
UNIVERSITY OF MISKOLC
FACULTY OF MECHANICAL ENGINEERING AND COMPUTER SCIENCE AND

ENGINEERING

Efficiency Analysis of Inflection Rules Geneartion in
Hungarian

Summary of PhD Thesis

Written by

Zsolt Tóth
MSc in Engineering Information Technology

JÓZSEF HATVANY DOCTORAL SCHOOL FOR INFORMATION
SCIENCE, ENGINEERING AND TECHNOLOGY

Scientific Advisor

Dr. habil. László Kovács

Miskolc
2014

Contents

1 Introduction 1
1.1 Research Goals . 3

2 Scientific Results 4
2.1 Complexity Analysis of the Inflection Induction Problem . . . 4

2.1.1 Phonetic Alphabet . 4
2.1.2 Evaluation of Classification based Learning of Inflec-

tion Rules . 6
2.2 Induction of Inflection Rules with Classification and Associa-

tive Memory . 9
2.2.1 Precision . 11
2.2.2 Learning Cost . 11
2.2.3 Size . 12

2.3 META Framework . 14
2.3.1 Architecture . 14
2.3.2 Grammar Processing Module 15

3 Further Tasks 17

4 Summary 18

i

1 Introduction

Natural languages are often classified by various aspects such as their history,
word order or morphology. In historical linguistics the languages are orga-
nized into language families. There is an ancestor descendant relationship
in a family, so a language family is often represented as a tree. The root of
the tree is called proto-language such as Indo-European, Uralic, Caucasian,
American, Austroasiatic, and Sino-Tibetan languages. These families contain
other subgroups. For example the Indo-European languages can be classified
into Anatolian, Tocharian, Germanic, Italic, Celtic, Armenian, Balto-Slavic,
Hellenic, Indo-Iranian and Albanian subgroups. These subgroups can be also
divided into subcategories. Most of the spoken languages in Europe is Indo-
European such as English and German are Germanic, Spanish, France and
Italian are Italic, and Slovakian and Polish are Balto-Slavic languages, but
Hungarian is a Uralic language [Hel03].

In linguistic typology the languages are classified by their structural fea-
tures such as word order. Subject, Object and verb are distinguished in
typology and the languages are classified by the order of subject, object and
verb. There are nine typological classes plus a category for free word order
languages. The vast majority of the languages belong to Subject-Object-Verb
or Subject-Verb-Object category [Mey10].

In morphology the languages are classified by how the words are formed
from morphemes. Analytic or isolating languages and synthetic languages
are distinguished in morphology. The morpheme per word ratio is low in iso-
lating languages. The meaning of the words depends on their position and
auxiliary words are used to express complex concepts. Chinese and English
are isolating languages. In synthetic languages the morpheme per language
ratio is high in contrast to the isolating languages. Words are formed by
affixing the base morpheme. Synthetic languages are often subdivided into
polysynthetic, fusional, and agglutinative languages. Words in polysynthetic
languages are long and their meaning could be a whole sentence in other
languages. Some Native American languages are polysynthetic. Fusional
languages have some common aspects with analytic languages because gen-
erally the words have lost their inflections over the centuries. Many Indo-
European languages belong to this group. Agglutinative languages, such as
Japanese, Hungarian or Esperanto, form words by combining the base word
with phonetically unchangeable affixes. The main difference between agglu-
tinative and fusional languages is that there are more affixes in agglutinative
languages and these affixes can be separated from the base word and each
other.

Hungarian is an agglutinative language and belongs to the Uralic language

1

family. The word order is not strict and it is mostly used to emphasize the
content. Inflection is used to modify the meaning of a word. An inflected
form of a word is called a case. There are 17-28 different cases in Hungarian
which depends on the analysis [Mor03]. A chain of inflection is defined in
Hungarian because of two reasons. Firstly the affixes are put in the end
of the word in most of the cases. Secondly an inflected word can be the
base word of another inflection. For instance in the sentence “Peter has
refused our calls” the “our calls” is the object and it is plural. This sentence
in Hungarian is “Péter visszautaśıtotta a h́ıvásainkat” where the objects is

”
h́ıvásainkat”. The affixes can be separated as “(h́ıvás)(aink)(at)” where

”
h́ıvás” is the stem,

”
aink” means

”
our” that the word is in plurarl and

”
at”

denotes it is an object.
However there are serious efforts taken in the field of the text mining and

natural language processing, but these are only a few works which focus on
Hungarian. Moreover the most of these works focuses on Natural Language
Processing tasks such as stemming [HKN+04, RG] or learning morphemes
[Dud06]. On the other hand my researches were focused on not the stemming,
but the inflection of Hungarian words. Inflection can be considered as a string
transformation which is used in many natural languages and it also plays an
important role in Hungarian too.

