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CHAPTER -1- Introduction and the Aim of Research

INTRODUCTION

The fuzzy set theory offers one distinguished approach to describing and dealing with
uncertain knowledge and data, which sets the main basis of approximate reasoning [65], [130].
Compared with the other principal techniques in approximate reasoning, the main advantage of
fuzzy sets is that they can conserve interoperability and clarity during the reasoning process due
to the use of linguistic terms in fuzzy logic [86], [87], [88], [89], [131]. The fuzzy set theory
allows for the addition of vague human assessments in computing problems. Also, it presents
an effective means for conflict resolution of multiple criteria and better assessment of options.
Fuzzy setshave become an increasingly familiar methodology for the modeling of various kinds
of common sense reasoning, especially when dealing with nonlinear, uncertain, vague, partially
true and complex systems, such as information processing [132], [133], [134], mechanical
control [87], [135], [136], classification tasks [137], [138], natural language processing [139],
[140], expert systems [141], [142], image recognition [143], [144], diagnosis [145], [146], [147]
and intelligent decision support systems [148], [149], [150].

In a fuzzy inference system, the reasoning techniques are implemented by the execution of
fuzzy If-Then rules, which is called a fuzzy rule base. If a fuzzy inference system has a large
number of rules that used to cover all possible input antecedents, then its rule base is called
"dense" fuzzy-rule base [36], [37]. In this situation, the inference process is relatively
straightforward, and any classical inference approach, such as the compositional rule of
inference (CRI) [65], [71], can be used to infer the results. In contrast, if fuzzy rule bases do
not cover all possible input antecedents, then the fuzzy-rule base is called "a sparse fuzzy-rule
base". In this situation, the inference process is more complex, and a more intuitive approach
such as a Fuzzy Rule Interpolation (FRI) [3], [16], [25], [78], [91], [92] can use to infer the
conclusion in case a sparse fuzzy rule base. In both cases, the rule base and its rules rest prime
importance and affect the fuzzy inference system’s accuracy.

FRI approaches are considerably useful for reasoning in case a sparse rule base. The FRI
inference systems are based on an interpolation concept that can generate a conclusion from
existing rules. The FRI methods can divide into two groups. The first group produces the
approximated conclusion from the observation directly. The second group produces the
approximated conclusion from the observation base on two steps, (the first step, they interpolate
a new rule that antecedent part at least overlaps the observation, the estimated conclusion
determined in the second step based on the similarity between the observation and the
antecedent part of the new rule). Because the FRI methods were developed independently and
proposed theoretically, most of the FRI methods have no practical application; it has been
developed a toolbox that includes a set of fuzzy interpolation methods under the Matlab
environment. Besides that, a collection of conditions suggested to be a baseline to compare and
evaluate the performance of existing and upcoming FRI methods; still, most of the FRI methods



not fulfilled some of the suggested conditions which could be useful important for the FRI
concept. Because there is no common dataset that is suitable for comparing between FRI
methods (e.g., benchmarks examples), all these reasons are leading us to the main aim of the
research.

1.1. The Aim of Research

This research is divided into three goals:

e To introduce a brief description of the refreshed and extended version of the original FRI
Toolbox under the MATLAB environment, to present the extension of the FRI toolbox
under the OCTAVE environment, different examples used to prove the validity of both of
FRI toolboxes.

e Several conditions and criteria have been suggested for the fuzzy interpolation concept to
enable researchers to evaluate and compare FRI methods; therefore, this research aimed to
generate the initial benchmark system (benchmark examples) related to the fuzzy set of the
conclusion that must preserve a Piecewise Linearity (PWL) and must produce Convex and
Normal Fuzzy (CNF). Hence, these benchmark examples could use to be a baseline for
testing other FRI methods against situations that are not satisfied with the linearity and
normality conditions for Koczy - Hirota (KH)-FRI method.

e To develop anew method for fuzzy inference, which is based on the Incircle of atriangular
fuzzy number. This approach is suitable in case sparse fuzzy rule bases. It can handle the
problems in some exists FRI methods and to be satisfied with most of the FRI properties
(such as normality, linearity, multi antecedent variables, approximation capability,
extrapolation, Etc.).

1.2. Dissertation Guide

In this subsection, we outline the structure ofthe remainder of the dissertation.

Chapter 2: We provide a background introduction to Fuzzy Logic, Fuzzy Inference
Systems (FISs), Compositional Rule of Inference (CRI), Fuzzy Inference Methods, Fuzzy
Rule Interpolation (FRI), and properties of the fuzzy rule interpolation concept.

Chapter 3: In the first part, we provide a comprehensive review of typical FRI methods
developed in the last two decades. Johanyak et al. [24] developed one trial for setting up a
common FRI toolbox framework in 2006 in the MATLAB FRI Toolbox for systematically
evaluating the performance of each method provided, and each method is then tested and
compared accordingly. In the second part, we focus on the use of the Fuzzy Rule Interpolation
(FRI) methods to support GNU/OCTAVE program. The OCTAVE Fuzzy Rule Interpolation
(OCTFRI) toolbox is an open-source toolbox for OCTAVE that provides a large subset of the
functionality MATLAB compatible. The OCTFRI toolbox includes functions that enable the
user to evaluate Fuzzy Inference Systems (FISs) from the command line and OCTAVE scripts,
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read/write FISs, and OBS to/from files, and produce a graphical output of both the membership
functions and the FIS outputs.

Chapter 4: We introduce fuzzy interpolative reasoning method called "Incircle-FRI" for a
sparse fuzzy rule-based system based on the Incircle of a triangular fuzzy number. The
suggested method defined for triangular CNF fuzzy sets for a single antecedent universe and
two surrounding rules from the rule-base. The chapter also extends the suggested “Incircle-FR1"
to trapezoidal-shaped fuzzy setby decomposing their shapes into two triangulars. The generated
conclusion is also a CNF fuzzy set. The performance of the suggested method is evaluated
based on arbitrary examples and a comprehensive comparison to other current FRI methods.

Chapter 5: We present the extensions of the proposed Incircle-FRI method; firstly, applying
to a Hexagonal shaped fuzzy set by decomposing its shape into multiple triangulars. Secondly,
to apply with multiple fuzzy rules and multiple antecedent fuzzy interpolative reasoning,
thirdly, to be suitable in the extrapolation by modification of the weight derivation and the
introduction of the shifting process. All the conclusions of the extensions are producing CNF
fuzzy sets. The extensions Incircle-FRI method’s performance is evaluated based on arbitrary
examples and a comprehensive comparison to some current FRI methods.

Chapter 6: Some several properties and criteria have been suggested for unifying the
standard requirements of the FRI methods have to satisfy. One of the most common properties
is the demand for Convex and Normal (CNF) and Piecewise Linear (PWL) fuzzy conclusion.
The KH-FRI method is the one, which cannot fulfill these properties. Therefore, this chapter
aims:

To introduce a survey study using different arbitrary examples to compare FRI methods (KH,
KH Stabilized, MACI, IMUL, CRF, VKK, GM, FRIPOC, LESFRI, and SCALEMOVE).
Where a setof featureswere used for this comparing: (No. of Dimensions, Type of Membership
Functions, and No. of Membership Functions for the antecedent and consequent). These
arbitrary examples classified the FRI methods based on the criteria of the "normality” and
"linearity" properties, to highlight some basic problematic properties of the KH Fuzzy Rule
Interpolation method with Convex and Normal Fuzzy (CNF) and Piecewise Linearity (PWL)
properties.

To set up a brief benchmark, which is suitable to be a baseline for testing other FRI methods
against cases that the KH-FRI is not satisfied with CNF and PWL properties. All benchmark
examples in this chapter constructed using functions implemented by the MATLAB FRI
Toolbox, which provides an easy-to-use framework to compare the conclusions of different FRI
methods. The CNF benchmark examples used to compare the KHstabilized, MACI, VKK, and
CRF methods. The PWL benchmark examples applied to the KHstab, VKK, FRIPOC, and
VEIN-FRI methods. In comparison, the results of the proposed Incircle-FRI method also
appearing in the benchmarks.

Chapter 7: We summarize the key contributions of the dissertation and the main scientific
results of the research.
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CHAPTER -2- General Background

2. Fuzzy Systems and Fuzzy Rule Interpolation Background

This chapter provides a short background of fuzzy logic, fuzzy inference systems, fuzzy
knowledge base, compositional rule of inference, Mamdani and Sugeno inference methods, and
fuzzy rule interpolation. It also presents an overview of the properties and criteria of the fuzzy
rule interpolation concept.

2.1. Fuzzy Logic

Fuzzy logic is a mathematical approach to problem-solving; it performs exceptionally in
producing exact results from imprecise or incomplete data. A fuzzy setis different from a crisp
set in that it allows its elements to have a degree of membership [64]. The essence of a fuzzy
set is its membership function, which defines the relationship between a value in the set’s
domain and its degree of membership. According to the original idea of Zadeh [65], the
membership of an element x to a fuzzy set A, denoted as pa(x), can vary from ‘0" (full non-
membership) to "L ” (full membership), i.e., it can assume all values in the interval [0,1]. The
value of pa(x) describes a degree of membership of x in A. Clearly, a fuzzy setis a generalization
of the concept of a classical set, which the membership function can only take two values 0 ”
and "L " Fig. 1 describes the difference between the fuzzy set and the crisp set.

A

—

Crisp set

Fuzzy set

Membership function

o
\4
>

\
\4

Support

Fig.1.The Fuzzy Setand Crisp Set

In general, a fuzzy system is any system whose variables (or, at least, some of them) range
over statesthat are fuzzy numbers rather than real numbers. These fuzzy numbers may represent
linguistic terms such as "very small", "medium", and so on, as interpreted in a particular context,
in this case, the variables are called linguistic variables. The main goal to use the linguistic
variables rather than numbers is that linguistic characterizations are, in general, less specific
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than numerical ones, but much closer to the way that humans formulate and use their
knowledge.

An example of a linguistic variable, as shown in Fig. 2 its name "Height", which captures
the meaning of the associated base a variable that expresses the Height by real numbers (for
example in the interval [0, /]), linguistic values (fuzzy values) of the linguistic variable are
{Very Low, Low, Medium, High, Very High}. Each of these linguistic terms assigned one of the
triangular-shaped fuzzy numbers by a semantic rule, as shown in Fig. 2, it is clear that a crucial
aspect that will determine the validity of a paradigm of Computing with Words (CW), which
refers to a collection of human knowledge expressed in natural language that used to determine
correct membership functions for the fuzzy values.

Linguistic Variable

‘ Height ‘

Linguistic Values Linguistic Values

1

T T
|\ Very Low Very High

MR
T

Low Medium High

o o
T

| R B —

Degree of membership

Fig.2.The Linguistic Variable “Height ”[151]

2.2. Fuzzy Inference Systems (FIS)

The inference is the process to determine the logical conclusions from assumptions known,
considered to be true, or partially true. When the conclusions are determined based on fuzzy
linguistic variables using fuzzy set operators (AND, OR, NOT), then the process is called
approximate reasoning (fuzzy inference). Fuzzy inference is more efficient and useful for those
systems, where a system cannot determine in precise mathematical models due to uncertainties,
unpredicted dynamics, and other unknown aspects.

Fuzzy Inference Systems (FIS) have been frequently utilized for real-world problems,
because of their ability to simulate the human mind’s to summarize data and focus on decision-
relevant information. The main idea of a typical fuzzy inference system is illustrated in Fig. 3,
where the standard FIS consists of four interconnected processes [72]. There are two primary
components of the fuzzy inference system: a knowledge base and inference mechanism. The
FIS crisp input and output, needs two additional blocks; fuzzification and defuzzification.
Fuzzification serves to transform a crisp input into a fuzzy value, while defuzzification serves
to transform a fuzzy output set into a crisp single value. Therefore, the basic structure of a fuzzy
inference system consists of the following components:
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» Fuzzifier: Which converts the crisp input to a linguistic variable using the membership
functions stored in the fuzzy knowledge base.

+ Knowledge Base: Consists of the set of "Rule Base", "Linguistic Terms (Fuzzy
Membership Functions)”, and “Inference Parameters", as shown in Fig. 4.

« Inference system: Which performs the inference procedure upon the rules and given facts
to derive an inferred output or conclusion.

» Defuzzifier: Which converts the fuzzy output of the inference system to a crisp using
membership functions analogous to the ones used by the fuzzifier.

N ! L Knowledge Base o bl o

2 l K e L&

o . = c c

s> 8. | N == 5

o ' = N A 4 N = ' =,

£ A L I~ L | @ R
; » Fuzzy Inference System > :

___________________________

Knowledge Base
(Linguistic Description)
IFXisA1 THEN Y is B1
IFXis A2 THEN Y is B2
IF Xis AB THEN Y is B3

_________________________________________________________________________________

Fig.4.The Fuzzy Knowledge Base

The main part of FIS is the fuzzy rule-based, which is used to represent domain knowledge
that is joined with membership functions, in which each rule could be thought of asa subsystem.
Rules themselves do nothing unless inputs are applied to them. Fuzzy rules or fuzzy conditional
statements are expressions of the form IF A THEN B, where A and B are labels of fuzzy sets
[65], which described by appropriate membership functions, also "If part" is called the
antecedent and "Then part” is called the consequent. Fuzzy IF-THEN rules are often employed
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to capture the imprecise forms of reasoning, which play an essential role in the human ability
to make decisions in an environment of vagueness.

The antecedent describes to what degree the rule uses, while the consequent assigns a fuzzy
function to each of one or more output variables [67], [68], [69]. Fuzzy "If-Then" rules present
a simple way to formulate and take human type knowledge because they expressed using
linguistic terms. A collection of fuzzy rules base can be obtained from subject matter experts or
extracted from data through a rule deducing process.

There are two main methods to construct a rule base for a given problem. The first is by
directly translating expert knowledge into rules, and fuzzy inference systems with such rule
bases are usually called fuzzy expert systems [1]. Because rules are fuzzy representations of
expert knowledge, rule bases offer high semantic interpretability and good generalization
capability. However, it is difficult for complex systems to build a rule base, which has led to an
alternative approach for rule-based construction. This approach is data-driven, and fuzzy rules
are obtained from data using machine learning techniques rather than direct expert knowledge
[119], [104], in contrast, rule bases built in this way lack comprehensibility and transparency.

The fuzzy rule base generated in either of the above two ways, several fuzzy inference
mechanisms can be used to derive the conclusion from a given observation. The most important
model is the compositional rule of inference (CRI), which is introduced in the following
subsection.

2.3. Compositional Rule of Inference (CRI)

In approximate reasoning, two inference rules are of major significance: the compositiona l
rule of inference and the generalized modus ponens. The first rule uses a fuzzy relation to
represent the connection between two fuzzy propositions explicitly, the second uses an if-then
rule that implicitly represents a fuzzy relation. (see example in [66]).

The inference compositional rule (CRI) was first proposed by Zadeh [71] to solve the fuzzy
modus ponens (FMP) and fuzzy modus tollens (FMT) models. Later Dubois and Prade [124]
introduced two approaches to present the inference of a set of parallel rules for solving the local
inference approach, known as IRI, and the global inference approach, known as CRI.

Many of researches have been conducted on CRI and IRI. Such as the "aggregation
operator" [125], two methods presented to deal with aggregation operator issues as follows:

« Composition Rule-based Inference (CRI) (the First Aggregate Then Infer (FATI)),
where first a combination of all rules from the knowledge base is constructed, and then
inference using the supremume-star composition is conducted.

