 179-200 in

IFIP Working Conference Data Base Management.

Cullingford, R. 1981. SAM.

Csendes, Dóra, János Csirik, Tibor Gyimóthy, and András Kocsor 2005. “The

Szeged Treebank.” Pp. 123-131 in Proceedings of the 8th International Conference on

Text, Speech and Dialogue (TSD 2005). Karlovy Vary, Czech Republic: Springer LNAI

3658.

D'Argenio, P.R., J.P. Katoen, and E. Brinksma 1998. “An algebraic approach to the

specification of stochastic systems (extended abstract).” Pp. 126-147 in Programming

Concepts and Methods. London, UK: Chapman & Hall.

Erdmann, M. 2001. Ontologien zur konzeptuellen Modllierung der Semantik von XML.

BoD-Books on Demand.

Flippo, F. August 2003. “A Natual Human-Computer Interface for Controlling

Wheeled Robotic Vehicles, Thesis.” Delft University of Technology: Nederland.

Freitag, D. and A. McCallum 2000. “Information extraction with HMM structures

learned by stochastic optimization.” in Proc. AAAI 2000.

Ghosh, A. and S. Dehuri 2005. “Evolutionary algorithms for multi-criteria

optimization: A Survey.” in International journal.

Ghosh, A., S. Dehuri, and S. & Ghosh. 2008. Multi-objective evolutionary algorithms

for knowledge discovery from databases. Springer.

Ghosh, A. and B. Nath 2004. Multi-objective rule mining using genetic algorithms.”

Pp. 123-133 in Information Sciences 163(1).

Gildea, D. and D. Jurafsky 1995. “Automatic Induction of Finite State Transducer for

Simple Phonological Rules.” in Meeting of ACL.

Goldstein, P. and D. Bobrow. 1980. A Layered Approach to software Design. Xerox

Publ.

Gruber, T. R. 1995. “Toward principles for the design of ontologies used for

knowledge sharing.” International journal of human computer studies 43:907-928.

Guttman, A. 1984. “R-trees: a dynamic index structure for spatial searching.” Pp. 47-

57 ACM.

Halácsy, P., A. Kornai, L. Németh, A. Rung, I. Szakadát, and V. Trón 2003. “A

szószablya projekt-www.szoszablya.hu.” Pp. 298-299 MSZNY 2003: Szeged, Hungary.

Hudson, R. 2007. Language Networks: The new Word Grammar. Oxford University

Press.

Reference List 80

Hulstijn, J., R. Steetskamp, H. ter Doest, S. van de Burgt, and A. Nijholt 1996.

“Topics in SCHISMA dialogues.” Pp. 89-99 in Proceedings of the Twente Workshop on

Language Technology: Dialogue Management in Natural Language Systems (TWLT

11).

Hutchins, W. J. 2004. The Georgetown-IBM experiment demonstrated in January

1954. Springer Berlin Heidelberg.

Hutchins, J. 2005. “The history of machine translation in a nutshell.”.

J. R. Pierce, J. B. C. e. a. 1966. “Language and Machines — Computers in Translation

and Linguistics. ALPAC report.” Washington, DC.

Joshi, A.K., S. Levy, and M. Takahashi 1975. “Tree adjunct grammars.” Pp. 136-163

Klyne, G. and J. Carroll 2004. “Resource Description Framework (RDF):Concepts

and Abstract Syntax.” in W3C Recommendation.

Kovács, L. 2004. Adatbázisok tervezésének és kezelésének módszertana. Budapest:

ComputerBooks.

Kovács, L. 2010. “Rule approximation in metric spaces.” Pp. 49-52 in Applied Machine

Intelligence and Informatics (SAMI), 2010 IEEE 8th International Symposium. IEEE.

Kovács, L. and T. Sieber 2009. “Multi-layered semantic data models.” Pp. 1130-1135

Hersey (USA): IGI Global Publisher.

Kowalski, R.A. 1974. “Predicate logic as programming language.” Pp. 570-574 in

Proceedings of the IFIPS Congress (Amsterdam). International Federation of

Information Processing Societies.