In the text books there are abstract inflection rules which are marked out
for human understanding. To generate complex text in natural languages,
these abstract inflection rules have to be converted into a more specific form
which can be used by computer programs. This conversion is a difficult and
costly task. There are a few researches on the generation of inflection rules,
but these works are focused on other languages.

My researches were also focused on the induction of Formal Grammars
which are often used to model the structures natural languages. The theory
of formal grammars was laid in the mid 1950s by Noam Chomsky [Cho56]
[Cho59]. Formal grammars are often classified by their production rules into
these four categories: Regular, Context–Free, Context–Sensitive and Recur-
sive Enumerable Grammars. However some algorithms was developed in the
1950s and 1960s the time–cost of these algorithms has exceeded the compu-
tational power of the time. Many induction algorithm was created, imple-
mented and tested from 2000. My researches was focused on the time–cost
of the Context–Free Grammar induction methods.

There are is lack of the comparison of Context–Free Grammar induc-
tion methods. A common environment was required to compare the differ-
ent induction algorithms. However there are some data mining frameworks
[HDW94, HFH+09, WFT+99, FHH+05], tools [Min], but only few standards
[OAS, Apab] and educational softwares [Gru] focus on text mining and gram-

2

mar processing. Hence I design META Framework was designed to provide
a common environment for grammar induction methods. Extensibility was
one of the most important requirement of the framework, thus new grammar
induction methods can be added to the system easily. META makes possi-
ble to create more accurate comparison of these methods. Some well–known
Context–Free Grammar [SK99, Sak05, UJ07, OU09, NI00, NM02] and Prob-
abilistic Context–Free Grammar induction method have been implemented,
tested and compared in the META Framework.

1.1 Research Goals

The main goal of my researches was to analyze the different inflection rule
generation methods. Basic classification based methods were evaluated and a
possible limit of this approach have been shown. The analysis of the problem
domain showed that there are non linear separable classes in the training set
of 56,000 Hungarian word pairs. This property limits the efficiency and
accuracy of the classifiers.

Analysis and comparison of Context–Free Grammar induction methods
was the other important goal of my researches. META Framework was de-
signed and developed for this purpose. Some well–known induction algorithm
have been implemented, tested and compared in META Framework. Thus
META is capable to be a common grammar induction framework.

3

2 Scientific Results

This section sums up and presents briefly my scientific results and my thesis
with the related publications.

2.1 Complexity Analysis of the Inflection Induction
Problem

2.1.1 Phonetic Alphabet

In text mining there are huge efforts to create stemming algorithm [Por01,
Dom07]. Stemming can be considered as an inverse function of the inflection
because it transforms an inflected word into its base form. Although text
mining is an actively investigated field of computer science, most of the papers
focus on the English language [ONM01]. But there are efforts to create
Hungarian specific text mining tools [HKN+04, RG]. My work was focused
on the learning of inflection rules of Hungarian.

The words and their inflected forms are given as strings. Vector space
model is a well–known and widely used to represent objects in data mining
and knowledge engineering. Moreover there are many formal methods to
handle the represented objects. The mapping of the string into vector space
model is often made by the conversion of the letters into real values.

There are various mapping functions and these methods are based on
different approaches. Alphabets give and historical order of the letters of
languages. The order of the words is given by these alphabets, but the
numerical values for the letters are not defined exactly. Character tables,
like ASCII, assign a number to each character. Although the numerical
values are defined in this case, the distances do not represent the similarities
of the letters.

The letters encode sounds so they are often characterized by their pho-
netic features. These features determine the sound and the letter too. In
Hungarian one letter denotes only one sound and vice versa in most of the
cases [ASA, Zsu]. These phonetic features also can be represented in a vec-
tor space. So one letter is encoded by a real vector. Although the phonetic
features of the letters is given in textbooks, the numerical encoding of the
features requires an expert. The phonetic features are the dimensions of the
letters and the dimensional values are determined. The following dimensions
are distinguished: shape of the lips, pitch, position of the tongue, voice, way
of production and place of production. Thus the letters are represented by
six dimensional real vectors. This representation allows to determine the
distance of the words. Figure 1 shows the user interface of the MatLab

4

application which was developed to create phonetic alphabets.