* Individual Rule-based Inference (IRI) (first infer then aggregate: FITA), in which the
first step involves inference using the supremum-star composition for each of the rules
individually and then, a combination of inference results is performed.
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Researches tried to find an operator for CRI and IRI aggregation. Assilian [126] used the
max-min method. A 'min” operator is selected as a conjunction in the rule premise and the
implication function while a 'fax " operator is used for aggregation. Dubois [127] used a 'min "
operator for aggregation in decision-making. To reduce the computational time, the authors
[128], [129] replaced a MISO fuzzy rule with an equivalent collection of SISO rules with two
kinds of aggregation operators.

According to differences between the compositional rule of inference and the generalized
modus ponens. Zadeh presented with the treatment of the if-then rule, called the fuzzy
conditional statement:

If Xis AThenY is B, and the if ... then ... else rule, if XisAThen Y is B Else Z is C.
Zadeh introduces the idea by two statements as follows:

Observation: x is A*
Rule : If xis AThenyis B
Consequence :y is B

The meaning of the second statement should be defined as a fuzzy relation R. With this
relation, Zadeh introduces the compositional rule of inference:

if R is a fuzzy relation from Xto Y, and A" is a fuzzy subset of X, then the fuzzy subset B
of Y, induced by A" is given by the composition of R and A*, that means,

*

BA"oR=A"0(A - B) (2.1)

Where o is the composition operator (see Fig. 5), in this case, one should take the
cylindrical extension (denoted by (ce)) of A*, take the intersection with R, and project the result
onto Y-axis. When R is built up from A* and B* with the rule

R=ce(A)UB,ie., ug(xy) = max(l- u,(x), up(y)) (2.2)
The compositional rule of inference always requires an explicit relation, for example in

Observation: X is tall
Relation: y is a bit shorter than x,
Conclusion: yis more or less tall;
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Fuzzy matching

B 1

iModus Ponens:
‘Premise: xis A' 3
:Implication: If x is Ai Then y is Ci e

! Fuzzy
-* relation

EConsequence: yisC'

Composition Rule of Inference
Fig.5. Compositional Rule of Inference Example

In [70], Zadeh proposes the following way to handle the compositional rule of inference.
When the inference scheme is:
X1 is A,
X1 R Xy,
1. X2 1S B;

where A and B are fuzzy sets representing the meaning of A and B and R is a fuzzy relation
defining the meaning of R, and Ais defined on X, and R on X x Y, then:

B=Proj(A o R)onY, ie., ug(Y)= max min(ua(x), ugr(x,y)) (2.3)

For more details about this relation, see examples in [66] (pages 84 and 85).

Fuzzy inference is the process of formulating the mapping from a given input to an output
using fuzzy logic. The mapping then provides a basis from which decisions can be made or
patterns discerned. The process of fuzzy inference involves all of the pieces described so far,
1.e., membership functions, fuzzy logic operators, and if-then rules. A number of existing fuzzy
reasoning methods based on CRI have been proposed in the literature [36], [120]. In particular,
the first successful practical approach was Mamdani inference [1], [121], which is also
commonly implemented fuzzy methodology in physical control systems at present [122], [123].
It was originally proposed as an attempt to control a steam engine and boiler combination by
synthesizing a set of linguistic control rules obtained from experienced human operators.
Mamdani inference implements CRI using minimum as the t-norm operator due to its
simplicity. Another approach is called Takagi-Sugeno-Kang (TSK) inference [2], [73], which
is introduced in the next subsection.
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2.4. Mamdani and Takagi-Sugeno-Kang Fuzzy Inference Methods

The main difference between the traditional Mamdani inference method and the TSK
inference method is the way of the output produced from the fuzzy inputs [100]. While the
Mamdani system uses the technique of defuzzification of a fuzzy output, the TSK system uses
a weighted average to compute the crisp output. The power expressive and interpretability of
Mamdani output reduced in the TSK systems since the consequents of the rules are not fuzzy
[74], [76], [93]. However, TSK has better processing time since the weighted average replaces
the time-consuming defuzzification process. Due to the interpretable and intuitive nature of the
rule base, Mamdani inference systems widely used in particular for decision support
applications [75].

The example in [1] explains the working with a model of the fuzzy system, where a simple
two inputs x and y (antecedents) and a single output z (consequent) is described by a linguistic
If-Then rule to describe Mamdani inference method and TSK inference method forms as:

Mamdani inference method:
Rulel: IF XisA; ORYis B; THEN Z is C;
Rule2: IF XisA, AND Yis B, THEN Z is C,
TSK inference method:
Rulel: IF XisA; ORYisB; THEN Z =1 (X, )
Rule2: IF XisA; AND Y is B, THEN Z =f (x,y)

Where X and Y are the antecedent variables, Z is consequent variable, respectively, A and B are
fuzzy sets in the antecedent part, C is a fuzzy setin the consequent part, f (x,y) is a crisp function
in the consequent part.

Some of the most popular Mamdani defuzzification techniques are usually a variation of the
max criterion method. These include the Smallest of Maxima (SOM), Largest of Maxima
(LOM), and the Mean of Maxima (MOM). These methods select the smallest, largest, and mean
output value for inputs whose membership value reaches maximum. MOM is one of the most
popular methods; it calculates the final output "Z" by averaging the set of output values that
have the highest possible degree "M" using the formula given in Eq.(2.4) [101].

Z=Y2% xeM. (2.4)

Two other commonly used defuzzification techniques are the Center of Gravity (COG) /
centroid and Center of Area (COA) / bisector method.

The COG / centroid method determines the crisp output by calculating the center of gravity
of the possibility distribution of the output. For continuous values, the output "Z" calculated
using Eq.(2.5) [101].
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J u(@) 2dz
Z=2— (2.5)
[ ua(2)dz

z

where Z is the output variable, and pa(z) is the membership function of the aggregated fuzzy
set A with respectto z.

The COA is similar to the COG method. However, it calculates the position under the curve
where the areas of both sides are equal. The COA can calculate using Eq.(2.6) [101].

f 2(X)dx = j 2(X)dx (2.6)

Authors in [102] presented a detailed analysis of various defuzzification techniques,
including COG and MOM. They concluded that COG yields better results. For this reason, the
COGl/centroid defuzzification technique used in this work.

The output membership function for the Mamdani scheduler made of triangular
membership functions, shown in Fig. 6. It consists of 5 fuzzy values, namely: Very Low (VL),
Low (L), Medium (M), High (H), and Very High (VH).

1 T

T T
o5 Very Low Very High

°
®

T T T T

| 1 1 1

°
S

Low Medium High

Degree of membership
1

°
b
T T T T

L |
0 0.1 02 03 04 05 06 07 08 09 1

Fig. 6. Mamdani ConsequentValues

Sugeno FIS uses the weighted average to compute the crisp output, and thus the complex
iteration process used by Mamdani is bypassed. The Sugeno FIS does not have an output
membership function. The output for Sugeno FIS is shown in Fig. 7, and it is a constant value.
It consists of five output points, which are the same as the number of membership functions for
the Mamdani output (Very Low (VL), Low (L), Medium (M), High (H), and Very High (VH)).
The Sugeno FIS is a less computationally complex algorithm than the Mamdani equivalent. The
interpretability and the expressive power of the Mamdani FIS are lost in the Sugeno FIS because
the rules’ consequence is not fuzzy [101]. It means that the output will be a constant rather than
a fuzzy set when the rules are evaluated. Thus, the impact of this on the system performance
will be evaluated.
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Fig. 7. Sugeno Consequent Values

2.5. Fuzzy Rule Interpolation (FRI)

In most fuzzy inference systems, the completeness of the fuzzy rule base is required to
generate meaningful output when classical fuzzy inference methods are applied; this
emphasizes the need for a complete rule base for the fuzzy inference, which covers all possible
inputs. Regardless of how a rule base constructed, be it by human experts or by an automated
agent, often incomplete or sparse rule bases are generated.

A complete rule base is especially impracticable in a multidimensional environment, where
the number of rules increases exponentially [38], which is based on the input variables and the
fuzzy linguistic labels associated with each variable increase. In this situation, the classical
fuzzy reasoning techniques cannot generate an acceptable output for such cases; the following
example can explain this: Suppose in the assumed sparse fuzzy rule-bases there are only two
rules, which given below:

An example related to the density fuzzy rule bases:

If Xis AjthenY is By
If Xis Aothen Y is B,
If X'is Az thenY is Bs
Observation: Xis A;

Conclusion: Y =(B;)
In another way, using Eq.(2.7):

Supp(LnJAik ] =X, (2.7)

k=1
An example related to the sparsity fuzzy rule bases:

If X'is AL thenY is B,
If Xis Azthen Y is B3
Observation: X is A,

Conclusion: Y =(??)
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In another way, using Eq.(2.8):

Supp(OAik J X, (2.8)

k=1

Where X; is the ith input universe, A is the kthset of the partition of X; and supp is the
support.

A straightforward solution to handle incomplete or sparse fuzzy rule bases and to infer
reasonable output is by the application of FRI methods. FRI techniques initially presented to
generate a conclusion in case sparse fuzzy rule bases, which encouraged to extend the usage of
fuzzy inference mechanisms for sparse fuzzy rule-based systems [24].

Interpolation is a mathematical term for finding new data points within the range of a
discrete set of known data points. Fuzzy rule interpolation (FRI) performs interpolative
approximate reasoning by the existing closest fuzzy rules, where there is no matching of fuzzy
rules. Generally, these FRI methods are capable of performing two types of inference operation:
fuzzy interpolation and fuzzy extrapolation depending on the location of selected closest rules,
as shown in Fig. 8. If the given input observation lies among the selected closest rules, then
fuzzy interpolation operation is performed; otherwise, if the given input observation lies to one
side of all selected closest rules, then extrapolation is performed. A comprehensive overview
of FRI techniques will be presented later in chapter 3.

A1l

Rule 2:

Rule 1:

Observation
0 IF X is A1 IF X is A*

IF X is A1 X

The Fuzzy rules of the antecedents part (Input)

B* B2

Rule 2:

Rule 1:

Conclusion

THEN Y is B* THEN Y is B3

0 THEN Y is B1

The Fuzzy rules of the consequences part (Output)

Fig.8.The General Illustration of Fuzzy Interpolation [51]

There are several fuzzy rule interpolation methods (e.g., [3]-[6], [14], [22], [25], [39], [42],
[48], [49],[50],[51], [52].) available in the literature. Most of the methods infer directly the
conclusions based on observation, such as linear interpolation method [3], [16], [25], [92],
Extension KH central point based interpolation method [4], Conservation of the Relative
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Fuzziness interpolation method (CRF) [7], Improved Multidimensional modified a-Cut
interpolation method (IMUL) [8], improving the possible abnormal conclusion in KH linear
interpolation [5], the modified a-Cut based interpolation method [6], and an interpolative
reasoning method based on the slopes of fuzzy triangular sets [42].

In contrast, some of the FRI need two steps to calculate conclusions. These methods
construct an approximated fuzzy rule based on certain similarity principles and then give the
conclusion by approximate transformation, such as Generalized Methodology based
interpolation method (GM) [9], Polar Cuts based interpolation method (POC) [10], LEast
Squares method based interpolation method (LES) [11] Vague Environment based two-step
interpolation method (VE) [63]. Scale and Move transformation based interpolation method
(ScaleMove) [22], [85]. The Fuzzy Interpolation in the Vague Environment (FIVE) method
[60], [61], [62]. The areas of fuzzy sets interpolation method [52].

2.6. Properties of the Fuzzy Rule Interpolation Concept

While Fuzzy Rule Interpolation (FRI) offers a flexible solution for the problem of sparse
fuzzy rule-based inference, there are many aims require careful consideration in devising such
systems, which would make the evaluation and comparison of the different techniques based
on the same fundamentals possible.

However, according to the existing literature (e.g.,[5], [6], [9], [43], [77]) different criteria
and properties were defined, which put together considering different points of view according
to apply the FRI concept. In particular, it ensures that these methods should: produce the normal
conclusion, maintain the piecewise linearity, to apply to different kinds of fuzzy sets, to be able
to handle multidimensional environments and to minimize computational complexity [9], [14],
[17], [41], [79], [80]-[83].

Based on reviewing a wide range of fuzzy interpolation methods, a set of relevant
performance evaluation criteria identified and generalized. However, not all such criteria need
to fulfill in developing and applying the FRI methods mentioned. However, it expected that
most of the criteria should be satisfied with a useful fuzzy rule interpolation technique with
other problem-specific parameters. Therefore, as a step towards the unification, several
properties presented to be a baseline to compare and evaluate FRI methods. In the following,
we introduce essential FRI properties:

2.6.1. Avoidance ofabnormal conclusion [6], [9], [43]

A fuzzy rule interpolation method should produce valid conclusion fuzzy sets; this means
that the resultant membership value must be a function of the consequent domain in the range
of [0, 1], i.e., the membership function of the conclusion should not be deformed, only one
membership function value could address to one element of the conclusion. In the case of the
a—cut based FRI methods, this condition can be described according to [6] by the following
constraints.
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Let X; (j = 1,...,n) be input dimensions and Y output space, denoting the Cartesian product
of input dimensions by X = X; x X, X ... xX,. A fuzzy IF-THEN rule is given as R;: if Ai; 1Ai,
A A Ajn then Bi. Where antecedents Aj;e F(X;), consequents Bje F(Y), and F(Z) denote the
entirety of all fuzzy subsets of Z. We denote the (n-dimensional) Cartesian product of
antecedents Aij, (j = 1,...,n) of rule R; by A Therefore, fuzzy set A € F(Z) is valid if its
membership function is valid. a-cuts characterize the validity of the fuzzy setas follows:

V,, a1 <ap € (0,1]: inf{A,} <sup{A,} and
inf{A,;} <inf{4,:} and (2.9)
SUp{An} <sup{A.i}

where ‘Inf” and "sup "are the lower and upper endpoints of the actual a-cut of the fuzzy set.
Mapping validity: For each A* € F(X) with a valid fuzzy membership function, the

conclusion generated by mapping I, B* = I1(A*) € F(Y) should also be a valid fuzzy set.

i The Antecedents and Observation fuzzy sets

The Consequences and Conclusion fuzzy sets

05 Al
B1

0 1 2 3 4 5 ] F 8 9 10 0 1 2 3 4 5 5 ? a 9 10
Fig.9.The Example Describes Property (2.6.1) with Invalid Conclusion

For more details, related to this point see (Chapter 6 - Subsection 6.2 demonstrated all
notations of CNF condition with examples)

2.6.2. The continuity of the mapping between the antecedent and consequent fuzzy sets
[9]. [43]
This property interpreted as “the more similar observationto an antecedent, the more
similar conclusion should be to the corresponding consequent of the given antecedent” in [78].

Let Sz: F(2) x F(Z2) — R denote the similarity function defined in the fuzzy sets of Z. Then, for
A%, A, Ay E F(X), if SX(A*, Ain) ESX(A*, Aiz) then Sy(|(A*), Bi1) ESy(A*, Biz), where Rij: Aij - Bij
(j=1,2) are two rules of rule base R.

Many researchers only consider the extreme case of this condition when the observation
coincides with a rule antecedent referred to as compatibility with the rule base [9], [43], [82]
(see condition 2.6.3). In logic, this property is called Modus Ponens (MP). Note that it is also
called continuity of the model characterized by the fuzzy relation of the rule base [103].
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Fig.10. The Example Describes Property (2.6.2) with Mapping Between the Antecedentand Consequent

0

2.6.3.Compatibility condition of the observation with rule-bases

This condition follows compatibility with the rule base and based on the modus ponens in
logic; this means the condition on the validity of the modus ponens, namely if an observation
coincides with the antecedent part of a rule, the conclusion produced by the method should
correspond to the consequent part of that rule.