Krenn, B. and C. Samuelsson. 1997. The Linguistic's Guide.

Krovetz, R. 1993. “Viewing morphology as an inference process.” Pp. 191-203 in

Proceedings of ACM-SIGIR93.

Kumar, A. 2009. “MONK Project: Architecture Overview.” Techical Report of the

Northwestern University.

Lafferty, J. D., A. McCallum, and F. C. N. Pereira 2001. “Conditional Random

Fields: Probabilistic Models for Segmenting and Labeling Sequence Data.” Pp. 282-289

in Proceedings of the Eighteenth International Conference on Machine Learning (ICML

2001). Morgan Kaufmann Publishers.

Lee, G., J.H. Lee, H. Rho, Y.T. Park, J. Choi, and J. Seo. 1998. Interactive NLI

agent for multiagent Web search model. 4th World Congress on Expert Systems.

Lemon, O., A. Bracy, A. Gruenstein, and S. Peters June 2001. “A Multi-Modal

Dialogue System for Human-Robot Conversation.” in Demo, NAACL2001. Pittsburgh,

USA.

Lobin, H. 1992. Situierte Agenten als natürlichsprachliche Schnittstellen.

Arbeitsberichte Computerlinguistik 3-92: Univ. Bielefeld, Germany.

Reference List 81

Lovins, J.B. 1969. Development of stemming algorithm. MIT Processing Group,

Electronic Systems Laboratory.

MacCartney, B. 2009. “Natural Language Interface.” in Ph.D. dissertation. Stanford

University.

Manning, C. and H. Schütze. 1999. Foundations of Statistical Natural Language

Processing. MIT Press.

McCallum, Andrew K. 2002. “MALLET: A Machine Learning for Language Toolkit.”

(http://mallet.cs.umass.edu).

McTear, M. 1997. “Spoken Dialogue Technology: Enabling the Conversational User

Interface.” in Distributed at the DUS/ELSNET Bullet Course on Designing and Testing

Spoken Dialogue Systems.

McTear, M. 1998. “Modelling spoken dialogues with state transition diagrams:

experiences of the CSLU toolkit.” Pp. 1223-1226 in Proceedings of the International

Conference on Spoken Language Processing. Sydney, Australia: Australian Speech

Science and Technology Association, Incorporated.

McTier, M. 2002. “Spoken dialogue technology: enabling the conversational

interface.” Pp. 90-169 in ACM Computing Surveys.

Mihajlik, P. 2010. Recognition of Spontaneous Hungarian Speech without Language

Specific Rules, Ph.D. thesis. Budapest University of Technology and Economics.

Minsky, M. 1975. “A Framework for Representing Knowledge.” in The Psychology of

Computer Vision. New York, NY: McGraw-Hill.

MorphAdorner. 2009. (http://morphadorner.northwestern.edu).

Németh, L. 2011. “Hunspell: open source spell checking, stemming, morphlogical

analysis and generation under GPL, LGPL or MPL licenses.”

(http://hunspell.sourceforge.net).

Ng-Thow-Hing, V. and S. O. Pengcheng Luo. 2010. Synchronized gesture and speech

production for humanoid robots.

Nilsson, N.J. 1984. “Shakey the Robot.” Artificial Intelligence Center: SRI

International, Menlo Park, CA.

NLTK. 2012. (http://nltk.org).

Norman, Donald A. 1999. The Invisible Computer. MIT Press.

Nuance. 2013. “Nuance - Ingellient systems.” Nuance Communications, Inc. Retrieved

June 6, 2013 (http://www.nuance.com).

openNLP, Apache. 2010. “openNLP.” http://opennlp.apache.org.

Pacie, C.D. 1994. “An evaluation method for stemming algorithms.” Pp. 42-50 in

Proceedings of ACM-SIGIR94.

Reference List 82

Paumier, S., F. Liger, G. Vollant, A. Yannacopoulou, and S. Surcin. 2010. A NLP

Engine from the lab to iPhone.

Perzanowski, D., A. Schultz, Adams W., K. Wauchope, and Marsh, E. M. B. 2001.

“Interbot: A Multi-Modal Interface to Mobile Robots.” in Demo, NAACL2001.