Figure 1: MatLab Application For Hungarian Language

To create a phonetic features based alphabet, the letters from the six
dimensional space have to be mapped into a one dimensional. Principal
Component Analysis [Jol05] was used to perform the mapping. The points
are put into a new coordinate system where each dimension denotes a fea-
ture. Then coordinate transformation is performed. In the result coordinate
system, the deviation of the points is the greatest in the first coordinate.
Principal Component Analysis requires the determination of the eigenvalues
and eigenvectors which is a computational costly task. The eigenvalue de-
notes the cardinality of the dimension thus the dimension with the highest
eigenvalue is chosen to create the alphabet and the other dimensions are
omitted.

Figure 2: Phonetic features based Hungarian alphabet

Figure 2 shows the yielded alphabet. There are clusters of letters in the

5

figure and the members of these clusters have similar phonetic features and
denote similar sounds. For example, there is a cluster of vowels and there
are approximately three clusters of consonants. It also shows the sounds of
b, p and m are similar while the sound of h significantly differs from the other
letters. The letters have a real value in these alphabet which denotes its
position. The distance of these letters can be calculated from their codes.

The above presented method was presented in [8] and a yielded phonetic
alphabet was used in our further analysis [9].

2.1.2 Evaluation of Classification based Learning of Inflection Rules

Inflection is a string transformation which convert a stem into its inflected
form. The transformations are described by inflection rules. There is only
one valid inflection rule for each word. Thus inflection can be considered as
a classification task where the stem is the input and the inflection rule is the
category.

There are many different classification algorithms in the literature such as
neural networks [Zha00], support vector machines [SV99] or Bayesian [JL95]
classifiers. The efficiency of classification, among many factors, depends on
the training set. Linear classifiers would be very accurate and efficient but
they require that the clusters be linear separable. So there cannot be overlap
or intersection between the clusters. There are numerous methods [Eli06] to
test linear separability.

Testing of linear separability can be transformed into a linear program-
ming task. The d dimensional points are mapped into a d + 1 dimensional
space. Each vector is augmented by 1. Then one of the clusters are mirrored
to the origo. If there is at least one hyperplane P (w, t) = {x | wTx + t = 0}
which goes across the origo, then the two clusters are linear separable. Fig-
ure 3 shows these transformations in both separable and inseparable cases.
Multiple clusters can be separated conical hulls if they are piecewise linear
separable [BM94]. The constrains are given by the points and the object func-
tion is defined by the hyperplane. This linear program has to be converted
into standard minimization problem. Equation 1 shows the transformed con-
strains matrix and the final optimization problem is shown in Equation 2.

A training set of about 54.000 (stem, inflected form) pairs were used
during the test [9]. The training set contains most of the Hungarian nouns
thus it gives a good approximation of the .Hungarian language. Although
inflection can be chained in Hungarian, the training set and my tests were
focuses on only one case. There were about 160 different inflection rules
distinguished in the test and about a half of the samples belonged to one
specific class. Table 1 shows the 15 biggest categories and their size.

6

(a) Linear Separable Points (b) Non Linear Separable Points

Figure 3: Examples for linear separability


a1,1 aux 1 −a1,1 aux 2 a1,2 aux 1 −a1,2 aux 2 . . . a1,d+1 aux 1 −a1,d+1 aux 2

a2,1 aux 1 −a2,1 aux 2 a2,2 aux 1 −a2,2 aux 2 . . . a2,d+1 aux 1 −a2,d+1 aux 2

a3,1 aux 1 −a3,1 aux 2 a3,2 aux 1 −a3,2 aux 2 . . . a3,d+1 aux 1 −a3,d+1 aux 2
...

...
...

... . . .
...

...


(1)

w1 aux 1 − w1 aux 2 + w2 aux 1 − w2 aux 2 + · · ·+ t1 − t2 → min

[w, t]Ttrans [Atrans] ≥ 1

wi aux 1, wi aux 2 ≥ 0

t1, t2 ≥ 0

(2)

Java application has been developed the optimization task which used
the Apahce’s commons-math library [Apaa] to solve the optimization task.
Because the optimization was computationally costly thus the size of the
clusters was limited. Due to this limitation there can be false positive results
in the tests. But there can be no false negative result thus the test can show
only that, if two clusters are not linear separable. The test yields a symmetric
boolean matrix which contains true if the two clusters are linear separable
otherwise false. This matrix is hard to understand and handle so the results
are visualized in Figure 4. In the visualization each pixel represent a cluster
pair. If they are not linear separable then the point is black, otherwise it is
white. So if there are only linear separable clusters then the image shows a
white square with a black diagonal line.