The Antecedents and Observation The Consequents and Conclusion
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Fig.11. The Example Describes Property (2.6.3) with Compatibilitywith Rule-Bases

2.6.4. Preservation condition of the observation between adjacent two rule -based [43]

A fuzzy rule interpolation method should keep the neighboring quality of the interpolated
result; this implies that if the observation surrounded by the antecedent sets of two adjacent
rules, then inferred the consequent sets of those rules must surround conclusion. If the
antecedents of the two given rules are A; and A, and their consequents are B; and B,, the
observed rule antecedent A* should lie between A; and A; such that the inferred conclusion by
interpolation method should fall between the two rules consequents B; and B,.

In linear interpolation, if (A;j < A% < Ay)for all j=1, ..., n, then (B; < 1(A*) <B,), where
(Rj: Aj—B;) (j=1,2) are two riles of rule base R and < is a partial order operator.

The Antecedents and Observation fuzzy sets The Consequences and Conclusion fuzzy sets

A* "

05 05k
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Fig.12.The Example Describes Property (2.6.4) with Preservation In-Between
2.6.5. The fuzziness of the approximated result.

There are two opposite approaches in the literature related to this topic [77].
e Observation (A*) is a singleton, then conclusion 1(A*) should be a singleton and,
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e All B;, where (I) denotes the indices of rules that contribute to the calculation of

conclusion I1(A~), and observation A*are singleton, then 1(A~) should be a singleton.

Thus, the crisp conclusion can be expected if all the consequents of the rules taken into

consideration during the interpolation are singleton shaped, i.e., the knowledge base produces
certain information from fuzzy input data.

The Antecedents and Observation The Consequents and Conclusion
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Fig. 13. The Example Describes Property (2.6.5) with Fuzziness of the Approximated Result for the First
Approach

The Antecedents and Observation fuzzy sets . The Consequences and Conclusion fuzzy sets
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Fig. 14.The Example Describes Property (2.6.5) with Fuzziness of the Approximated Result for the second

Approach

-

2.6.6. Approximation capability. [17]

The estimated rule should approximate the possibly highest degree the relationship between
the antecedent and consequent universes. If the number of the measurement (knot) points tends
to infinite, the result should converge to the approximated function independently from the knot
points’ position. This condition means the stability between the observation shape and
conclusion shape, which must be identical.

The Antecedents and Observation fuzzy sets . The Consequences and Conclusion fuzzy sets
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Fig. 15. The Example Describes Property (2.6.6) with the Approximation Capability

2.6.7. Preservation of Piecewise Linearity (PWL).

If the fuzzy sets of the rules taken into consideration are piecewise linear, the approximated
sets should conserve this feature. This means that a piecewise linear conclusion should be
inferred from piecewise linear rules and observations [9], [14], [17], [41], [79], [80], [81], [82],
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[83]. Strictly speaking, there must not be any further interpolation other than computing with
the odd points only [84], [85]. For more details about this condition (Chapter 6 - Subsection 6.3
demonstrated all notations of PWL condition with examples)

2.6.8. The investigating condition for multidimensional of rule-bases.

Applicability in multidimensional input space: Mapping | must be applicable to arbitrary
finite dimensions of input space.

Let R={Rj|i =1,...,r} be arule base with multidimensional rules of form Eq.(2.10). We call
mapping I: F(X) — F(Y) rule interpolation, if it assigns to each observation A* € F(X) an
(interpolating) conclusion I(A*) =B~ e F(Y).

Ri: If (Ail N A N A Ain) Then (B,) (210)

Where antecedents A;; € F(X;), consequents B; € F(Y), and F(Z) denote the entirety of all
fuzzy subsets of Z. We denote the (n-dimensional) Cartesian product of antecedents A;;, (j =
1,...,n) of rule R; by A(i).

In other words, mapping (I) must apply to arbitrary finite dimensions of input space. FRI
toolbox was initially motivated in attempts to reduce complexity, which is meaningful only in
the case of many input dimensions, so the FRI toolbox working only with a one-dimensional
rule base has limited applicability. Therefore, a fuzzy rule interpolation method should be able
to deal with different kinds of membership functions with different rules. Simply it means that
the method should work when the antecedents’ fuzzy sets and the consequents of the different
fuzzy rules have different kinds of membership functions.

The Multi-Dimentional Antecedents and Observations fuzzy sets
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The Consequences and Conclusion fuzzy sets
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Fig. 16. The Example Describes Property (2.6.8) with the Multidimensional of Rule-Bases

0

2.6.9. Applicability without any constraint regarding the shape of the fuzzy sets.

This condition can be lightened practically to polygons since piecewise linear sets are most
frequently encountered in the applications.
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Mapping | must apply to anarbitrary rule base and observation, without constraints regarding

fuzzy setshape.
. The Antecedents and Observation fuzzy sets . The Consequences and Conclusion fuzzy sets
1 ' ' | ' ' 1 ‘ ' ' ' -
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Fig.17.The Example Describes Property (2.6.9) with the Applicability of Rule-Bases

2.6.10. Extrapolation capability of the method.

A method with mapping | applies to extrapolation if it generates a conclusion when the
observation located in an extrapolative position, which means: If observation A~ located so that
Aip and Aj; exist such that (Aip < A*< Ajp), then FRI is applied based on rules Ri; and Rj, to
obtain the conclusion. Otherwise, when all rule antecedents A; (i=1, ..., r) either precede or are
preceded by A*:

Vi< e[l r]:1fA* <A or Ay <A* (2.11)

The Antecedents and Observation fuzzy sets
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Fig. 18. The Example Describes Property (2.6.10) with the Extrapolation Property

2.6.11. Applicability condition in case overlapping antecedent rule -bases.

A fuzzy rule interpolation method should be able to support rules, where antecedents
overlap with each other, this means that the method is operable on such a problem, in which
two adjacent fuzzy rules have some common members or their intersection are empty.

The Antecedents and Observation fuzzy sets The Consequences and Conclusion fuzzy sets
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Fig.19. The Example Describes Property (2.6.11) with the Overlapping Fuzzy Sets
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2.6.12. Preservation condition of Convexity and Normality.

A fuzzy rule interpolation method should maintain the normality and convexity for any
interpolative results; this means that if an observation is normal and convex and all the fuzzy
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values in the rule-base are also normal and convex, then the interpolated conclusion should also
be normal and convex. The normal condition is given below, which shows that at least one
element membership function value must be equal to 1: (Ha(X) = 1, 3x € X). The convexity
condition is given below which dictates that membership function values must be increased or
decreased monotonically on either side of the maximum point:

Ma(Axs + (1 - )xz) Zmin(ua(X1); Ha(X2)) (2.12)

where 1 €[0, 1], x1, X2 EX.

) The Antecedents and Observatlon fuzzv,|r sets ) The Consequenoes and Conclusn:m fuzzy sets
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Flg. 20. The Example Descrlbes Property(2.6.12) Wlth the ConveX|ty Fuzzy Sets
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CHAPTER -3- Fuzzy Rule Interpolation and Toolboxes

INTRODUCTION

In this chapter, we provide a brief overview of the basic definitions of the complete and
sparse fuzzy rule-base. We present an overview of the implemented Fuzzy Rule Interpolation
(FRI) methods (KH, KHStabilized, MACI, IMUL, CRF, VKK, GM, FRIPOC, LESFRI, and
SCALEMOVE). We introduce a brief description of the refreshed and extended version of the
original FRI MATLAB Toolbox. We present the initial version of the FRI toolbox based on
OCTAVE language, which is open-source software (free license) available under the General
Public License (GPL).

3.1. Preliminaries

This subsection provides some basic definitions of the complete fuzzy rule base and sparse
rules. It also introduces the description of the interpolative reasoning concept.

3.1.1. Dense and Sparse fuzzy rule bases

Let us take into consideration the two numerical variables X and Y, which described on the
universe R of real numbers, and F is a set in the fuzzy sets of R. We assume the fuzzy sets A; in
F are defined, 7 <i <n, such that: (A1 Az... < Ai < Aj+1... < Ay), for agiven order < on F. We
also suppose that we are given fuzzy sets B; in F, / <i <n, which also ordered according to <.

According to the definitions in [12], [13], the fuzzy functions could be described by the fuzzy
relations between the fuzzy sets of the inputs A; and outputs B;. The fuzzy rule base could
characterize and represent based on this relation. The classical reasoning methods, such as
Mamdani and Sugeno [1], [2] follow that relation, which require defining all the fuzzy rule base
relations between the inputs and outputs, also to define the overlapping between them to obtain
the desired conclusion. Fig. 21 describes the complete fuzzy rule base for two dimensions’
antecedents and consequents, the observations (x1) and (x2) match the fuzzy rules 1, 2, 4, and
5. Thus, the conclusion could be computed based on one of the classical fuzzy reasoning
methods, like the Zadeh-Mamdani max-min Compositional Rule of Inference (CRI).

Regarding the sparse rule-base (incomplete rule-bases) systems, the fuzzy rules are of the
type: (Ri): “if X is Aj then Y is B;”. The sparsity means, there is no overlapping between the
observation and any of the fuzzy rules (do not cover the input space F), where there exist inputs
A~ such that (3i/ Ai< A*< Ai11). A fuzzy interpolation method aims to provide a conclusion
according to observation A* and two adjacent rules R; and Rj+; when (Ai < A* << Ajv).
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Fig.21.Complete FuzzyRuleBase

Fig. 22 describes the issue (incomplete fuzzy rule base), where the observations x;.; and X1,
refer to the first input (antecedent 1); the observations X, and X, refer to the second input
(antecedent 2). These observations described two different types of issues in classical reasoning.
The observations x;; and X1 do not match any rules of the rule-bases (missing rules), while,
the observations x;, and X, do not overlap with any fuzzy sets in the universe of discourse

(gaps between fuzzy sets), there are no fuzzy values defined. Hence no overlapping rule can
exist.

>3

Sparse Fuzzy Rule Bases

g Rule Rule
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Fig.22. The Incomplete Fuzzy Rule Base (Sparse and no Overlapping Fuzzy Sets)

3.1.2. Fuzzy rule interpolation notations

The fuzzy function definitions in [12], [13], the fuzzy space could be described by the
mapping between antecedents and consequents fuzzy sets LX and LY via (f: LX — LY), this leads
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to the main idea of the fuzzy rule interpolation methods, which is finding a suitable fuzzy
interpolative function. These functions could produce a conclusion directly, even if the rule base
is sparse, and there is no overlapping between the observation and any fuzzy rule base. Many
of the Fuzzy Rule Interpolation (FRI) methods follow the notions in [3], [14], [15], which
describe the relation between two fuzzy rule base and the observation, these fuzzy sets must be
adjacent Convex and Normal (CNF) and partially ordered fuzzy sets, the ordering defined as
(Ay is said to be “less than” Ay) for all Ay, A, setsin a given fuzzy partition.

The ordering of the fuzzy set A; and A, denoted by Aj, A, if v € [0,1], the following
condition hold: (Inf(A;,) < Inf(A,), Sup(A;.) < Sup(A;,)), where the "Inf" denotes the infimum
and "Sup" refers to the supremum of the (A;,), (Az,) fuzzy sets.

For simplicity, suppose that two fuzzy rules are given:

If Xis AjthenY is By
If Xis A,thenY is B>

Where A; = B; and A, = B, describe the fuzzy rules, rules in a given rule base arranged
concerning a partial ordering among the convex and normal fuzzy sets (CNF sets) of the
antecedents, consequent, and observation. For the above two rules, this means that:

Al <A*<A /1B <B; (3.2)

Fig. 23 illustrates the simplest form to describe two flanking rules of the fuzzy sets, in which
the shape of the membership functions remained restricted to trapezoidal, the figure shows the
main points (variables) of the fuzzy sets to be applied for determining the conclusion in most
FRI methods.

A; and A; refer to the fuzzy sets of the antecedents, B; and B, denote the consequent fuzzy
sets. A* denotes the new input (observation), B~ refers to the conclusion. The characteristic
points of the trapezoidal membership function could be defined by four values (LF, LC, RC,
RF), the (LC and RC) refer to the left and the right core, the (LF and RF) refer the left and the
right flank. (RA;, RA*, RA,) denote the center points of the fuzzy sets in antecedents side, and
similarly, the (RB;, RB*, RB,) denote the center points of the fuzzy sets in consequents side, (fl,
s2,rl)and (fu s1,r2) denote the left and the right fuzziness for each fuzzy set, (Ui, U’) denotes
the distance between the center points of the fuzzy sets.
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Fig.23. Fuzzy Interpolationwith Trapezoidal Fuzzy Sets (The Antecedent Partand Observation) and (The
ConsequentPartand Conclusion) [32]

3.2. Fuzzy Rule Interpolation Methods

Fuzzy rule interpolation methods classified into two groups. The first group obtains the
conclusion in a single-step (directly), and the other group demands two-steps to compute the
conclusion, using different algorithms in each step. This subsection presents an overview of
some of the implemented FRI methods.

3.2.1. KH interpolation method

The first method proposed for FRI concept is called the KH (linear interpolation) method;
this method published by Koczy and Hirota [3]. Concerning the common general properties of
the FRI methods suggested in [15], The KH rule interpolation method needs the following
conditions to be satisfied: the fuzzy sets in both antecedents and consequents must be Convex
and Normal (CNF) with bounded support, and at least a partial ordering must exist between
fuzzy sets in the universes of discourse.

The conclusion in KH interpolation method produced directly based on the a-cuts of the
observation and the fuzzy rule-base, it can be calculated by the fundamental equation of the
KH-FRI (Eq.(3.2)), which based on the lower and upper fuzzy distances between fuzzy sets
[16]. The upper and lower endpoints could use to calculate the distance between the conclusion
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and the consequent, which must be analogous to the upper and lower fuzzy distances between
observation and antecedents.

d(A*, A)):d(A*, Ay) = d(B* By):d(B, By) (3.2)

Where (d) refers to the Euclidean distance that could use between the fuzzy sets (A, Ay) and
(B1, By).

The conclusion B~ in this method could be calculated based on the lower and upper fuzzy
distances between the fuzzy sets of the antecedents, consequent, and observation. Fig. 23
illustrates the main points (core and flank) of the trapezoidal fuzzy sets that could be used to
compute the conclusion B~ as follows:

The right (core) can be calculated by Eq.(3.3):

d,RC x RCB, + d,RC x RCB,

RCB" = :
d,RC +d,RC (3:3)
Where
k
d,RC = \/Z(RCAi* —~RCA,,)?
i=1
K
d,RC = _[> (RCA, —RCA)?
i=1
For the right (flank) can be calculated by Eq.(3.4):
REB” — d,RF x RFB, + d,RF x RFB, (3.4)

d,RF +d,RF

d,RF = \/ZK:(RFAi* —RFA,)?

d,RF = \/ZKJ(RFAQ —RFA")?

The left (core) and the (flank) can be obtained similarly to the above Eq.(3.3) and Eq.(3.4).

The KH method was developed for a single dimension and multi-dimensional antecedent
universes as appearing in the previous equations. The most significant advantage of the KH
interpolation is its simplicity and its low computational complexity. However, the disadvantage
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of this method is abnormality conclusion could be appeared, it can be seen in some cases such
as the cases in [17], [18], where the lower (left) end of the a-cut interval has a higher value than
its upper (right) endpoint.

3.2.2. The KH Stabilized interpolation method

Many studies modified of the original KH method to improve the abnormal in conclusion,
and to take more than two rules throughout the determination of the conclusion; the extended
method was developed to handle and decrease the abnormality of the original KH method is
called KH Stabilized, which was proposed by Tikk, .et.al. [5].