Pittsburgh, USA.

Porter, M. F. 1980. “An algorithm for suffix stripping.” Pp. 130-137 in Program:

electorinc library and information systems, 14(3).

Porter, M. F. 2005. “Snowball stemmers and resources page.” Retrieved July 13, 2005

(http://www.snowball.tartarus.org).

Puerta, A.R. 1997. “A model-based interface development environment.” Pp. 40-47 in

Software, IEEE, vol. 14.

Quillian, M. 1968. “Semantic Memory.” Pp. 216-270 in Semantic Information

Processing. Cambridge, MA: MIT Press.

Robinson, J. 1970. “Dependency structures and transformation rules.” Pp. 259-285 in

Language, 46.

Rucklidge, W. 1996. “Efficient visual recognition using the Hausdorff distance.” Berlin

Heidelberg: Springer.

Sato, T. and S. Hirai 1987. “Language-Aided Robotic Teleoperation System (LARTS)

for Advanced Teleoperation.” Pp. 476-480 in IEEE Journal on Robotics and

Automation (RA).

Schmidt, Albrecht 2002. “Ubiquitous Computing - Computing in Context.” in PhD

thesis. Lancester: Computing Department, Lancester Univeristy.

Sha, F., P. F. 2003. “Shallow parsing with conditional random fields.” Pp. 134-141 in

Proc. NAACL '03 Proceedings of the 2003 Conference of the North American Chapter

of the Association for Computational Linguistics on Human Language Technology.

Shank, R. C. 1975. “Conceptual Information Processing.” North Holland, Amsterdam.

Sharma, V., P. Jalote, and K. Trivedi. 2005. Evaluating Performance Attributes of

Layered Software Architecture, Proc. of CBSE 2005, LNCS.

Sondheimer, N.K. 1976. “Spatial Reference and Natural Language Machine Control.”

Pp. 329-336 in Int. Journal of Man-Machine Studies.

Sowa, J. 1992. “Semantic Networks.” in Encyclopedia of Arti. Wiley.

Sowa, J. 2000. Knowledge Representation: Logical, Philosophical, and Computational

Foundations. Pacific Grove, CA: Brooks Cole Publishing Co.

StanfordNLP. 2013. “Standford NLP.” (http://www-nlp.stanford.edu).

Strassel, S., D. Adams, H. Goldberg, J. Herr, R. Keesing, D. Oblinger, H. Simpson,

R. Schrag, and J. Wright. 2010. The darpa machine reading program-encouraging

linguistic and reasoning research with a series of reading tasks.

Reference List 83

Sutton, C. and A Mccallum 2012. “An Introduction to Conditional Random Fields,

Foundation and Trends in Machine Learning.” Now Publishers.

Szarvas, Gy., R. Farkas, and A.: Kocsor. 2006. A Multilingual Named Entity

Recognition System Using Boosting and C4.5 Decision Tree Learning Algorithms. The

Ninth International Conference on Discovery Science.

Tesniere, L. 1959. Elements de syntaxe structurale. Paris, Klincksieck.

Tordai, A. and M. de Rijke. 2005. Hungarian Monolingual Retrieval at CLEF.

Torrance, M.C. 1994. “Natural Communication with Robots. Master’s thesis.” MIT,

Department of Electrical Engineering and Computer Science: Cambridge, MA.

Trón, V., P. Halácsy, P. Rebrus, A. Rung, E. Simon, and P. Vajda. 2006.

morphdb.hu: Hungarian lexical database and morphological grammar.

Turing, A.M. 1950. Computing machinery and intelligence.

Varga, Erika B. 2011. “Ontology-based Semantic Annotation and Knowledge

Representation in a Grammar Induction System.” in Ph.D. Dissertation. Miskolc.

Veldhuijzen van Zanten, G. 1996. “Pragmatic interpretation and dialogue

management in spoken-language systems.” Pp. 81-88 in Dialogue Management in

Natural Language Systems, TWLT11. University of Twente.

Vere, S. and T. Bickmore 1990. “A Basic Agent.” Pp. 41-60 in Computational

Intelligence.