7

Table 1: Number of transformations in categories

Transformation # of word pairs % of training set
*(-/t) 28239 52.31
*(-/o)(-/t) 7399 13.71
*(-/e)(-/t) 6731 12.47
*(a/á)(-/t) 5975 11.07
*(-/a)(-/t) 2041 3.78
*(e/é)(-/t) 969 1.80

The four different encodings were used during the tests. The shorter
words were padded into the length of the longest word and both left and
right padding were used to create the data set. Phonetic and traditional
alphabet based encodings were used to map the letters into numerical values.
The given results show there are non linear separable cluster pairs in each
case which limit the efficiency of classification methods. There are more non
linear separable pairs in the case of the right padding. This phenomenon can
be explained with that the accusative inflection of Hungarian adds suffix to
the word.

(a) Alphabetical
encoding – Left

(b) Alphabetical
encoding – Right

(c) Phonetic en-
coding – Left

(d) Phonetic en-
coding – Right

Figure 4: Linear Separability with Alphabetical and Phonetic encoding

Thesis 1.
I have measured the complexity of inflection rules induction by the ration

of the linear separable clusters pairs in the vector space. I have introduced
a methods to create phonetic features based alphabet. The created phonetic
alphabet based encoding was shown superior to traditional alphabet based en-
coding.
Related Publications: [8], [9]

8

2.2 Induction of Inflection Rules with Classification
and Associative Memory

The algorithms of Computational Linguistics usually have a common model
which can be seen in Figure 5. Morphological analyzers, stemmers and inflec-
tion systems usually have two core parts. They contain an engine to perform
the transformation on the input word and to produce the output word. The
engine has no direct knowledge about the language. The morphological rules
are stored in a separate rule set. The structure of the rule set depends on the
inflection algorithm. For example Snowball [Por01] is a language to describe
stemming rules for Porter stemmer [Por80]. Rules of the SMOR [SFH04]
morphological analyzer are given by the Stuttgart Finite State Tools and the
engine is realized as Finite State Transducer. Classification based inflection
algorithms can use the category to encode the transformation.

Figure 5: Common Model of Inflection Algorithms

The model of the presented inflection algorithm is showed in Figure 6.
The implemented rule set consists of two parts: an associative memory and a
classifier. The associative memory stores the transformation rules of irregular
words. A word transformation class is considered as irregular, if there are only
few words belonging to that class. Formally the t = {w} category contains
irregular words if | t |≤ ε where w is a word which belongs to class t and
ε is a cardinality threshold. Although the associative memory can retrieve
the exact transformation string for each learned stem it cannot be used to
determine the transformation string of untrained words. The classifier is
used to capture the frequent inflection rules. It can perform generalization
thus untrained words can be processed. The generalization may easily fail on
exception. Considering the classifier systems, they have lower precision than

9

associative memory and the precision usually depends on the training set
too. Moreover they have more difficult learning algorithm which acquires a
significant additional learning time cost. In some cases, the classification also
can have a significant time cost for each word. The instance based classifiers
such as k-NN classifier [CMBT] determines the k most similar object to the
classified instance from an instance database. The distance calculation and
the search also can be costly thus the inflection algorithm can be slow.

Figure 6: Model of the presented Inflection Algorithm

The rule set determines the behavior of the inflection algorithm so the pre-
cision of the algorithm depends on the rule set. During the learning process
the rules set is defined as pairs of stem and inflected form. Transformation
string can be determined for each word pairs with the Levenshtein distance
algorithm [Nav01]. The transformation strings are considered as categories
of stems. Naive Bayes [JL95] and Multilayer Preceptron [JMM96] classifiers
were used to solve this classification problem.

The presented inflection algorithm uses both classifier and an associative
memory to learn inflection rules. Regular words are classified by the classifier
and the irregular words are stored in the associative memory. The size of
the associative memory is a parameter of the method. The algorithm looks
for the word in the associative memory. If the word is not found, then the
transformation string is determined by the classifier.