This method takes into account all flanking rules of observation in the calculation of the
conclusion to the extent to the inverse of the distance of antecedents and observation. The
universal approximation property holds if the distance function is raised to the power of the
input's dimension.

The authors of [5] propose using formulas to calculate the upper and lower endpoints of a-
cuts of the approximated consequence which contain the distance on the (nt) power as shown
via EQ.(3.5) and Eq.(3.6):

m  inf(B. )
Zi:l |\I‘n > y
dL (Aa’ A‘ia) (35)
Zm 1
izldl[\l (A(:’ A‘ia)
m sup(B,)
2 g (AT A) -

m 1
> .

= dlﬂ\l (Aa’ A‘ia)

minB, =

max B,, =

The simplest of the KH Stabilized method is the linear interpolation of two rule-bases for the
area between their antecedents. This method can also be applied if the observation position is
located between two closest rules or hits outside rule-bases.

3.2.3. VKK interpolation method

VKK method was proposed by Vas, Kalmar, and Kdczy [4]. The main idea of VKK method
is based on the center point and width ratio, the conclusion could be calculated by the center
point and width ratio between the antecedent, consequent, and observation fuzzy sets.

The center point of the conclusion can be obtained by Eq.(3.7), Eq.(3.8) and Eq.(3.9):
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L.Centerx R.Center

Center(B") = (3.7)
d (Aila ! AZa)
L.Center=d(A, A, )xCenter(B,,) (3.8)
RCenter=d(A,,, A.)xCenter(B,,,) (3.9)
where
Center(A, ) = M(A,) ;S“p(Aa)

The width ratio of the conclusion can be calculated by Eq.(3.10), Eq.(3.11) and EQ.(3.12):

LfetWidthx RightWidth

Width(B") = . (3.10)

d (A Az, ) xWA
LeftWidth=d (A, A, ) xWidth(B,, /WA,) (3.11)
RightWidth=d(A,,, A, ) xWidth(B,,, /WA,;) (3.12)

where
Width(A,) =sup(A,) —inf(A,)

The (d(Aize A%), d(A%, Aiz,) and d(A;z. Aizgy)) refer to the distance between antecedents
fuzzy sets, the geometric average of the width values represented by (WAy;), (WAy;), and (WA*)
between the antecedents and observation.

The disadvantage of this method is the abnormal can appear in some cases. Nevertheless, the
VKK method has a low complexity compared to the KH method due to the calculation of the
conclusion directly through the center and the width of the fuzzy sets. Itis also simple and used
in several applications without complications.

3.2.4. MACI interpolation method

Another method of the FRI called the Modified a-Cut based Interpolation (MACI) method
was proposed by Tikk and Baranyi [6]. The main idea of this method is based on the vector’s
description of the fuzzy sets for eliminating the abnormal problem in conclusion. The fuzzy set
in this method could be described by two vectors space; it can represent the Left and the Right
flank of the a-cut levels, where the abnormal consequent set is excluded.

The characteristic points are represented in vector description, which can be represented by
the piecewise linear shape of the fuzzy sets, (a-; and ag) describe the left flank, and (ap and ay)
represent the right flank; also ag refers to the reference point of the fuzzy set, the Cartesian axes
can be represented by Z, Z; as shown in Fig. 24.

27|Page



Vo Zo

Fig.24. The Vectors Description Input and Output Fuzzy Sets [6]

The conclusion in this method could be determined by the transformation of the current
characteristic points to a new Cartesian to calculate the conclusion, then transforming back to
the original Cartesian to show the result that could be computed by the following Eg.(3.13),
Eq.(3.14) and Eq.(3.15):

The new Cartesian can be calculated by the vector form:

b=1[y,b]andy =[5, n] (B.13)
b, =h-v2 andp =y -p (3.14)
The matrix can represent vector description as:
b’=bT (3.15)
where
J2 0
T=
-1 1

The MACI method concentrates on the characteristic points of the fuzzy set (A1, A*, and Ay)
and the consequents (B; and By). It can be described by vectors that involve computing the

center point of the conclusion RB*as shown in Fig. 23. The conclusion could be calculated by
Eq.(3.16) as follows:

RB*:(l'ﬂcore)-RBl + lcore-RBZ (3.16)

where
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XL (RA-RA)
U (RA, ~RA,)?

Where, RA*, RA;, and RA; denote the reference point of the observation and antecedents
fuzzy sets. After computing the conclusion could be transformed back to the original Cartesian
by the vector, applying EQq.(3.17),EQq.(3.18) and Eq.(3.19):

A

core

by =by /2 (3.17)
b =b +b) =b +(b; //2) (3.18)
b"=b"T* (3.19)
where
_|uv2 0
T L/\/E 1}

For more details of MACI function can be found in [19], [20]. The main advantage of the
MACI method; the conclusion is always producing a convex and normal fuzzy set, and it can
also apply multi-dimensional antecedents [6]. However, the disadvantage of this method (in
some instances) does not keep a piecewise linearity of the membership functions.

3.2.5. CRF interpolation method

This method was proposed to modify the fuzziness term and to improve a-cut levels. The
main idea of this method was introduced in [21], which was called GK method; also, the
modified version of the GK called the KHG method was published by Kdéczy, Hirota, and
Gedeon in [7]. The current modified version is called the Conservation Relative Fuzziness
(CRF), which follows the fundamental Equation (FEFRI) (EQ.(3.2)). CRF method aims to
obtain the conclusion based on determining the core and fuzziness of antecedents, consequents,
and observation fuzzy sets, the core c* could be described by (Aic*, A,c*, A*c*) and (Bic* B,C¥)
as shown in Fig. 23, using the distances between the antecedents and observation (d(A*, A;)
and d(A,, A*)), and between the consequents fuzzy sets d(Bi, B,).

Besides, the fuzziness of the conclusion could be determined by calculating variables (A;fU,
A-fL) that must have the same fuzziness of the (B:fU, B+fL), similarly, the fuzziness between
(AU, A,fL) and (B*fU, B.fL) as shown in Fig. 23.
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The core of the conclusion C~*can be calculated by EQq.(3.20):

=c*><gi—B£—B£2 (3.20)

d, (A, A)
Where c*denotes the core of the observation, and d1 denotes the distance between A; and A,
which can be calculated as follows:

d1= (Al, Az) = AZC* - A1C*
dj_: (B]_, Bz) = BzC* - B;LC*

*

The general fundamental Eq.(3.2) can be applied to determine the distance between the
current fuzzy sets through Eq.(3.21):

d,(A,A) d(B,B")
d,(A",A,)  d,(B",B,)

So, Eq.(3.22) and Eq.(3.23) canbe used to calculate the core of the conclusion using distance
as follows:

(3.21)

d, (A, A*) xd, (B, B,)

4B B = A A

(3.22)

Similarity,

dl(A*' A,)xd, (B, B,)
d, (A, A)

The distance between the fuzzy sets (e.g., antecedent fuzzy sets A, A,) canbe computed as the

following EQ.(3.24):
dl(Ai,Az):J Poto) ngAei;*) (320

d,(B",B,) = (3.23)

The fuzziness of the conclusion can be determined by the left and the right flanks using the
current fuzzy sets as follows by Eq.(3.25) and Eq.(3.26):

* * B
B = Aq X - (3.25)
fu
. . B
Bl = Ay x—+ (3.26)

fL

Equations in [7] could be used to compute (A*fL, AfU, A;fU, A.fL, B1fU, B,fL), which based
on the calculation of the (inf) and (sup) of the current fuzzy sets. The previous Eq.(3.20) -
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Eq.(3.26) of the CRF method were introduced to be applied by single-dimensional input, and
also, it canapply in multi-dimensional input using the expression in [7].

The advantage of the CRF method is that the flanks used to define the conclusion, the CRF
method can be applied as arbitrarily on fuzzy set shapes. Additionally, the observation position
must be surrounding two rule-based to get a conclusion.

3.2.6. IMUL interpolation method

This method was proposed by Wong, Gedeon, and Tikk [8], the IMUL introduced to avoid
the abnormal conclusion and improve the multidimensional a-cut (levels). IMUL method was
presented to combine the features of the MACI method [6] and Conservation of Relative
Fuzziness (CRF) method [7].

The IMUL method applied the vector description; it can describe the characteristics points
of the fuzzy sets through advantageous the transformation feature of the MACI method and
representing the fuzziness of the input and output by the CRF method. As shown in Fig. 23, the
conclusion could be calculated between the characteristic points of the antecedent fuzzy sets,
which are neighboring to the observation.

The conclusion in the IMUL method is based on calculating the reference point (RB*) and
the left / right core (LCB*, RCB*); the reference point could be computed by Eq.(3.16). The left
and right core can be calculated through the following EQ.(3.27) and Eq.(3.28):

The right core:

RCB*= (1'/1right)-RCBl + ﬂvright-RCBZ'F (ﬂvcore 'lright)-(RBZ + RBl) (3-27)
where

L U (RCA ~RCA,)?
3 (Rea, —RCA,Y

The left core:

LCB™= (1'/1Ieft)-|—CBl + Ieﬁ-I—CBZ+ (ﬂcore -1 Ieft)-(RBZ + RBl) (3-28)

where

X, (LCA - LCA)
T3 A, -Leay

The conclusion flanks (LFB*, RFB~) can be computed by following Eq.(3.29):
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The left flank:

LFB"=LCB  —r (1+

S'" S
U U‘) (3.29)

The LFB* denotes the left flank fuzziness of conclusion B~ and the LCB*refers to the left
core; the right flank can be calculated in the same way. The variables (r, s, u, s, u’) are used to
determine the fuzziness between the fuzzy sets and to calculate the conclusion flank ([8], [19]).

One of the benefits of using the IMUL method is that the conclusion can be obtained by
computing core and fuzziness focusing on the information of the consequents (outputs) and the
information of the antecedents’ fuzzy sets that are given correct results. Moreover, the IMUL
method can be applied on a single dimension and also in multi-dimensional inputs space (See
the examples in [8]).

3.2.7. GM interpolation method

The first method in the second group of the interpolation methods that demanded two-steps
to get the conclusion is called the General Method (GM) method. The GM was published by
Baranyi etal. [9], two algorithms could be used to determine the conclusion in this method. The
first one is based on the fuzzy relation. The second one is based on the semantics of the relations.
The GM method adopts the characterization of the position fuzzy setsto determine the reference
points (core). Thus, the distance between the observation and antecedents fuzzy sets can be
calculated based on the reference points via Eq.(3.30) instead of using the interpolating a-cut
levels.

d(A1,A2) = | RP(A;) — RP(Ay) | (3.30)

Where A; and A; are the fuzzy sets, the reference point is RP, and d denotes the distance of
the sets. The conclusion (interpolated) can be obtained by applying the following primary two
steps:

The first step is to generate a new interpolated rule Ri: Al — Bi, which is between rules R;
and R, via Eq.(3.31), the position of the new rule is the same position of the observation, so to
produce the new rule will be used each fuzzy set of the antecedents, which must be identical
with the reference point of the observation fuzzy setin the corresponding dimension.

Ri — f Interpolation(Rl’ Rz) (3.31)

This step divided into three stages:
1. In the first stage, a set interpolation technique, will help to determine the antecedent set
shapes of the interpolated rule.
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2. In the second stage, the reference point of the conclusion could be calculated by the
reference points of the observation and the consequent sets, taking into consideration the
adjacent rule bases, for example, using the fundamental equation of the fuzzy rule
interpolation (FEFRI) (Eq.(3.2)).

3. In the third stage, the shapes of the consequent sets could be determined by the
interpolated rule using the same set interpolation technique as (stage 1), as shown in Fig.
25.

Many techniques were proposed for this step of the set interpolation technique (e.g., SCM,
FPL, Etc.). The Solid Cutting Technique (SCM) is introduced for this step, the main idea of this
technique is that all the associated sets are rotated by 90° about a vertical axis passed through
their reference point. By connecting the similar points of antecedents and consequents, two
solids can be constructed: one in the input and one in the output dimension (Fig. 25), where the
solid was created in an input dimension.

STEP| STEP | STEP|
A A A A A

MZS1QMZXM V"\ r\

U
; W
L
uﬂ ‘3*

o !

Fig.25. The Main Steps ofthe GM Method [9]

The second step in the GM method is the new rule could be specified asa part of the extended
rule of the approximate conclusion, as a conclusion of the inference method is defined by
determining this rule. In many instances, there is no identical similarity between the rule and
the observation part, for this purpose, many techniques are used to handle the mismatch by
either the Transformation of the Fuzzy Relation (TFR) technique or by Fixed Point Law (FPL).

This step could be divided into two stages:

The first stage, the TFR technique could be applied, where the interrelation function [9] is
generated between the observation (A*) and the antecedent (Al) set, there is mapping between
observation (A*) and antecedent (Ai) by the endpoints of the support and reference point (RP),
as shown in Fig. 26, the interrelation area can be represented by the endpoints of the support
sets. The purpose of the first phase is to improve the proportion of the area of interrelation
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mapping between (Al and B') sets; it can correspond with the support of the observation and the
horizontal side of the square. Hence, the support of the conversion set (AY) is the same support
of the (A~), the membership in both cases (At, A¥) is the same as its interrelated point in the
Antecedents part.

= aongzmal mtemrelation area

)

RP(AY

(LY

extended interrel ation area

oy RP(A) oy

Fig.26.The Interrelation Functions [9]

The second stage, the Fixed Point Law (FPL) technique can be used, where an interrelation
function is created between observation (A*) and the transformed antecedents sets (AY), it is also
used to calculate the difference between the membership values for each interrelated point set,
this difference can be applied to determine the approximate conclusion from the transformed
consequent sets (BY) that will take into consideration the interrelation between transformed (AY)
and transformed (BY) [9].

The main advantage of this method (GM) is to avoid the abnormal fuzzy conclusion; there
is no restriction to CNF sets and preserving normality; it preserves linearity and is compatible
with the rule base, finally, it investigates the monotonicity and the continuity.

3.2.8. FRIPOC interpolation method

This method was proposed by Johanyak and Kovacs [10], which is called Fuzzy Rule
Interpolation based on Polar Cuts (FRIPOC), FRIPOC method is based on the reasoning method
by the concept of the linguistic term shifting and polar cut, it is appropriate in case of sparse
and dense rule bases. The general formula can be described to show the reference point, which
is specified to calculate the interpolated of the antecedents RP(A];) and the consequent RP(B))
sets, which could be calculated by Eq.(3.32).

RPB! = f (RP(A),RP(AL),..,RP(A)),.,RP(A,),) (3.32)

This method is based on the position of the fuzzy sets, which is characterized by a reference
point during the calculations; the reference point RP(Bi) can be determined by several
techniques Fig. 27,the reference point of this technique determined by Eq.(3.33)and Eq.(3.34).
The FRIPOC method mostly follows the GM method [9], where the conclusion can be done by
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applying two steps: the first step is to define the new rule based on the position of the
antecedents part that describes the observation in eachdimension, this means the reference point
of the observation and antecedents set are identical.

1 P dcc(ALA:)

DoeplAr.A2)

Fig.27.Choicesfor the Reference Point and the Associated Set Distances [10]
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1:181'
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§ = -
" d(RALRA)T ST d(RP(A]),RP(A,))

(3.33)

RP(B|i) =

(3.34)

Where RP(B') is the RP of the consequent sets, sj denotes to weight attached to the rule, |
refers to the number of dimensions, (N) denotes the number of the rules, (j) refers to the actual
rule, RAT and RA; denote the antecedent rule [10].