Versweyveld, L. March 1998. “Voice-controlled surgical robot ready to assist in

minimally invasive heart surgery.” in Virtual Medical Worlds Monthly.

Wei, L. and H. Hu. 2011. “Towards Multimodal Human-Machine Interface for Hands-

free Control: A survey.” University of Essex, UK.

Weiner, P. 1973. “Linear pattern matching algorithms.” Pp. 1-11 in Switching and

Automata Theory. SWAT'08. IEEE Conference Record of 14th Annual Symposium:

IEEE.

Weiser, M. 1993. “Hot topics: Ubiquitous computing.” in IEEE Computer.

Weiser, M. and J.S. Brown 1998. “The coming age of calm technology.” Pp. 75-85. in

Beyond calculation: The next fifty years of computing. New York, NY.

Weizenbaum, J. 1966. ELIZA-A Computer Program for the study of Natural Language

Communication between man and machines.

Wejchert, Jakub 2000. “The Disappearing Computer”. in Information Document, IST

Call for proposals. European Commission, Future and Emerging Technologies.

Winograd, Terry. 1972. Understanding Natural Language. New York: Academic

Press.

Reference List 84

Woods, W. and R. Kaplan 1977. “Lunar rocks in natural English: Explorations in

natural language question answering, Linguistic Structures Processing.” Pp. 521-569 in

Fundamental Studies in Computer Science 5.

Zhao, Y. and Y. Yao 2006. “Classification based on logical concept analysis.” Pp. 419-

430 in Advances in Artifical Intellihence. Springer Berlin, Heidelberg.

Zsibrita, János, Veronika Vincze, and Richárd Farkas 2013. “magyarlanc 2.0:

szintaktikai elemzés és felgyorsított szófaji egyértelműsítés.” Pp. 368-374 in IX.

Magyar Számítógépes Nyelvészeti Konferencia. Szeged, Szegedi Tudományegyetem.

Author’s publications 85

Author’s publications

BOOK CHAPTERS IN FOREIGN-LANGUAGE

[1] Kovács, L., Barabás, P., Répási, T.: Ontology-Based Semantic Models for

Databases, Handbook of Research on Innovations in Database Technologies and

Applications: Current and Future Trends, IGI Global Publisher, Hersey (USA)

2009, ISBN 978-1-60566-242-8, Pp. 443-451

REVIEWED PUBLICATIONS IN FOREIGN-LANGUAGE PUBLISHED IN

INTERNATIONAL JOURNAL

[2] Barabás, P., Kovács, L.: Optimization tasks in Conversion of Natural Language

Text into Function Calls, Topics in Intelligent Engineering and Informatics, ISSN:

2193-9411, Springer, 2013

[3] Barabás, P., Kovács, L.: Efficient Encoding of Inflection Rules in NLP Sytems,

Scientific Bulletin, vol. 9 (XXVI), no. 2, 2012, ISSN 2285-438X, Pp. 11-16

REVIEWED PUBLICATIONS IN FOREIGN-LANGUAGE PUBLISHED IN DOMESTIC

JOURNAL

[4] Barabás, P., Kovács, L.: Estimation of Misclassification Error using Bayesian

Classifier, Publication of University of Miskolc, Production Systems and

Information Engineering , Vol. 5, 2009, ISSN 1785-1270, Pp. 41-50.

[5] Barabás, P., Kovács, L.: Efficient Classification of String Transformations using

Markov Model, GAMF Közlemények , XXI. évf., 2008, ISSN-1587-4400, Pp.

145-151

REVIEWED PUBLICATIONS IN HUNGARIAN LANGUAGE PUBLISHED IN

DOMESTIC JOURNAL

[6] Barabás Péter: Parancskinyerés magyar nyelvű szövegből, A Gépipari

Tudományos Egyesület Műszaki Folyóirata, LXIII. Évfolyam, 2012, pp. 71-74.