10

2.2.1 Precision

The precision increases more quickly with the reduced training sets in the
cases of both encodings. Figure 7 shows the changes of the precision with the
size of the associative memory and the size of the training set. The algorithm
showed similar behavior with both Multilayer Perceptron and Naive Bayes
classifiers. The precision can be increased with the usage of associative mem-
ory. This phenomenon can be explained with the learning algorithm of the
classifier. Because the irregular cases are placed in the associative memory,
the number of the categories is reduced. If a category, which is not linear
separable from other clusters, is put into the associative memory, then the
number of the linear non separable cluster pairs decreases. Hence the usage
of the associative memory can reduce the number of the linear non separable
cluster pairs. This reduction could yield the increase of the precision of the
inflection algorithm.

Figure 7: Precision with Different Size of Training Sets

2.2.2 Learning Cost

The time cost of the algorithm is the time which is require for training.
Although this cost occurs only in the learning phase it makes the tuning of
the algorithm slower. Moreover the learning cost can limit the applicability
of the algorithm if it is too high. For example if the time cost would grow
exponential with the number of samples then it could be applied with only
small training sets.

11

The measurements showed that the learning cost of the algorithm sig-
nificantly depends on the classifier. Figure 8 shows how the learning cost
decreases with the increase the size of the associative memory. It also shows
a short transient phase up to 3.000. Then it decreases steadily and there is
a fall around 20.000.

Figure 8: Learning cost with different size of training sets

2.2.3 Size

The size of the learning algorithm was measured as the size of the serialized
classification structure in bytes. The serialization was possible with the Java
API because the Classifier class of Weka implements the Serializable in-
terface. Because the Naive Bayes and the Multilayer Perceptron classifiers
had similar behavior with both encodings. Figure 9 shows how the size of the
algorithm depends on the size of the associative memory. The measurements
showed that the size of the classifier has no significant effect on the size of
the inflecting algorithm.

The size of the algorithm decreases quickly until approximately 1000 then
it starts to increase steadily. The fall can be explained with the simplification
of the classification algorithm. Because the least frequent category is put into
the associative memory first, many of the categories can be eliminated from
the training set even with a small associative memory. This elimination
yields a simplified classifier which requires less memory. Then the size of the
classification structure increases linearly because the size of the associative

12

Figure 9: Size of the classification structure with different size of training
sets

memory also grows linearly. So linear connection between the size of the
algorithm and the size of the associative memory can be assumed.

Thesis 2.
I have presented a classification based inflection method enhanced with as-

sociative memory. The algorithm has been shown superior to the standard
classification based inflection algorithms from the point of view of precision.
Related Publications: [11], [10], [12]

13

2.3 META Framework

Theory of formal language is a widely researched are of computer science
and mathematics. Formal languages can be given by enumeration or gener-
ative grammar. The mathematical basis of generative grammars was laid by
Chomksy [Cho56, Cho59] in the late 1950s. He had defined four types of for-
mal grammar which are ”Regular Grammars”, ”Context–Free Grammars”,
”Context–Sensitive Grammars” and ”Recursive Enumerable Grammars”. It
is still the most widely used classification of formal grammars. In spite of the
early theoretical researches and results, these topic has gained popularity in
the early 2000s.

A formal grammar is given as a tuple G = 〈T ,N ,P ,S〉. Where T denotes
the set of terminal symbols (a, b, c, . . .). Terminal symbols are valid words
of the language and they cannot be replaced by other symbols. The set of
non–terminal symbols are denoted by N and the capital letters (A,B,C, . . .)
denote the non–terminal symbols. These symbols are replaced in the deriva-
tion process. The next element of the tuple P stands for the set of production
rules which defines the replacements in the grammar. Rules can be formal-
ized as α→ β where α ∈ {T ∪ N}∗A{T ∪ N}∗ and β ∈ {T ∪ N}∗. Finally
S ⊆ N is a non–empty subset of non–terminal symbols which is called the
set of sentence or start symbols. The derivation process can start with an
element of S. Each sentence of the language can be derived from one of the
sentence symbols L = {ω | S →∗G ω, S ∈ S}.

Generative grammars can be generated in manual or automatic way. The
manual definition of a grammar is a costly task which requires an expert
and it is time–consuming. The automatic generation of formal grammars is
called grammar induction. My researches was focused on the induction of
Context–Free Grammars which is an NP–hard problem. It was an actively
investigated area of computer science in the last decade thus there are many
different methods in the literature [DFG11]. These grammar induction meth-
ods were implemented in various programming languages and they are based
on different heuristic approaches and using various programming techniques
to solve the problem. Due to these variety of these methods, their compar-
ison is a hard task. META Framework was design to provide a common
environment to implement, test and compare different grammar processing
methods.