The new rule determined by two steps: The first step is described by three stages as follows:
1) the fuzzy sets of the antecedents are estimated using the set interpolation technique Fuzzy
SEt interpolAtion Technique bases on Polar cut (FEAT-p) that is independently in each
antecedent dimension, the main purpose of this technique is that the whole sets of the partition
are shifted horizontally into the reference point of the observation, i.e., their reference points
are identical with the interpolation point. 2) the new fuzzy setis determined based on the polar
cut, where the fuzzy set can be specified using the polar distance of each polar cut level as a
weighted mean of the similar polar distances of the forecasted identified sets. 3) the fuzzy set
will determine the consequent by FEAT-p technique in the same way as (first stage). Thus, the
new fuzzy set can be calculated by following the formula shown in Eq.(3.35).

nj
w. (A .
Ai ~ Zk:l n}k.p( ]k@) ,d(A],AJk)>O
p(A,) = R (3.35)

P(Ay) d(A;, A ) =0k =1.n,
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The second step in the FRIPOC method defines the conclusion by exciting the new rule
based on the Single Rule Reasoning based on polar cuts (SURE-p) technique [10]. The
reference point of the interpolated conclusion and the consequent set are identical to the new
rule in the current dimension. Fig. 28 describes the distance of the polar that can be calculated
based on each polar level; the conclusion can compute by the modified consequents of the
interpolated rule using the average differences, the technique of correction and control could be
used to guarantee the efficacy of the new fuzzy set.

l’(‘“l;a )

ﬁ’(-‘i;e )

Fig.28.Polar Distances Utilized for the Estimation of the Relative Difference [11]

The main benefits of the FRIPOC method are comprehensibility, the ability to applicability
in subnormal cases, and can be applied if there are no rules surrounding the observation
(extrapolation).

3.2.9. LESFRI interpolation method

This method follows the GM method by computing the conclusion based on two steps; this
method is called LEast Squares based Fuzzy Rule Interpolation (LESFRI), which was proposed
by Johanyak and Kovacs [11].

The main idea of LESFRI method is the conservation of the weighted average differences
measured on the antecedent part, where these modifications could be applied on the consequent
side, in which the results usually could be as a set of characteristic points that will not fit with
the default shape type of the partition. Therefore, the LESFRI method could be used in order to
find the breakpoints of a satisfactory conclusion.

The LESFRI method is based on two-step:
The first step aims to define the interpolation point of the new fuzzy set, which can be
achieved by three stages as follows [11]:
1. The FEAT-LS technique is usedto calculate the antecedent sets for eachdimension, where
this technique aims to generate a new fuzzy set based on the interpolation points of the
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fuzzy partitions; thus, all the sets of the partition are shifted horizontally in order to reach
the coincidence between their reference points and the interpolation point by Eq.(3.36).

Q= wy.(Xj —X;)? (3.36)
1=1
where
1
W=—""—"
bod(A A

2. The position of the consequent fuzzy sets can be determined for each consequent
dimension of the new rule by utilizing a crisp interpolation method by Eq.(3.37).

1 1
5 = _ =
' d(RARA))* S d(RP(A),RP(A))’

(3.37)

3. The characteristic points of the new fuzzy sets shapes are defined by the weighted least
squares by taking into consideration the similar characteristic points of the overlapped
sets, which could be used to estimate the conclusion using the observation and the new
rule.

The second step aims to produce the conclusion based on the new rule because the points of
the rule do not fit ideally with the observation in each input dimension. The SURE-LS method
(as asingle rule reasoning method) was proposed for this purpose based on the a-cut approach.
Consequently, all the current antecedent dimensions and consequent fuzzy sets could be
described by the breakpoint a-levels to calculate the conclusion, it must be done independently
to the left and right flanks of the fuzzy sets. Additionally, the weighted average of the distances
between the endpoints a-cuts of the rule antecedent and the observation set could be calculated
to each side for each level. The advantages of this method are its capability to produce new
linguistic terms that fit into the regularity of the original partitions, and its low computational
complexity, where it can be applied in case of the interpolation and extrapolation.

3.2.10. Scale and Move interpolation method

The scale and move transformation-based method was produced by Huang and Shen [22]; it
follows the interpolation concept to handle the sparse fuzzy rule-bases. The scale and move
method provides the capabilities to work with different fuzzy membership functions types such
as (Triangular, Trapezoidal).

The scale and move method is based on the Centre of Gravity (COG) of the membership
functions, as shown in Fig. 29. It creates a new central rule via two neighboring rule-bases that
are surrounding the observation.
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Fig. 29. Representative Value ofa Triangular and Trapezoid Fuzzy Sets [22]

This ScaleMove method takes two-steps to obtain the conclusion, the first step is to produce

a new central rule (4° — B’) is produced within the existing surrounding rule between
observation (A*: A; — B, A, — By) by applying Eq.(3.38):

_ d(REP(Ai), REP(A*))
" d(REP(A),REP(A)))

(3.38)
Where d(Rep(A1); Rep(Ay)) represents the distance between two fuzzy sets A; and A,.
Rep(A;) refers to the center of gravity for A; [22].

The new rule-base (A' — B') can be calculated by Eq.(3.39) and Eq.(3.40):

A= (1_/1REP)A& +/’LREPA2

a, = (1_ //LREP)a:LO + X“REPaZO

(3.39)
Q= (1_ ﬂ“REP)ail + ﬂ’REPa21
Q= (1_ /IREP)aiz + ﬂ’REPaZZ
B'=1- /’?“REP) B, + Azer B, (3.40)
bé = (1_ /lREP)b_lO + AREszo

bi = (1_ ﬂ’REP)bll + iREPb21
bé = (1_ ﬂ’REP)blz + }”REszz

The degree of similarity between A' and A*is set, it is natural to require the consequent
part B'and B*, which achieve the same similarity degree as follows:

The more similar X to A'; the more similar Y to B’

38|Page



The second step is to calculate the A" similarity degree between fuzzy sets (A' and A*) that
transform ( B'to B*) with the desired degree of similarity by the scale and move transformation.

The Scale transformation aims to change the support value of the membership function while
keeping its representative value and shape; the Move transformation aims to transferthe support
of the membership function with the keep of its representative.

The advantages of scale and move method that it can handle multiple antecedent variables
with simple computation. It guarantees the normality and convexity of the conclusion fuzzy set.
It offers the capability to handle the extrapolation issue directly [23]. It preserves the piecewise
linearity for interpolations involving arbitrary polygonal fuzzy sets, and it uses various
definitions for representative values.

3.3. Applications of Fuzzy Interpolation

Fuzzy interpolation systems have been successfully applied to many real-world problems. In
the following, we present most of the fuzzy interpolation applications.

3.3.1. FRI with Truck backer-upper control

Backing a trailer truck to a loading dock is a challenging task for all yet the most skilled
truck drivers. Because of the difficulties, this challenge has been utilized asa control benchmark
problem with various solutions proposed [104], [105], [106]. For example, an artificial neural
network has been applied to this problem, but a large amount of training data is required. An
adaptive fuzzy control system was also suggested for this problem, but the creation of the rule
base is computationally expensive. Another solution combines empirical knowledge and data.
A combined fuzzy rule base is generated by joining the previously generated rules and linguistic
rules.

Fuzzy interpolation system has also been applied to the trailer truck backer-upper problem
[107] to further reduce system complexity. The problem can be formally formulated as 6=f(x,
y,?). Variables x and y represent the coordinate values corresponding to horizontal and vertical
axes; drefersto the azimuth angle between the truck’s onward direction and the horizontal axis;
and 6'is the steering angle of the truck. Given that enough clearance is present between the truck
and loading lock in most cases, variable y can be safely omitted and hence results in a simplified
formula to 9=f(x, @). By evenly partitioning each variable domain into three fuzzy sets, nine
(i.e., 3*3) fuzzy rules were generated using FISMAT [108] and each of which is denoted as IF
xis AAND g is B THEN 0 is C, where A, B and C are three fuzzy values. Noting that domain
partitions appear to be symmetrical in some sense, the three rules that are flanked by other rule
pairs were removed from the rule base resulting a more compact rule base with only six fuzzy
rules.
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3.3.2. FRI1 with Heating system control

Reducing domestic energy waste contributes to realizing the legal binding purpose in the UK
that CO2 emissions need to be reduced by at least 34% below base year (1990) levels by 2020.
Space heating consumes about 60% of the home energy consumption, and the home Electricity
Survey has reported it from GOV.UK, that 23% of homeowners leave the heating on while
going out. To reduce the waste of heating unoccupied homes, several of sensor-based and
programmable controllers for the central heating system have been developed, which can
successfully switch off the home heating systems when a property is unoccupied. Nevertheless,
these systems cannot automatically preheat the homes before occupants return without hand-
operated inputs or leaving the heating on uselessly for a longer time, which has limited the wide
application of such devices.

To address this limitation, the authors in [109] presented a smart home heating controller,
which can control the heating system to preheat the property before home users going home.
The controller is developed by adapting fuzzy rule interpolation, supported by location
information through portable devices. The system first predicts the time before home users go
home; then the time to preheat home is approximated. If the predicted time to going home is
not greater than the time to preheat home, the heating system will be turned on. As shown in
the demonstrative example in [109], the proposed system can automatically present a solution
to preheat the home when there is a need, but not leaving the heating system on all the time
resulting in energy loss. The work can be further improved despite its hopeful results. Pre-
defined rule base with no learning capability may not be perfectly suitable for all users’
situations, which may be solved by allowing dynamic and adaptive rule base generation based
on users personal data. Itis possible thatthe home heating system does not switch on when the
user comes back or the heating system has been switched on too early, as the proposed system
does not have any error correction function to solve such issues. Adaptive fuzzy interpolation
approach could be used to track the error back and modify the faulty part when incorrect results
are generated.

3.3.3. FRI1 as a model for student result prediction

The author in [110] introduced reports on the creation of a fuzzy model that can predict the
exam results of students based on their previous university achievements. This type of
prediction can never tell precisely the exam results in advance because the previous academic
life of the students does not fully determine in advance the exam results. Nevertheless, an
excellent sufficient estimation can present great help for the university timetable and resource
allocation planning. In the case of this project, the root means squared error expressed in
percentage of the output range was less than 13% at the end of the tuning process in the case of
all datasets that give an adequate level of information for planning the number of student groups
and laboratory classes in the next semester in the case of the ASP.Net Programming course that
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follows the examined Visual Programming course. The developed fuzzy model contains only
28 rules mainly because not all the value combinations of the 9 input variables could have
experimented in practice. Accordingly, a fuzzy rule interpolation-based inference technique had
to be adapted. The results of this project proved that the presented approach is suitable for higher
education applications for the prediction of students’ exam results in their third or higher years
of studies.

3.3.4. FRI with SNMP-MIB for Emerging Network Abnormality

The authors in [111] presented the benefits of the FRI in the Intrusion Detection Systems
(IDS) application area, for the design and implementation of the detection mechanism for
Distributed Denial of Service (DDOS) attacks. The FRI-IDS application’s performance was
compared to other common classification algorithms (support vector machine, neural network,
random forest, and decision tree) used for detecting DDOS attacks on the same open-source
test-bed environment. According to the results, the overall detection rate of the FRI-IDS is in
pair with other methods. Consequently, the FRI inference system could be a suitable approach
to be implemented as a detection mechanism for IDS; as it effectively decreases the false
positive rate value.

3.3.5. FRI with Face Detection and Expression Recognition

In [112], an expression recognition system utilizing the Fuzzy Rule Interpolation (FRI)
technique to classify and recognize 7 categories of facial expression was developed. The
experimentation result proves that FRI technique is a promising method and can perform better.
The technique offers important tools that will enable expression recognition and the ability to
make a conclusion in situations where there is a missing or sparse rule in the rule base. Face
detection and expression recognition from facial images is a useful area of research that has its
application in computer vision, human-computer interaction, robotics and security systems. The
study aimed to classify facial expression by first detecting a face (using the Viola-Jones
Algorithm), extracting the features from the detected face with LBP and recognizing the
expression using a fuzzy rule interpolation technique. The seven different facial expressions
from different image subjects were obtained from the Extended Cohn Kanade dataset and
analyzed.

3.3.6. FR1 with Detecting Slow Port Scan

The authors in [113] introduced a novel strategy for detecting port scan attacks. The proposed
strategy was designed and constructed using a fuzzy rule interpolation. The FRI-based detection
strategy’s inference engine was performed using Fuzzy Rule Interpolation based on the Polar
Cuts (FRIPOC) method. The sparse fuzzy rules were generated based on expert knowledge, the
range values of the nput parameters during the experiments’ four phases, and the relationship
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between the input parameters and the number of attacker clients. The conducted experiments
reflect the proposed FRI based detection strategy’s ability to effectively detect the very slow
and slow port scans based solely on the sparse fuzzy rules. The FRI-based detection strategy’s
output responses were compared with SNORT, and the results reflected that the proposed
detection approach was successfulin detecting the very slow port scan attackin instances where
the SNORT did not render any alert. Moreover, the FRI-based detection approach presented
additional information, such as the level of port scan attack, instead of a binary alert.

3.3.7. FRI with Intrusion Detection Mechanism

The authors in [114] investigated the capabilities to use the FRI methods in the IDS
application area. This investigation is practiced by implementing the FRI-IDS model as a
detection mechanism for DDOS attack. The FRI-IDS model was constructed using the sparse
fuzzy model identification. The fuzzy rules of FRI-IDS model were generated and optimized
using RBE-DSS method. According to the example in [114], using an open-source DDOS
dataset, the results of FRI-IDS model were compared with other literature’s results, which they
applied different algorithms to detect the DDOS attacks using the same testbed environment.
The implemented experiments have demonstrated that the FRI-IDS model obtained an accepted
detection rate. It has reduced effectively the false positive rate value, which decreased a large
amount of IDS alerts.

Additionally, the FRI-IDS model can serve the interpolated conclusions even in case if some
observations are not covered directly by fuzzy rules. Consequently, the FRI-IDS model could
be a suitable approach for detecting intrusions if it is implemented as a detection mechanism. It
is characterized by offering the capability to present the detection level of intrusion and permits
the attack alert generation in case of a lack of information and definition of an existing
knowledge base.

The authors in [115] presented a data-driven network intrusion detection system by applying
the recently proposed TSKinterpolation approach. The experiment results using the benchmark
data set KDD-99 described that the proposed system is able to generate security alerts for known
attack types successfully, and to detect the unknown types of treats with success thanks to its
good generalization capability. This work can be enhanced by employing the recently proposed
rule base generation approach to generate a sparse rule base directly from very complex training
data sets, and rule base adaptation approach to allow the rule base to be adapted and enhanced
along with the operation of the IDS system. Also, the proposed work is developed using
TSKinterpolation, and it is worthwhile to investigate how the proposed system may be
developed by employing other fuzzy interpolation approaches with Mamdani-style rules bases.

3.3.8. FRI with behaviour-based control structures

The authors in [116] introduced an interpolation based fuzzy reasoning method, which could
be implemented to be simple and quick enough to fit the requirements of behaviour-based
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control structures in real-time direct fuzzy logic control systems. The suggested approximate
fuzzy reasoning method based on KH interpolation in the vague environment of the fuzzy rule
base gives an efficient way of designing direct fuzzy logic control applications. The lack of
fuzziness in the conclusion is a disadvantage of the proposed method, but it does not influence
in common applications where the next step after the fuzzy reasoning is the defuzzification. To
prove the efficiency of the interpolation-based fuzzy reasoning in behaviour-based control, a
fuzzy behaviour-based control structure based on the fusion of different known behaviors in the
function of their actual necessities approximated by a fuzzy automaton is also introduced in this
paper briefly.