Author’s publications 86

REVIEWED PUBLICATIONS IN FOREIGN-LANGUAGE PUBLISHED IN

INTERNATIONAL CONFERENCE PROCEEDINGS

[7] Barabás, P., Kovács, L., Vircikova, M.: Robot Controlling in Natural Language,

The 3rd IEEE International Conference on Cognitive Infocommunications

(CogInfoCom2012), Kosice, Slovakia, December 2-5, 2012, Pp. 181-186

[8] Barabás, P., Kovács, L.: Requirement Analysis of Internal Modules of Natural

Language Processing Engines, 10th International Symposium on Application

Machine Intelligence and Informatics, Her’lany (Slovakia) 2012, ISBN 978-1-

4577-0196-2, pp. 41-46

[9] Kovács, L., Barabás, P.: Experiences of building of context-free grammar tree,

9th International Symposium on Application Machine Intelligence and

Informatics, Smolenice (Slovakia) 2011, ISBN 978-1-4244-7429-5, pp. 67-71

[10] Barabás, P., Kovács, L.: Implementation of Sentence Parser for Hungarian

Language in Natural Language Processing, 8
th

 International Symposium on

Applied Machine Intelligence and Informatics, Herl’any, Slovakia, 1/2010, ISBN

978-1-4244-6422-7, pp. 59-63

[11] Kovács, L., Baksa-Varga, E., Répási, T., Barabás, P.: Clustering Based on

Context Similarity, Complexity and Intelligence of the Artificial and Natural

Complex Systems, IEEE computer Society, ISBN 139780769536217, 2009., pp.

157-166

[12] Kovács, L., Barabás, P.: Generalization Analysis of the CL and MM-based

Classifications, 6
th

 International Symposium on Applied Machine Intelligence and

Informatics, Herl’any (Slovakia) 2008, ISBN 978-1-4244-2105-3, pp. 39-43.

NON-REVIEWED PUBLICATIONS IN FOREIGN-LANGUAGE PUBLISHED IN

INTERNATIONAL CONFERENCE PROCEEDINGS

[13] Barabás, P., Kovács, L.: Usability of Summation Hack in Bayesian

Classification, 9th International Symposium of Hungarian Researchers on

Computational Intelligence and Informatics, Budapest 2008

[14] Barabás, P.: Rule Learning with MM-based Classification, MicroCAD 2008

International Scientific Conference, Miskolc, 03/2008

[15] Kovács, L., Barabás, P.: Cost Analysis of Classification using CL and MM, 8th

International Symposium of Hungarian Researchers on Computational

Intelligence and Informatics, Budapest, 2007., pp. 227-237.

Author’s publications 87

[16] Kovács, L., Barabás, P.: Statistical Methods for Morhological Parsers, 7th

International Symposium of Hungarian Researchers on Computational

Intelligence and Informatics, Budapest, 2006, pp. 523-531.

[17] Barabás, P.: Automated Type Checking in VFP, MicroCAD 2005 International

Scientific Conference, Miskolc, pp. 229-234

NON-REVIEWED PUBLICATIONS IN FOREIGN-LANGUAGE PUBLISHED IN

LOCAL CONFERENCE PROCEEDINGS

[18] Barabás, P.: Cost Analysis of Classification using (H)MM, Forum of Ph.D.

Students, Miskolc, 11/2007

[19] Barabás, P.: Automations in Grammar Induction, Forum of Ph.D. Students,

Miskolc, 11/2006

Appendix A 88

Appendix A

POS LABEL SYSTEM

POS labels of stems

Label Description

ADJ Adjective

ADV Adverb

ART Article

CONJ Conjunction

DET Determiner

NOUN Noun

NUM Numeral

ONO Onomatopoeic

POSTP Postposition

PREP Preposition

PREV Preverb

UTT-INT Interjection

VERB Verb

POS labels of nouns

Property Value Label

Number

Singular

Plural (simple)

Plural (familiar)

-

<PLUR>

<PLUR<FAM>>

Possessor

None

1st person

2nd person

3rd person

Singular

Plural

-

<POSS<1>>

<POSS<2>>

<POSS>

<POSS>

<POSS<PLUR>>

Possessed

None

Singular

Plural

-

<ANP>

<ANP<PLUR>>

Appendix A 89

Case

NOM

ACC (-t)