2.3.1 Architecture

META is a modular framework where each module has a single well–defined
responsibility. It is designed to model formal grammars and it defines inter-

14

faces to extend it with grammar processing and induction methods. META
is implemented in Java because Java is platform independent and popular
programming language.

I designed the architecture of META framework and I broke it down into
modules with a well–defined functionality [5]. Figure 10 shows the package
structures of the META Framework. Three main modules can be distin-
guished in this figure. Core module contains basic, common functions which
are used by other modules. Text mining modules which have interfaces for
different text mining tasks such as filtering or text analyzing. This mod-
ule contains only interfaces but no implementations. Grammar processing
module provides basic classes to model formal grammars and interfaces for
parsing and induction methods.

Figure 10: Modules of META Framework

2.3.2 Grammar Processing Module

The grammar processing module of META provides classes to model formal
grammars and interfaces for induction and parsing methods. The packages
of grammar module are showed in Figure 11. Based on the mathematical
definition three packages has been created to organize the grammar process-
ing related classes [6, 7]. These packages are the grammar, grammar.symbols
and grammar.probabilistic [1] (see Figure 11). Terminal and non–terminal
symbols are contained by the grammar.symbols package.

The grammar package contains classes to model formal grammars and
interfaces for parser and induction methods. Grammar class is generic and
its parameter is a GrammaticalRule type so the grammar object can work
with probabilistic or non–probabilistic rules. Thus probabilistic and non–
probabilistic grammar can be distinguished in the framework. I defined in

15

Figure 11: Packages of Grammar Processing Module

Figure 12: Grammar class with learning and parsing strategies

LearnStrategy and ParseStrategy abstract classes only interfaces for learn-
ing and parsing algorithms thus META can be easily extended by parser and
induction methods. These interfaces are based on the Strategy design pat-
tern [GHJV94] which is a common way to change the behavior of an object
in run time. These abstract classes are also generics and their generic types
have to match with the grammars generic type i.e. if a Grammar object works
with probabilistic rules then it can use only probabilistic parser and learning
strategies. The concrete algorithms are not generics and they defines their
generic parameter during the inheritance.

Figure 12 shows the Grammar class and its relationship with LearnStrategy

and ParseStrategy classes. I have implemented and tested the CYK parsing
algorithm [2] as a ParseStrategy strategy and Inductive CYK [NI00, NM02]
and TBL [SK99, Sak05] algorithms as LearnStrategy [4, 3]

Thesis 3.
I have designed and developed the META framework to provide an environ-

ment for implementation, testing and comparison of different natural lan-
guage processing methods. My experiments showed that both inflection and
formal grammar processing methods can be implemented in the META frame-
work
Related Publications: [2], [3], [4], [5], [6], [7]

16

3 Further Tasks

My further goals are to evaluate the efficiency and accuracy of different linear
and non–linear classifiers in the learning of inflection rules, and to develop
a heuristic classifier which suits for the inflection. The evaluation is based
on some well–known classification methods. For the testing the Weka data
mining framework will be used.

The novel heuristic method is based on a conflict relationship between
the categories which is based on the observation of that some inflection rules
can be used instead of other rules however it results false forms. The conflict
relationship is a partial order so there are chains of categories. It allows to
create a concept lattice based classifier.

17

4 Summary

Thesis 1.
I have measured the complexity of inflection rules induction by the ration

of the linear separable clusters pairs in the vector space. I have introduced
a methods to create phonetic features based alphabet. The created phonetic
alphabet based encoding was shown superior to traditional alphabet based en-
coding.
Related Publications: [8], [9]
Thesis 2.
I have presented a classification based inflection method enhanced with as-

sociative memory. The algorithm has been shown superior to the standard
classification based inflection algorithms from the point of view of precision.
Related Publications: [11], [10], [12]
Thesis 3.
I have designed and developed the META framework to provide an environ-

ment for implementation, testing and comparison of different natural lan-
guage processing methods. My experiments showed that both inflection and
formal grammar processing methods can be implemented in the META frame-
work
Related Publications: [2], [3], [4], [5], [6], [7]

18

References

[Apaa] Apache commons–math user guide. http://commons.apache.org/proper/

commons-math/userguide/index.html. Accessed: 2014-09-05.

[Apab] Apahce. Uima. http://uima.apache.org/index.html.

[ASA] Raátz Judit Antalné Szabó Ágnes. Magyar nyelv és kommunikáció Tankönyv
5-6. évfolyam számára. Nemzeti Tankönyvkiadó.