The implementation of interpolation-based fuzzy reasoning methods in behaviour-based
control structures simplifies the task of fuzzy rule base creation. Since the rule base of a fuzzy
interpolation-based controller, is not necessarily complete, it could contain the most significant
fuzzy rules only without risking the chance of having no conclusion for some of the
observations. In other words, during the construction of the fuzzy rule base, it is enough to
concentrate on the cardinal actions; the “filling” rules (rules could be deduced from the others)
could be deliberately omitted. Thus, compared to the classical h z y compositional rule of
inference, the number of the fuzzy rules needed to be handled during the design process could
be dramatically reduced.

3.3.9. FRI with Hotels Location Selection

The authors in [117] presented a hierarchical fuzzy decision model for selecting tourist hotel
location. it has addressed the applicability and usefulness of the proposed BFRI approach for
hotel location selection assessment and decision-making support. Fuzzy reasoning based HLS
assessment systems offers significant potential for providing decision-making support in hotel
location selection.

Systematic analysis of a hotel location selection assessment framework has been given. A
four-layered analytical process with a detailed description for HLC is considered. It presents
such an integrated approach capable of dealing with dynamic and insufficient information in
the HLC process. In particular, the hierarchical system implementing the proposed technique
can predict the ideal solution on different segments of focused attention and help identify hidden
variables that may be useful during the decision support process (by performing reverse
inference).

3.3.10.FRI with Detection of loT-botnet attacks

The authors in [118] introduced a novel approach for detecting loT-Botnet attacks within the
loT smart environments by adapting the LEast Squares based Fuzzy Rule Interpolation
(LESFRI) method. The proposed approach was designed and implemented using a sparse fuzzy
model identification (RBE-DSS). The proposed approach eliminates the need for creating a
complete fuzzy rule base to detect the loT-Botnet attack. Therefore, one of the distinctive
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advantages of the proposed approach, its ability to generate the required IDS alert even in case
if the attack knowledge-base is incomplete. Furthermore, the proposed approach effectively
smoothes the boundary betweennormal and attacktraffics because of its fuzzy-nature. The Rule
Base Extension using the Default Set Shapes (RBE-DSS) method generated the sparse attack
rule-base. The proposed approach was tested and evaluated using a recent open-source
benchmark 10T dataset. The experiments applied on an loT-Botnet attack benchmark dataset
were demonstrated, that the proposed approach could achieve an acceptable detection rate.
Moreover, it was able to detect the lo0T-Botnet attack in cases successfully not covered directly
by any of the fuzzy rule antecedents.

3.4. Fuzzy Rule Interpolation Toolboxes

The goal of this subsection are: Firstly, to introduce a brief description of the refreshed and
extended version of the MATLAB FRI Toolbox. Secondly, to present the initial version of the
FRI toolbox under the OCTAVE environment.

3.4.1. Fuzzy Rule Interpolation MATLAB Toolbox

The FRI toolbox was developed by Z.C. Johanyak, .et. al. [24] and implemented in the
MATLAB environment. The main goal of the FRI toolbox is to unify different fuzzy
interpolation methods. The general structure of the FRI toolbox presented in Fig. 30, following
this structure, the FRI toolbox could be run and evaluated the current FRI methods.

Download Toolbox

¥

Extract the Toolbox

M

[ ]
[ ]
[ Make the toalbox inside path ]
[ ]

MATLAB by setpath

¥

the main screen of
the FRI toolbox

v

[ load FIS file ] [ load FIS file ]

select method

parameters

interpolate

il

conclusions

Fig.30. The General Structure of FRI Toolbox
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The current version of the FRI toolbox is available to download in [26]; it includes the
following methods (KH, KH Stabilized, MACI, IMUL, CRF, VKK, GM, FRIPOC, LESFRI,
and SCALE MOVE). The package of FRI toolbox contains software with a graphical user
interface providing easy-to-use access, as shown in Fig. 31.

4. Fuzzy Rule Interpolation ToolBox o @ @
File Method selection Interpolation Window View Help N

FIS datafile  D:\Program Files\MATLAB\R2016b\toolbox\FRIT_ToolBox_1_1_14\example\System_3_2Din_1

Obs datafile  D:\Program Files\MATLAB\R2016b\toolbox\FRIT_ToolBox_1_1_14\example\Observation_2 2D |

Interpolation method  |KH
Preferences
Type of the interpolation KH

Alpha levels
Type breakpoints

Exponent in the Minkowski-type
distance formula

NumOfPoints 101

Fig.31.The MainPanel ofthe FRI MATLAB Toolbox [24]

Inthe FRI toolbox, the Fuzzy Inference System (FIS) and OBServation (OBS) structure were
different from the classical inference system. Fig. 32 presents an example of FIS within the FRI
toolbox. It worths mentioning that the fuzzy sets have to be convex and normal [3], [25].

MF1="A_{1;1}trimf,[10 20 30]![0 1 0]
MF2='A_{2;1}"'trapmf'[4.5 5 5.5 6]![0 1 1 0]

MF3="B_{1;1}":'singlmf',[0.46]![1]

Fig. 32. The New Parameters of the Membership Functions That Are Used by the File Systemin FRI Toolbox

Where the (trimf), (trapmf), and (singlmf) denote the triangular, trapezoidal, and singleton
shapes of the fuzzy sets, respectively, the A;.1, Ay.; and By.; referto labels of the fuzzy sets of
antecedents and consequent parts. The values [10 20 30], [4.5 5 5.5 6] and [0.46] denote the
characteristic points (params) of the fuzzy sets in the universe of the discourse, where the
triangular shape takes three values [ao, a1, a2], the trapezoidal shape represents by four values
[ao, a1, @2, @3], and singleton shape describes by one value [ag].
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The new parameter in FIS general structure is called (paramsy), the characteristic points of
the fuzzy sets in case of piecewise linear membership functions as (triangular, trapezoidal, and
singleton) could be represented based on a-cut levels. The lower level will take the value 0 and
the upper level will take the value 1. For example, the new parameter of the trapezoidal shape
can be represented based on the characteristic points [ag, a1, @z, az], where the points [ag, as]
refer to the level O (lower level) and the points [a; and a;] refer to the level 1 (upper level). Fig.
32 describes the new parameter for the trapezoidal membership function (trapmf) represented
by [0110].

3.4.1.1. Fuzzy rule interpolation Matlab toolbox and related work

In the following, we present some relevant works related to the use of the implementation
of the FRI toolbox.

In [31], the fundamental concepts of a Fuzzy Rule Interpolation-based (FRI) RL method
called FRIQ-learning were discussed with benchmarks. The interpolation within the
knowledge-based allows the removal of less important, unnecessary information, while still
keeping the system functional. A Fuzzy Rule Interpolation-based (FRI) RL method called
FRIQ-learning is a method that possesses this feature. FRIQ learning is also suitable for
knowledge extraction. The FIVE FRI method was used by handling the antecedent and
consequent fuzzy partitions of the fuzzy rule-base as scaling functions (weighting factors),
which turns the fuzzy interpolation to scaled crisp interpolation. The implementation of the
FIVE FRI also appears in the FRI Toolbox [26].

The authors in [32] give a brief introduction to the FRI methods and description of the
refreshed and extended version of the original fuzzy rule interpolation MATLAB Toolbox. The
methods used in the FRI toolbox (KH, KH Stabilized, MACI, IMUL, CRF, VKK, GM,
FRIPOC, LESFRI, and SCALEMOVE) were tested to compare them according to the
abnormality and linearity criteria, based on different numerical benchmark examples.

The authors in [33] introduced the benefits of the FRI in the Intrusion Detection Systems
(IDS) application area, for the design and implementation of the detection mechanism for
Distributed Denial of Service (DDOS) attacks. The performance of the FRI-IDS application
was compared to other common classification algorithms (support vector machine, neural
network, random forest, and decision tree) used for detecting DDOS attacks on the same open-
source test-bed environment. According to the results, the overall detection rate of the FRI-IDS
is in pair with other methods. Consequently, the FRI inference system could be a suitable
approach to be implemented as a detection mechanism for IDS; as it effectively decreases the
false positive rate value.

In [34], authors introduced a detection approach for defining abnormality using the Fuzzy
Rule Interpolation (FRI) methods with Simple Network Management Protocol (SNMP)
Management Information Base (MIB) parameters. The implemented experiments were
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performed using Matlab and the Fuzzy Rule Interpolation Toolbox (FRIT) [24]. The FIVE
method was chosen as the inference reasoning of the proposed detection approach.

Authors in [35], analyzed equations and notations related to piecewise linearity property
(PWL), which is aimed to highlight the problematic properties of the KH-FRI method to prove
its efficiency with piecewise linearity condition. The study presented the benchmark examples
to be served as a baseline for testing other FRI methods against situations in which the linearity
condition for KH-FRI is not fulfilled. In the study, the FRI Toolbox was used to test the
benchmark examples for different FRI methods.

3.4.2. Fuzzy Rule Interpolation OCTAVE Toolbox

Fuzzy Rule Interpolation (FRI) systems have been successfully implemented for many real-
world applications. The FRI is also able to work with sparse rule bases that may not cover
specific observations. For this reason, the current FRI MATLAB toolbox is implementing the
fuzzy inference systems “type-1". Currently, there is a deficiency of the FRI toolbox available
for creating other types of fuzzy systems and other programming languages.

The FRI Toolbox is a set of FRI functions, which run under the MATLAB environment. It
is easy to use and beneficial tool for demonstration and research purpose. However, the FRI
MATLAB is restricted in terms of its availability (MATLAB needs to license fees) and its user
base. These constraints, limit the appropriation practicable of the current MATLAB FRI
toolbox. For this purpose, a new developer framework based on OCTAVE environment [29],
[30], which includes FRI methods.

The FRI toolbox based on openly available OCTAVE language will be presented. As
regarded, OCTAVE language gives the advantage of being openly available, and it is accessible
to user from a broad variety of backgrounds. Moreover, the high-level mathematical languages
such as OCTAVE and MATLAB, they provide built-in primitives for representing and
manipulating vectors and matrices, which can be used to represent and manipulate fuzzy sets
directly. Meanwhile, these languages provide large built-in graphical abilities for 2D and 3D
plotting, which can be utilized to represent fuzzy sets.

3.4.2.1. General description

The OCTAVE toolbox is aimed to generally give at least the same set of features as it exists
in the MATLAB FRI Toolbox being an open-source toolbox, it is hoped that in the overall
feature richness and functionality of the toolbox will be increased in time through the open-
access contribution.

The OCTFRI toolbox is the initial version of FRI techniques based on OCTAVE language,
it includes FRI functions to evaluate FISs and OBSs files from the command line and OCTAVE
scripts, it is executed by read FISs and OBS files and produce a graphical output of both the
membership functions and the FIS output. The current version supports twelve FRI methods
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(KH, KHstabilized, MACI, IMUL, CRF, FIVE, VKK, GM, FRIPOC, LESFRI, VEIN, and
ScaleMove (note that ScaleMove style inference is currently supported only in the OCTFRI
Toolbox)). Nevertheless, the number of included techniques is still growing.

The toolbox is available for download under General Public License (GNU) from the
website [26], [27], [28]. As part of describing the FRI inference systems functionality, a wide
variety of forms of membership functions are supported similar to those currently provided by
MATLAB, such as singleton (singlmf), triangle (trimf), trapezoid (trapmf), polygon (polymf).
Currently, the number of rules is not restricted, there are some restrictions to use FRI toolbox,
only convex and normal fuzzy sets are allowed. Fig. 33 describes the general structure of the
OCTFRI toolbox that could be used to run the OCTFRI toolbox and evaluate the current FRI
methods.

| Download OCTFRI Toolbox |

| Add OCTFRI Toolbox path to the main file I

| The main screen of the OCTFRI toolbox I

| Membership function |

Input | l Output
Rules
Antecedents || Consequents

]

Y Y
Load OBS Load FIS

New Input

J9juay
J9uay

v
| select FRIMethod |

Reasoning /~————

Inference

v
| Interpolation |

Y
| Conclusion

Fig.33. The General Structure ofthe OCTAVE FRI Toolbox

3.4.2.2. Parameters of the FRI methods by OCTFRI toolbox

The FRI methods parameters could be defined by the main file of the OCTFRI toolbox
"OCTFRIL.m". Regarding the KH, VKK and KHstabilized methods which use two types of
parameters, the first parameter is "breakpoints" (0 or 1), which is considered as a default
parameter and denoted the o levels defined by the breakpoints [0, 1], the second one is
"userdefined", which the user specifies the number of o levels that will be distributed uniformly
in the interval [0,1], for example:
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params.InterpolationType="KH’;
params.AlphaLevels. Type="breakpoints’;
or params.AlphaLevels. Type="userdefined’;

In case MACI and IMUL methods that used RPtype (corecentre) parameter, which refer to
the type of the reference point of the fuzzy set, e.g., params.InterpolationType="MACI’;
params.RPtype="corecentre’. For FRIPOC and LESFRI methods share the same parameters, in
which the FEAT-p technique can take all fuzzy sets that belong to the partition with different
weight values. The type of the weighting factor and its parameters can also be set by the user,
€.g.,

params.InterpolationType="FRIPOC’;
params.NumOfPoints=501;
params.RPtype="corecentre’;
params.NumOfpCuts=61;
params.SetinterpolationWeight.p=2;
params.ConsequentPositionWeight.p=2;

Most of FRI methods calculate multidimensional distances in the Minkowski sense. The
parameter w of the formula can also be set by the user, where the default value is 2. The default
values of the FRI methods parameters are sufficient to show the desired conclusion.

3.4.2.3. Usage of the OCTFRI toolbox and loading a FIS and OBS

The package of OCTFRI toolbox can be used from a graphical interface or from the
command line. The current version of the OCTFRI is simple and easy to use, which contains
all buttons of FRI methods, loading data files, and interpolation testing, as shown in Fig. 34.

OCTFRI toolbox can be begun by typing "OCTFRI.m" in the command line. The location
of FIS and OBS data should be provided, which can be executed by the standard file open
dialogue box as shown in Fig. 35.

3.4.2.4. Evaluation of FIS and OBS data files

The OCTFRI toolbox included twelve functions of the FRI methods, as presented in Fig.
34 and six different examples of "FIS ”and "OBS" files. In the following, two of FIS and OBS
files selected to evaluate only eight of FRI methods. The inference process starts by loading the
FIS and OBS data and select one of the FRI methods; then, the conclusion B* could be shown
by pressing on the interpolation button (see Fig. 34). The input and output universes will be
shown in two separate windows, including the same number of diagrams as the dimension of
the input and output.
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2.5elect method

1.Load Files
KH

Load FIS | KHstabilized

VKK
Load OBS |

MACI

IMUL
3.Inference system

ConsRelFuzz

Interpolation | FIVE
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LESFRI

Close Windows | FRIFOC

VEIN

About | ScaleMove

Fig.34.The MainScreen ofthe OCTFRI-TB

1.Load Files

Load FIS |

Load OBS |

Fig.35. Location of FIS and OBS Data files

e Example "OCT1": Evaluation of the KH, KHSTAB, VKK and the ScaleMove FRI
methods

Example "OCT1" appliecs FIS1 and OBS1 data files stored in an OCTFRI folder including
one input dimension, one output dimension, and only two fuzzy rules, as shown in Fig. 36. The
membership functions of the input and output universes are triangular fuzzy sets. Example
"OCTL1" is tested on the KH, the KH Stabilized, the VKK, and the ScaleMove) methods, as
described in Fig. 37 and Fig. 38.

e Example "OCT2": Evaluation the MACI, CRF, IMUL and GM FRI methods

Example "OCT2" applies the FIS2 and OBS2 data files stored in OCTFRI folder including
two input dimensions, one output dimension, and only four fuzzy rules, as shown in Fig. 39.
The membership functions of the input and output universes are triangular fuzzy sets. Example
"OCT2" is tested on the MACI, the CRF, the IMUL, and the GM) methods, as described in Fig.
40 and Fig. 41.