DAT (-nak, nek)

INS (-val, -vel)

CAU (-ért)

TRA (-vá, -vé)

SUE (-on,-en, -ön)

SBL (-ra, -re)

DEL (-ról, -ről)

INE (-ban, -ben)

ELA (-ból, ből)

ILL (-ba, -be)

ADE (-nál, nél)

ALL (-hoz, -hez, -höz)

ABL (-tól, -től)

TER (-ig)

FOR (-ként)

-

<CAS<ACC>>

<CAS<DAT>>

<CAS<INS>>

<CAS<CAU>>

<CAS<TRA>>

<CAS<SUE>>

<CAS<SBL>>

<CAS>

<CAS<INE>>

<CAS<ELA>>

<CAS<ILL>>

<CAS<ADE>>

<CAS<ALL>>

<CAS<ABL>>

<CAS<TER>>

<CAS<FOR>>

POS labels of verbs

Property Value Label

Modality
None

Modal

-

<MODAL>

Mood

Conjunctive

Subjucnctive/Imperative

Conditional

-

<SUBJUNC-IMP>

<COND>

Tense

Present

Past

Future

-

<PAST>

<FUT>

Number
Singular

Plural

-

<PLUR>

Person

1st

1st with second person object

2nd

3rd

<PERS<1>>

<PERS<1<OBJ<2>>

<PERS<2>>

<PERS>

Definiteness
Indefinite

Definite

-

<DEF>

Appendix A 90

Labels for derivational morphemes

Explanation Suffix value Label
Source

POS
Target

POS

Frequentative -gat, -get FREQ VERB VERB

Medial -ódik, -ődik MEDIAL VERB VERB

Causative -tat, -tet CAUS VERB VERB

Adverbial participle -va, -ve PART VERB ADV

Perfect adverbial participle -ván, -vén PERF_PART VERB ADV

Imperfect adverbial
participle

-ó, -ő IMPERF_PART VERB ADJ

Future adjectival participle -andó, -endő FUT_PART VERB ADJ

Perfect adjectival
participle

-ott PERF_PART VERB ADJ

Negative perfect adjectival
participle

-atlan, -etlen NEG_PERF_PART VERB ADJ

Gerund -ás, -és GERUND VERB NOUN

Negative modal adjectival
participle

-hatatlen, -hetetlen NEG_MODAL_PART VERB ADJ

Modal adjectival participle -ható, -hető MODAL_PART VERB ADJ

Regular activity -kodik, -ködik REG_ACT NOUN VERB

Abstract -ság, -ség ABSTRACT NOUN NOUN

Mrs -né MRS NOUN NOUN

Diminutive -ka, -ke DIMIN NOUN NOUN

Attributive -s ATTRIB NOUN ADJ

Metonymical attributive -i MET_ATTRIB NOUN ADJ

Inalienable attributive -jú, jű INAL_ATTRIB NOUN ADJ

Negative attributive -talan, -telen NEG_ATTRIB NOUN ADJ

Negative attributive2 -mentes NEG_ATTTIB2 NOUN ADJ

Type1 -szerű TYPE1 NOUN ADJ

Type2 -féle TYPE2 NOUN ADJ

Type3 -nemű TYPE3 NOUN ADJ

Type4 -fajta TYPE4 NOUN ADJ

Type rank -rangú TYPE_RANK NOUN ADJ

Locative inessive -beli LOC_INE NOUN ADJ

Quantity -nyi QUANTITY NOUN NUM

Essivus formalis -képpen ESS_FOR NOUN ADV

Comitative -stul, -stül COM NOUN ADV

Appendix A 91

Period1 -anként PERIOD1 NOUN ADV

Period2 -onta, -ente PERIOD2 NOUN ADV

Activity1 -oz, -ez, -öz ACT NOUN VERB

Activity2 -ol, -el, -öl, -ül ACT2 NOUN VERB

Comparative -bb COMPAR ADJ ADJ

Superlative Leg-bb SUPERLAT ADJ ADJ

Supersuperlative Legesleg-bb SUPERSUPERLAT ADJ ADJ

Comparative designative -bbik COMPAR_DESIGN ADJ ADJ

Superlative designative Leg-bbik SUPERLAT_DESIGN ADJ ADJ

Supersuperlative
designative

Legesleg-bbik SUPERSUPERLAT_D
ESIGN

ADJ ADJ

Manner -lag MANNER ADJ ADV

Manner -an, -án, -en, -én MANNER ADJ ADV

Intransitive resultative -odik, -edik, -ul, -ül INTRANS_RESULT ADJ VERB

Transitive resultative -ít TRANS_RESULT ADJ VERB

Multiplicative iterative -szor, -szer, -ször MULTIPL_ITER NUM ADV

Multiplicative iterative -szoroz, -szerez, -
szöröz

MULTIPL_ITER NUM VERB

Iterative attributive -szori, -szeri, -szöri ITER_ATTRIB NUM ADJ

Multiplicative attributive -szoros, -szeres, -
szörös

MULTIPL_ATTRIB NUM ADJ

Multiplicative -szorta, -szerte, -
szörte

MULTIPL NUM ADV

Aggregative -an, -en AGGREG NUM ADV

Fractional -ad, -ed, -öd FRACT NUM NUM

Ordinal -odik, -edik, -adik, -
ödik

ORD NUM NUM

Date -odika, -edike, -
adika, -ödike

DATE NUM NOUN