[BM94] Kristin P Bennett and Olvi L Mangasarian. Multicategory discrimination via
linear programming. Optimization Methods and Software, 3(1-3):27–39, 1994.

[Cho56] Noam Chomsky. Three models for the description of language. Information
Theory, IRE Transactions on, 2(3):113–124, 1956.

[Cho59] Noam Chomsky. On certain formal properties of grammars. Information and
control, 2(2):137–167, 1959.

[CMBT] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin
Tablan. Gate: an architecture for development of robust hlt applications
hamish cunningham, diana maynard, kalina bontcheva, valentin tablan de-
partment of computer science university of sheffield.

[DFG11] Arianna D’Ulizia, Fernando Ferri, and Patrizia Grifoni. A survey of grammat-
ical inference methods for natural language learning. Artif. Intell. Rev., pages
1–27, 2011.

[Dom07] Tikk Domokos. Szövegbányászat. Typotex Kft, 2007.

[Dud06] László Dudás. Morfémák megtanulása szövegből. In MicroCAD 2006 In-
ternational Scientific Conference, pages 61–66, Miskolc, 2006. University of
Miskolc.

[Eli06] David Elizondo. The linear separability problem: Some testing methods. Neu-
ral Networks, IEEE Transactions on, 17(2):330–344, 2006.

[FHH+05] Eibe Frank, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bernhard
Pfahringer, Ian H Witten, and Len Trigg. Weka. In Data Mining and Knowl-
edge Discovery Handbook, pages 1305–1314. Springer, 2005.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: elements of reusable object-oriented software. Pearson Education,
1994.

[Gru] Zeph Grunschlag. Authored software. http://www.cs.columbia.edu/~zeph/
software.html.

[HDW94] Geoffrey Holmes, Andrew Donkin, and Ian H Witten. Weka: A machine
learning workbench. In Intelligent Information Systems, 1994. Proceedings of
the 1994 Second Australian and New Zealand Conference on, pages 357–361.
IEEE, 1994.

[Hel03] Eugene Helimski. Areal groupings (sprachbünde) within and across the bor-
ders of the uralic language family: A survey. Nyelvtudományi közlemények,
100:156–167, 2003.

19

http://commons.apache.org/proper/commons-math/userguide/index.html
http://commons.apache.org/proper/commons-math/userguide/index.html
http://uima.apache.org/index.html
http://www.cs.columbia.edu/~zeph/software.html
http://www.cs.columbia.edu/~zeph/software.html

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H Witten. The weka data mining software: an update. ACM
SIGKDD explorations newsletter, 11(1):10–18, 2009.

[HKN+04] Péter Halácsy, András Kornai, László Németh, András Rung, István Szakadát,
and Viktor Trón. Creating open language resources for hungarian. In LREC,
2004.

[JL95] George H. John and Pat Langley. Estimating continuous distributions in
bayesian classifiers. In Eleventh Conference on Uncertainty in Artificial Intel-
ligence, pages 338–345, San Mateo, 1995. Morgan Kaufmann.

[JMM96] Anil K Jain, Jianchang Mao, and K Moidin Mohiuddin. Artificial neural
networks: A tutorial. Computer, 29(3):31–44, 1996.

[Jol05] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2005.

[Mey10] Charles F Meyer. Introducing English Linguistics International Student Edi-
tion. Cambridge University Press, 2010.

[Min] Rapid Miner. Home page. http://rapid-i.com.

[Mor03] Edith Moravcsik. Inflectional morphology in the hungarian noun phrase: A
typological assessment. Noun phrase structure in the languages of Europe, 20,
2003.

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching. ACM com-
puting surveys (CSUR), 33(1):31–88, 2001.

[NI00] Katsuhiko Nakamura and Takashi Ishiwata. Synthesizing context free gram-
mars from sample strings based on inductive cyk algorithm. 2000.

[NM02] Katsuhiko Nakamura and Masashi Matsumoto. Incremental learning of con-
text free grammars. 2002.

[OAS] OASIS. Unstructured information management architecture. http://docs.

oasis-open.org/uima/v1.0/uima-v1.0.html.

[ONM01] Kemal Ofazer, Sergei Nirenburg, and Marjorie McShane. Bootstrapping mor-
phological analyzers by combining human elicitation and machine learning.
Computational Linguistics, 27(1):59–85, 2001.

[OU09] Marcin Jaworski Olgierd Unold. Learning context-free grammar using im-
proved tabular representation. Applied Soft Computing, 2009.