50|Page



[System] %FIS FILEY%o
Name="FISI'
Type='sparse’
Version=2.0
NumlInputs=1
NumOutputs=1
NumRules=2
AndMethod="
OrMethod="
ImpMethod="
AggMethod="
DefuzzMethod='COG'

[Inputl]

Name='"inputl’

Range=[0 50]

NumMFs=2

MF1='Al""trimf.[5 10 157![0 1 0]
ME2="A2""trimf",[37 42 47]![0 1 0]

[Outputl]

Name='outputl’

Range=[0 50]

NumMFs=2

MF1=B1"'trimf,[5 10 15]![0 1 0]
MEF2=B2""trimf,[37 42 47]'[0 1 0]

[Rules]
1L1(1):1
2,2(D):1

e =fe sfe e e e oo oo e ofe e sl s sfe e e e e sfe sfe e e sfe e ofe

%OBS FILE%

NumlInputs=1

ObsName="OBS1'

[Observation]

OBSI1="A* 1"'trimf,[17 27 37]![0 1 0]

Fig.36.AFIS1and OBS1StoredinaFile

L

L L

a5

Fig.37. Antecedent Partitions and Observations for the Example "OCT1"”

The Result of the KH FRI

The Result of the VKK FRI

05

05

15 20 25 30 35 40 45

The Result of the KHstb FRI

5 10 15 20 25 30 35 40 45 50

The Result of the ScaleMove FRI

05

15 20 25 30 35 40 45

5 10 15 20 25 30 35 40 45 50

Fig. 38. The Consequent Partitions and Approximate Conclusions of The FRI Methods for the Example "OCT1 "
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[System] %FIS FILE%o
Name="FIS2'
Twype='sparse'
WVersion—=2.0
NumlInputs=2
NumOutputs=1
NumRules=4
AndMethod="
OrMethod="
ImpMethod="
AggMethod="
DefuzzMethod="COG'

[Inputl]

Name='"inputl’

Range=[0 80]

NumMFs=4

MF 1="mf1":"trapmf'.[3 8 12 17]![0 1 1 0]
MF2="mf2':'trapmf'.[23 28 32 37]![0 1 1 0]
MF3="mf3":"trapmf',[43 48 53 58]![0 1 1 0]
MF4="mf4':'"trapmf'.[63 68 72 77]!1[0 1 1 0]

[Input2]

Name='"input2'

Range=[0 80]

NumMFs=4

MF1="Al'"trapmf.[3 § 12 17]![0 1 1 O]
MF2="A2'"trapmf.,[23 28 32 37]![0 1 1 0]
MTF3='A3""trapmf,[43 48 53 58]1[0 1 1 0]
MF4="A4''trapmf.[63 68 72 77]![0 1 1 0]

[Outputl]

Name='outputl'

Range=[0 80]

NumMFs=4

MF1="B1'":"trapmf,[3 8 12 17]![0 1 1 0]
MF2="B2'":"trapmf'.[23 28 32 37]![0 1 1 0]
MF3="B3"'"trapmf,[43 48 53 58]![0 1 1 0]
MF4="B4':'"trapmf.[63 68 72 77]![0 1 1 0]

[Rules]

11,1(1):
22,2(1):
33.3(1):
44,4(1):

——

b o sk e e ke ke ok e s sk sk e ke ke s o ok o ok ok ke ke ok ok

29OBS FILE%o

NumlInputs=2

ObsName="OBS2'

[Observation]

OBS1=A* 1''trapmf.[18 20 21 23]![0 1 1 0]
OBS2="'A*_ 2"'trapmf',[37 39 40 42]![0 1 1 0]

Fig.39.AFIS2 and OBS2StoredinaFile
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A1 A12 A13 A14
10 20 30 40 50 60 70

80

0 8

Fig.40. Antecedent Partitions and Observations for the Example "OCT2"”

The Result of the MACI FRI
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The Result of the CRF FRI
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B1 B4
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The Result of the IMUL FRI The Result of the GM FRI
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I B d B
051
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Fig.41. The Consequent Partitions and Approximate Conclusions ofthe FRI Methods for the Example "OCT2”
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SUMMARY

This chapter provided some basic definitions of the complete and sparse fuzzy rule-base.
The majority of the current FRI approaches were classified into two groups: one-step FRI and
two-step FRI. Each group has been presented with a representative approach, as well as its
extensions and improvements in detail, therefore, the chapter presented a survey of twelve
different FRI approaches (KH, KH Stabilized, MACI, IMUL, CRF, VKK, GM, FRIPOC,
LESFRI, and SCALEMOVE). The chapter also presented the refreshed and extended version
of the original FRI MATLAB, which has been utilized effectively for the task of representing
and handling fuzzy rule interpolation mechanisms. Finally, this chapter presented the initial
version of the FRI toolbox based on OCTAVE language, which is open-source software (free
license) available under the (GPL), it is compatible with MATLAB through packages and
syntax.

The results introduced in this chapter are published in [32], [98].
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CHAPTER -4- A New Fuzzy Rule Interpolation "Incircle-
FRI"

4. INTERPOLATIVE FUZZY REASONING METHOD BASED ON THE
INCIRCLE OF A GENERALIZED TRIANGULAR FUZZY NUMBER

In this chapter, we will present a new fuzzy interpolation technique, which is called
"Incircle-FRI", it canrepresent the reference point and the fuzziness sides of a triangular fuzzy
number by its Incircle (Inscribed circle) properties. The proposed Incircle-FRI follows
geometrical considerations for performing fuzzy interpolation, it takes care of producing
Convex and Normal Fuzzy set (CNF) for all rules and observation configurations by presenting
the main equations that prove the CNF property of the Incircle-FRI for all fuzzy rules and
observation. To demonstrate the performance of the suggested FRI method, we present some
numerical examples to compare the results of the Incircle-FRI with existing FRI methods (KH-
FRI [3], [25], [39], KHstabilized-FRI [5], VKK-FRI [4], HCL-FRI [42], HTY-FRI [53], CCL-
FRI [52], and to HS-FRI [22]) that will be discussed briefly in the chapter.

4.1. Background of fuzzy rule interpolative techniques and fuzzy numbers

In this subsection, we will present some basic concepts related to the fuzzy numbers and
the suggested Incircle concept of the triangular fuzzy number.

4.1.1. Fuzzy numbers

A fuzzy set A defined on a universe of discourse X, which holds total ordering, is a fuzzy
number, i.e., a CNF set; if it is normal, its height equals to one and convex. It has a membership
grade of any elements between two other elements greater than or equal to the minimum
membership degree of these two boundary elements. A convex fuzzy set can be defined by b,
ye U, v, €0, 1]: (Ma(A.x+(1— 1Y) =>min (Ha (X), Ha(y))). The support of a fuzzy set A is the
set of all elements in the universe of discourse X with a membership degree pa(x) is greater
than zero. (Supp(A):x € U, pa(x) > 0).

The height of a fuzzy set is the maximum membership degree of all the elements of the
universe, and it can be defined by (Height(A): max(x) € U(ua(X))). A fuzzy set is said to be
normal if at least one element of the universe has a membership degree equal to 1, (3x € U,
Ha(X): Height(A) = 1). The a-cut and the strong a-cut of a fuzzy set is the crisp subset of the
universe in which the membership degrees are greater (strong a-cut), or greater, or equal (a-
cut) than a specified o value. The a-cut canbe represented by (A,: X €U, pa(x) >a), a €0, 1]
and (A, x €U, pa(x) > a), a €[0, 1]. The kernel of a fuzzy set is the crisp subset of the universe
where the membership degrees are equal to 1. (Kernel(A): x € U, pa(x) = 1).

In case of a convex fuzzy set A on Ry, all of its a—cuts A, are convex sets for all & €(0, 1],
l.e., its o—cuts are intervals.
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In most cases, particular types of fuzzy numbers, such as trapezoidal and triangular could
be used for real-life applications. A fuzzy number A is called a generalized trapezoidal fuzzy
number if its membership function is given as follows:

M , algxgaz
(a2_a1)
H , a <X<a
/UA(X): H(X —a,) 2 s (41)
——47 | a,<X<a,
(a3_a4)
0O , X<a or X>a,

where, 0 < H < 1. The generalized trapezoidal fuzzy number A is denoted by A = (as, ay,
as, a4; H) and has the shape of a trapezoid. A triangular fuzzy number is a particular case of
generalized trapezoidal fuzzy number, having triangle-shaped membership function. Precisely,
A = (aj, a,, as, a4; H) called a triangular fuzzy number if a, = a3 as shown in Fig. 42.

A A

A

1 »

al a2 a3 a4 ail a2=a3 a4’

Fig.42.Generalized Trapezoidal and Triangular Fuzzy Numbers

4.1.2. The Incircle of a Triangular fuzzy number

The Incircle of a triangular fuzzy number can be considered as an Incircle of a triangle. The
Incircle of atriangle is that circle which touches all three main sides (AB, BC, and AC) of the
triangle, and the points of tangency of the Incircle of AABC (i.e., TA, TB, TC) with its sides, as
shown in Fig. 43.

C

Fig.43.The Incircle CIR(I) with GergonnePoint GP ina Triangle ABC
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By following the Ceva’s theorem directly (see theorem 1), we can define all properties of
the incircle triangular fuzzy number, where cevians of particular importance in the general
triangle (medians, angle bisectors, Etc.) are synchronous. Moreover, the fact that two tangents
to a circle from a point outside the circle are equal.

Furthermore, the common point of a triangle ABC called a particular point of the triangle,
it could be defined as the point of intersection of the cevians ATA, BTB, and CTC. Therefore,
this point "P" will be later called the Gergonne Point (GP) of the triangle [54] as a reference
point, which is the concurrence point for the cevians from the vertices to the points of tangency
on the opposite sides of the triangle, as shown in Fig. 44.

Theorem 1. The three cevians joining the vertices of a triangle to the point of tangency of
the opposite sides with the Incircle are concurrent [55].

Using Ceva’s theorem, we directly get the following result: the given the existence of a
triangle with vertices A, B, and C. The Trilinear Coordinates (TCs) of point P, which related to
triangle ABC are three ordered numbers. Each corresponding to the distance from P to one of
the sideline. TCs are generally referred via (a:f:y), as shown in Fig. 44.

B/a,

Alay )

SD3(aja3)
Fig.44. Trilinear Coordinates (TCs) affy of Point P
If point P has TCs (a:B:y), then the Cartesian Coordinates of P are calculated by Eq.(4.2):

1
+p -‘S Dsata3)

TCs of the GP is given by Eq.(4.3):

)-(t{SDy(ag

A+ BISDy 100,

B+7/SDy,0)

p=( C) (4.2)

a-‘SDz(azas)

ty -‘S Dia1a2)
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‘S D3(a1a3)

‘ SDl(alaZ)
SD3(a1a3) + ‘SDl(alaZ) SDZ(a2a3)

SDZ(aZaS) SDl(alaz)
SDZ(a2a3) + SDl(alaZ) - SD3(ala3)

4.3)

SD2(z:12a3) SD3(a1a3)‘
SD,a2a3)| + [SDsatas)| — [SDiataz)

Based on the properties of the Incircle triangular fuzzy number, some notations for the fuzzy
rules and the observation fuzzy sets could be determined. It will be used to perform the
approximate conclusion. The "center" of the triangle could be denoted by the Gergonne point
(GP), which later will be named by "Reference Point".

The main sides of the triangular indicated by SD;, SD,, and SD3. The lengths of tangents of
the triangle canbe determined by PS;, PS,, and PS3, as shown in Fig. 45. These sides PS;, PS,,
and PSz will be referredto as "fuzziness sides".

SD3(a1a3)

Fig.45. Triangular Fuzzy Number Notations

Assuming that the triangular fuzzy set A= (ai, a,, as; H), we get a triangle with the
coordinates of vertices A=(a;,0), B= (a,, H) and C= (a3,0) with H. If H is equal to 1, then the
fuzzy number is normal. The trapezoidal fuzzy setcan be represented by two triangular fuzzy
numbers AL= (ai, a;, Mp; H) and AR= (Mp, as, as; H), where Mp denotes the mid-point of the
trapezoidal fuzzy set.

Some notations are required for calculating the approximating conclusion of the proposed
Incircle-FRI is presented. Let us have a single-dimensional antecedent space and two adjacent
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fuzzy rules to the observation (like in the original KH-FRI) represented by triangular fuzzy sets
as follows:

Incircle_Notation 1: The main sides of the triangular fuzzy set A, SD1(a1a2), SD2(a2a3), SD3(a13)
can be calculated by Eq.(4.4), where H denotes the height of the fuzzy set A.

SD,| = \/(al—az)z +H?,
SD,| = y/(a, ~a,)* + H?, (4.4)
SD,|=a, -4,

Incircle_Notation2: Applying Eq.(4.3)and Eq.(4.4),we can find the TCs and GP of a triangle
fuzzy set A, which has vertices a;, a, and azas.

~ (a3—al)./(al—a2)? + H?
(a3-al)+/(al-a2)? + H? — /(a2 —a3)? + H?
_ J(@2-a3)’ +H?\/(al-a2)’ + H?

- J@2-a3)? +H? +./(al—a2)? + H? — (a3—al)
~ (a3—al)./(a2—a3)’ + H?

- J@2-a3)? + H? + (a3—al) —+/(al—a2)? + H?

(24

(4.5)

Incircle_Notation 3: Using Eq.(4.2), the Cartesian Coordinates (XA,#A) of the reference point
GP for triangle fuzzy set A can be calculated as follows.

a,.a|SD,|+ a,.3|SD;,|+a,.7[SD,| B|SD;|
a|SD,|+ B|SD,|+¥|SD,|  '«|SD,|+ B|SD;|+ #|SD,|

GPAZ(XA’/’IA):{ J (4.6)

Regarding the height property of the fuzzy set, a fuzzy set A is normal if there is at least
one element on the universe of discourse that has a membership degree equal to 1, (7x € U,
Ma(x): Height(A) = 1).

Incircle_Notation 4: The left and right fuzziness lengths of the antecedent, consequent, and
observation fuzzy sets could be determined by the fuzziness sides PS;, PS,, and PS3, which can
be calculated as follows.
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_ (SD, +SD, - SD,)

PS1) — 2
(SD, + SD, — SD,)
bgz) = ot 22 3 (4.7)
_ (SD, +SD, —SD,)
PS3) — 2

4.2. A new fuzzy interpolative reasoning method based on Incircle of Triangular
fuzzy number

In this subsection, a new fuzzy interpolative reasoning method will be presented for sparse
fuzzy rule-based systems, which is based on the Incircle of the triangular fuzzy set of the fuzzy
rules and observation. The representative values of the approximating conclusion fuzzy set will
be determined by the reference points (GPy), left fuzziness (PS;), and right fuzziness (PSs). In
the following, the proposed Incircle-FRI will be discussed in detail.

4.2.1. Single antecedent variable with Triangular fuzzy sets

The triangular membership function is a particular case of the fuzzy sets that vastly used in
fuzzy rule-based systems because of their simplicity. A triangular membership function
describes by vertices (ai, a,, as; H), where a; refers to the left side of the support, a, denotes
the reference point, and as refers to the right side of the support, and H denotes the height of
the fuzzy set.