Attributive -i ATTRIB POSTP ADJ

Appendix B 92

Appendix B

XML SCHEMA DEFINITIONS

XSD 1. Definition of text parser output
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://hu/miskolc/uni/iit/nli/text"

 xmlns="http://hu/miskolc/uni/iit/nli/text"

 elementFormDefault="qualified"

<xs:complexType name="Word">

 <xs:complexContent>

 <xs:restriction base="xs:string">

 <xs:attribute name="entity" type="xs:string"/>

 <xs:attribute name="suffix" type="xs:string"/>

 <xs:restriction/>

 </xs:complexContent>

</xs:complexType>

<xs:complexType name="Sentence">

 <xs:sequence>

 <xs:element name="Content" type="xs:string"/>

 <xs:element name="Words">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Word" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="type" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="declarative"/>

 <xs:enumeration value="interrogative"/>

 <xs:enumeration value="imperative"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

</xs:complexType>

<xs:element name="TextParserOutput">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Sentence" type="Sentence" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

XSD 2. Definition of morphology output
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://hu/miskolc/uni/iit/nli/morpho"

 xmlns="http://hu/miskolc/uni/iit/nli/morpho"

 elementFormDefault="qualified">

<xs:complexType name="Suffixes">

Appendix B 93

 <xs:sequence>

 <xs:element name="Suffix" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="code" type="xs:string" use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="Case">

 <xs:sequence>

 <xs:element name="Stem">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="class" use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="Suffixes" type="Suffixes"/>

 </xs:sequence>

 <xs:attribute name="id" type="xs:positiveInteger" use="required"/>

</xs:complexType>

<xs:complexType name="AnalysedWord">

 <xs:sequence>

 <xs:element name="Case" type="Case" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="id" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="Sentence">

 <xs:sequence>

 <xs:element name="Content" type="xs:string"/>

 <xs:element name="Words">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Word" type="AnalysedWord" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="type" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="declarative"/>

 <xs:enumeration value="interrogative"/>

 <xs:enumeration value="imperative"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

</xs:complexType>

<xs:element name="MorphoOutput">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Sentence" type="Sentence" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

Appendix B 94

XSD 3. Definition of sentence analysis
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:local="http://hu/miskolc/uni/iit/nli/domain"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://hu/miskolc/uni/iit/nli/domain"

 elementFormDefault="qualified">

 <xs:complexType name="ConceptType">

 <xs:sequence>

 <xs:element name="Concept" type="local:ConceptType"

 minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="type" type="xs:anyURI" use="required" />

 <xs:attribute name="value" type="xs:anyURI" />

 <xs:attribute name="usage" type="xs:string" />

 </xs:complexType>

 <xs:element name="SentenceAnalysis">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Concept" type="local:ConceptType"

 maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