[Por80] Martin F Porter. An algorithm for suffix stripping. Program: electronic library
and information systems, 14(3):130–137, 1980.

[Por01] Martin Porter. Snowball: A language for stemming algorithms, 2001.

[RG] Farkas Richárd and Szarvas György. Statisztikai alapú tulajdonnév-felismerő
magyar nyelvre.

[Sak05] Yasubumi Sakakibara. Learning context-free grammar using tabular represen-
tation. Pattern Recognition, 2005.

[SFH04] Helmut Schmid, Arne Fitschen, and Ulrich Heid. Smor: A german computa-
tional morphology covering derivation, composition and inflection. In LREC,
2004.

20

http://rapid-i.com
http://docs.oasis-open.org/uima/v1.0/uima-v1.0.html
http://docs.oasis-open.org/uima/v1.0/uima-v1.0.html

[SK99] Yasubumi Sakakibara and Mitsuhiro Kondo. Ga-based learning of context-free
grammars using tabular representation. 1999.

[SV99] Johan AK Suykens and Joos Vandewalle. Least squares support vector ma-
chine classifiers. Neural processing letters, 9(3):293–300, 1999.

[UJ07] Olgierd Unold and Marcin Jaworski. Improved tbl algorithm for learning
context-free grammar. 2007.

[WFT+99] Ian H Witten, Eibe Frank, Leonard E Trigg, Mark A Hall, Geoffrey Holmes,
and Sally Jo Cunningham. Weka: Practical machine learning tools and tech-
niques with java implementations. 1999.

[Zha00] Guoqiang Peter Zhang. Neural networks for classification: a survey. Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, 30(4):451–462, 2000.

[Zsu] Hajas Zsuzsa. Magyar nyelv 9. osztály. Pedellus Kiadó.

21

Author’s Publications

[1] László Kovács, László Grigger and Zsolt Tóth, Induction of PCFG trees, microCAD
International Scientific Conference, 2010

[2] Zsolt Tóth, László Kovács Cost Analysis of Grammar Induction with CFG , XXV.
microCAD International Scientific Conference 2011.

[3] Zsolt Tóth, László Kovács Előredukció alkalmazása a TBL algoritmus időköltségének
csökkentésére , Miskolci Egyetem, Doktoranduszok Fóruma 2011.

[4] Zsolt Tóth, László Kovács Applying Prereduction to Reduce the Tim Cost of TBL
Algorithm , 12th IEEE International Symphosium on Computational Intelligence and
Informatics, pp. 544-546, 2011.

[5] Zsolt Tóth, László Kovács META¿ a novel grammar induction and text mining
framework , XXVI. microCAD, 2012.

[6] Zsolt Tóth, László Kovács CFG Extension for META Framework , 16th International
Conference on Intelligent Engineering Systems, pp. 495-500 2012.

[7] Zsolt Tóth Formális nyelvtani modul a META keretrendszer számára , GÉP: A
Gépipari Tudományos Egyesület folyóirata, 2012. volume 5, pp. 99-102

[8] Tóth Zsolt, Kovács László Fonetikai tulajdonságok alapú abc késźıtése , Multidiszci-
plináris tudományok, 2013. volume 3 pp. 317-326

[9] Zsolt Tóth, László Kovács Testing Linear Separability in Classification of Inflection
Rules , SISY 2014 IEEE 12th International Symposium on Intelligent Systems and
Informatics, pp XX. 2014

[10] Zsolt Tóth, László Kovács Classification based Learninig of Inflection Rules Enhanced
with Associative–Memory , Scientific Bulletin of ”Petru Maior”, 2014, vol. 11, no. 2,
pp. 9-16.

[11] László Kovács, Zsolt Tóth Inference of Probabilistic Grammars in Different Rules
Systems of Natural Languages In Procedia Technology, volume 12, pp. 3 - 10, 2014.
(The 7th International Conference Interdisciplinarity in Engineering, INTER-ENG
2013, 10-11 October 2013, Petru Maior University of Tirgu Mures, Romania)

[12] Zsolt Tóth, László Kovács Lattices based Classification for Learning of Inflection
rules in Hungarian , to appear

22

	Introduction
	Research Goals

	Scientific Results
	Complexity Analysis of the Inflection Induction Problem
	Phonetic Alphabet
	Evaluation of Classification based Learning of Inflection Rules

	Induction of Inflection Rules with Classification and Associative Memory
	Precision
	Learning Cost
	Size

	META Framework
	Architecture
	Grammar Processing Module

	Further Tasks
	Summary