Fig. 46 illustrates the suggested reference point of the fuzzy set indicated by (GPx.A) of
fuzzy set A, the main left, right and base sides of triangle ABC indicated by SD1, SD,, and SDs,
respectively, and the fuzziness sides, where PS; refers to the left fuzziness, and PS; refers to
the right fuzziness.

Fig.46.The Main Incircle_Notations ofthe Triangular Fuzzy Number Represented by GPx, SD;,
SD», SD3, PS4, PS: and PS3
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For simplicity, in the initial version of the suggested reasoning method, the two adjacent
fuzzy rules A; = B; and A, = B, to the observation will be taken into consideration from the
rule-base only. A;, Ay, B1, and B, denote the fuzzy sets of the antecedents and consequents,
respectively. We assume that the observation fuzzy set A*occurs between the fuzzy sets A; and
A,. The conclusion B~ fuzzy set denotes the fuzzy interpolative reasoning result, as shown in
Fig. 47. The standard scheme of the fuzzy interpolative reasoning of the two fuzzy-rules and
observation using triangular fuzzy sets can be defined as follows:

Rulel: If X isA;thenY is B
Rule2: If X is A, then Y is B,
Observation: X is A*.

Conclusion: Y= (B

where Rule; and Rule; are two adjacent fuzzy rules by A;i = (ai 1, &i2, ai3), Bi= (bi 1, bi 2, bi3),
where (1 <i<2), the observation A* = (as, az, az), and B* = (b, by, b3).

0 5
~ . a3 a2l > X
all  PS1A1 gpa,q  PS3A1 a3 a"t PSIA® ... PS3A a'3 PS1A2 -, ,PS3A2 a23
A
1
)
'S
k<]
0 > v
b1l PS1B1 gpapy PS3B1 b13 b1 PSIB* gpag. PS3B* b3 b21 psiB2 PS3B2 b23

SD3B2

Fig.47.Fuzzy Interpolative Reasoning Using Triangular Membership Functions

The fuzzy interpolative reasoning method "Incircle-FRI™ related to single triangular fuzzy set
could be determined, we need to compute the reference point and fuzziness sides by Eq.(4.4) -
Eq.(4.7), then applying the following steps:
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Step 1: The two closest fuzzy rules [56] must be determined to perform interpolative for single
antecedent fuzzy rules (m), Rule;, Rule,, ..., and Ruler,, which are the nearest to the observation

(Ai < A" Ajsp)as shown in Fig. 47. The closest fuzzy rules can be determined by the distances
using Eq.(4.8).

D=d(A,A)=d(GP,.A,GP.A") (4.8)

Where d refers to the distance between antecedents and observation fuzzy sets values, which is
based on their reference points (GPXx).

Step 2: Suppose the two adjacent fuzzy rules A; and A; are the left and right antecedent fuzzy
sets to the observation fuzzy set A*. Therefore, according to [56], the weight between the
adjacent triangular fuzzy rules, Rule;, and observation A* canbe determined as follows.

., IGP.A"—GP,_.A|
""" GP.A,—GP_A

(4.9)

GPx refers to the reference point of the fuzzy sets; it could be calculated by Eq.(4.6). W;
denotes the weight of Rule;, which is used to perform interpolation between two surrounding
rules to the observation using Eq.(4.7). (0 < W;<1),(I <i<m), wherei =1, 2 represents the
individual fuzzy rules as given in Fig. 47 holding the property of (W1 + W2 = 1).

Step 3: The reference point (GPx) of the fuzzy interpolative reasoning result B* could be

calculated based on the reference points of the consequents fuzzy sets and weights, shown by
Eq.(4.10).

2
GP.B" => W, xGP,.B, (4.10)
i=1

The required reference points GPx.B; and GPx.B; can be calculated by Eq.(4.6), W1 and
W2 could be computed by Eq.(4.9).

Step 4: The fuzziness sides of the B* fuzzy set could be calculated by Eq.(4.11), which is based
on the calculated fuzziness sides of the fuzzy adjacent rule bases and observation.
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- 2 PS. (B;)
PSy, (A7) x W, x —oma=i/
(A 2 W s (A
PS,, (B") =1 if 3, PS,(A)>0 ¢ (4.11)

PSM (A*) ’
if viPS,(A)=0 |
Where M € [PS;, PS3], PS; refers to the left fuzziness side and PS; denotes the right
fuzziness side of the triangular fuzzy set. If one of the antecedents fuzzy sets A; and A,, the left
PS; or right PS; are great than zero, the top part of Eq.(4.11) is implemented to conclude the
left and right fuzziness sides PS;and PSsof the fuzzy set B*. Otherwise, if both antecedents
fuzzy sets Ajand A, are found, the left PS;and right PSzare zero. l.e., in case of singleton fuzzy
sets, the bottom part of Eq.(4.11) could be used.

-

Step 5: Now, based on the results of steps 3 and 4, the representative values of the conclusion
B+ fuzzy set will be determined. The reference point is determined by Eq.(4.10). The left
fuzziness [GPx.B*- B*psp] and the right fuzziness side [GPx. B* + B*(ps3)] are defined by
Eq.(4.11). Finally, the fuzzy interpolative reasoning conclusion B*for the triangular fuzzy set
can be collected as.

*

B, =GP,.B"- B,
B, =GP.B’ (4.12)
B, =GP,.B"+B/

(ps3)

Because (B*1 <B*, < B"3), we can see that the proposed method can preserve the convexity
of the fuzzy interpolative reasoning result with the triangular fuzzy set. We can see that the
value of the left fuzziness side is smaller than or equal to the value of the reference point (GPy),
which also is smaller than or equal to the value of the right fuzziness side.

In general, the result of the proposed "Incircle-FRI" is satisfied with logically consistent
properties and concerning the ratios of fuzziness sides based on the two-fuzzy-rules
interpolative reasoning technique, which obtained by Eq.(4.11). The top equation of Eq.(4.11)
is used to infer the fuzziness sides of the interpolated conclusion fuzzy set B* if there exists a
fuzzy rule whose fuzziness of the antecedent part is larger than zero. Otherwise, the bottom
equation of Eq.(4.11) is used when the fuzziness sides of the antecedent part of the given fuzzy
rules are zero. That means the larger the fuzziness of the membership function of a fuzzy setis
the more fuzziness the fuzzy set has. The fuzzy interpolative reasoning (Incircle-FRI) result
inferred by Eq.(4.11) satisfies the logically consistent properties for the ratios of fuzziness sides
based on the two-fuzzy-rules interpolative reasoning technique, the ratio fuzziness sides
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RF.PS, (A, B) of the consequence fuzzy sets B to antecedent fuzzy set A is computed in [52]
as follows.

RF.PS_(B)

RF.PS_(A B)=
RF.PS_(A)

(4.13)

Where RF.PS(A) > 0, m € the left RF.PS; and right RF.PS; fuzziness sides of the
antecedent fuzzy set and the consequence fuzzy set of a fuzzy rule, respectively. RF.PS;(A, B)
refers to the ratio fuzziness of the left fuzziness side B to the left fuzziness side A, RF.PS3(A,
B) refers to the ratio fuzziness of the right fuzziness side B to the right fuzziness side A. For
example; we can see that RF.PS1(A;, B;) = 1/2, RF.PS1(A2, B,) = 2, and RF.PS3(A, By) =
RF.PSg(Az, Bz) =1.

The ratio of fuzziness sides RF.PSn(A, B) shown in Eq.(4.13), it does not consider the
situation that the antecedent fuzzy sets have vertical slopes at their left side or right side (i.e.,
PS1(A) = 0 or PS3(A) = 0). Thus, if there are two fuzzy rules A; = B, A, = B,, and observation
A~ as shown in Fig. 48.

1
A1 A* A2
0 >
1 2 3 a4 5 6 7 8 9 10 11 12 13 14
1
A1 A A2
0 >
i 2 3 4 5 6 7 8 8 10 11 12 13 14

Fig.48. Fuzzy interpolative reasoning results for the gradual observations

Suppose two neighboring fuzzy rules A;—B;, A;—B,, and one observation A*, where A~ hits
between A; and A,. The fuzzy interpolative reasoning result B* obtained by Eq.(4.11) satisfies
the following two of the logically consistent properties.

Property 1: Min (RF.PSm(A;, B1), RF.PSM(A,, B;)) < RF.PSm (4*, B*) < Max (RF.PSm(A,
B1), RF.PSm(A;, B)), where m & [psl, ps3]. Then RF.PSm (A*, B~) can be
calculated by Eq.(4.14) as follows.

RF.PS_(A",B")=(1-W2)xRF.PS_(A,B))+W2xRF.PS_(A,B,) (414

Where the weight W; between antecedents and observation could be defined by Eq.(4.9).
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Property 2: If RF.PSm (A1, B;) = RF.PSm(A;, B,;) =K, then RF.PSm (A*, B*) =K, where K >0
and m € [PSy, PS3]. Min (RF.PSm (A, B1), RF.PSm(A;, B,)) = Max (RF.PSm(A,,
B1), RF.PSm(A,, B,)) = Kand RF.PSm (A*, B*) = K.

It is evident that, Property 1 and Property 2 are logically consistent concerning the left and
right ratios of fuzziness sides (RF.PS; and RF.PS3) based on the two fuzzy rules. Based on
Eq.(4.11), the weight W; of RF.PSm(A;, B;) contributing to RF.PSm(A*, B~) is determined by
the distance of the reference points between A; and A* The closer the reference point of A* to
the reference point of A;, the larger weight of RF.PSm (A;, B;), where i = 1, 2 and m € PS;, PSs.

4.2.2. Single antecedent variable with Trapezoidal fuzzy sets

The Incircle concept of triangular fuzzy numbers can be extended to trapezoidal fuzzy set.
A trapezoidal fuzzy set canbe represented through two triangular fuzzy sets AL= (a, az, Mp;
H) and AR= (Mp, as, as; H). Thus, the Incircle_Notations in Eq.(4.4), Eq.(4.6),and Eq.(4.7)
will be used to calculate AL (or TR.) and AR (or TRg) separately.

Fig. 49 describes the left and right reference points of the trapezoidal fuzzy set that are
denoted by GPx.AL and GPx.AR. The main sides of the left triangle AL are described by SDL;,
SDL,, and SDLg, respectively. Furthermore, the fuzziness sides of AL can be described by the
left PS1AL and the right PS3AL.

For the right triangle AR, the main sides are described by SDR;, SDR;, and SDR3. Besides,
the fuzziness sides of AR can be represented by the left PS;AR and the right PS3AR. Therefore,
GPx.AL, GPx.AR, PS;AL, PS3AR, and Mp will be used to describe the left fuzziness and the
right fuzziness of the trapezoidal membership function to determine the conclusion.

a2 AL and AR a3

al “"UBgIAL T T ps3Aal v “UPsiAR T PS3AR T a4
SD3L(a1,Mp) SD3R(Mp,ad)

Fig.49.The Main Incircle_Notations ofthe Trapezoidal Fuzzy Number Represented by Two Triangular Fuzzy
SetsALand AR Notations.

An example of the suggested fuzzy interpolative reasoning using trapezoidal fuzzy sets is
shown in Fig. 50.

To interpolate the proposed Incircle fuzzy interpolative reasoning method with trapezoidal
fuzzy sets (represented by two AL and AR triangular fuzzy sets), we need to find all
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Incircle_Notations in Eq.(4.4) - Eq.(4.7) for each triangular (AL, AR), then applying the
following steps:

Step 1: The two closest fuzzy rules [56] must be determined to perform interpolative for single
antecedent fuzzy rules (m), Ruley, Ruley, ...,and Ruler,, which are nearest to the observation (A;

< A" <Aj+p) as shown in Fig. 50. The closest fuzzy rules determined using the average of two
reference points GPx.AL and GPx.AR of the trapezoidal fuzzy sets via (AVG.GPx=(GPx.AL
and GPx.AR)/2). Then, distances can be computed using Eq.(4.15).

A
1
al2 Al a13 a22 A2 a23
GP.A1L P.A1R GP.A2L P.A2R
0 >
all ps1A1L  Ps3aiL  PS1AIR PS3A1R @14 a*1 psiA*L | psaa®L PSIA*R Pssa*R @4 @21 PS1A2L  psaazl  PS1A2R PS3A2R @24 > X
o SR SR o TSIA I O ks Pl ol o e O i
1 b12 B1 b13 b22 B2 b23
GP.B1L P.B1R \GP.B2L P.B2R
0 >
BT PsiBiL ~psapiL  PS1BIR pSBiR BT4 BT psin'l  pewe'L  psinR psoe'n b'4 D21 PSIB  psapal  piben pseszR D24 >Y
pr— SiaEi o PNE L RR S b L e
Fig.50. Fuzzy Interpolative Reasoning Using Trapezoidal Membership Functions
* *
D=d(A,A)=d(AVG.GP,.A,AVG.GP_.A) (4.15)

Step 2: Supposing that two adjacent fuzzy rules A; and A, are the left and the right antecedent
fuzzy sets to the observation fuzzy set A*. Hence, the weight of trapezoidal fuzzy sets can be
determined for each triangular (the left and right) by Eq.(4.16).

GR.A"L-GP,.AL| GP..A'R-GP,.AR|
WL =1- WR, =1-

, (4.16)
' GP,.AL-GP.AL ! GP,.AR-GP, AR

WLI and WRi denote the weight of Rulei of the left and right triangulars fuzzy sets, (0 <
WLi <1), (0 < WRi < 1). Moreover, i =1, 2, represents the individual fuzzy rules, as given in
Fig. 50 holding the property of (WL1 + WL2 =1) and (WR1 + WR2 =1).
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Step 3: The two reference points GPx.AL and GPx AR of the fuzzy interpolative reasoning
result B* could be calculated for left and right triangular by Eq.(4.17).

2 2
GP.B'L=) WL, xGP,.BL,,  GP,B'R=) WR, xGP,.BR (4.17)

i=1 i=1

Step 4: The fuzziness sides of the B* fuzzy set can be calculated for the left triangular by
Eq.(4.18) and for the right triangular by Eq.(4.19).

( . PSy(BL) )
PSm(AL*) x ©f_y WL; x PSAA:((ALi%’

PSpm(BL*) = if 3; PSp(ALy) >0 Y (4.18)
PSm(AL*),
if Vi PSp(ALj) =0

PSu(BR)
PSu(AR;)’

(PSp(AR*) x Y2, WR; x
PSp(BR") = 4 if 3; PSy(AR;) > 0 b (4.19)
PSp(ARY),
if V; PSp(AR;) =0

J

M €[PS, PS3], PS; refers to the left fuzziness side, and PS;denotes the right fuzziness side
for the two triangles fuzzy sets AL and AR. The top part of Eq.(4.18)and Eq.(4.19) is performed
to conclude the left fuzziness side PS;and the right fuzziness side PS;of the fuzziness of B*
fuzzy set. If one of the antecedents A; and A, fuzzy sets exits, PS; or PSzis bigger than zero, if
both PS; or PS3 of A; and A, fuzzy sets are zero, the bottom part of Eq.(4.18) and Eq.(4.19)

could be used.

Step 5: Based on the results of step 3 and 4, the reference points (GPx.BL*and GPx.BR*), the
fuzziness sides (PS;and PS3) could be used to determine the conclusion B*of the trapezoidal
fuzzy set, which based on the following cases

1. In case the results of the left and right B*TR, and B* TRy triangulars fuzzy sets have the
same values; then the conclusion can be determined as follows.

*= [GPx.BL*, GPx.BL*, GPx.BR*, GPx.BR*] (4.20)

2. In case the result of the left triangular B*TR, has the same values, and the right triangular
B*TRg has the same values too, but both left and right values are not the same. The

conclusion values could be defined by GPy = (GPx.BL*+ GPx.BR*)/2 as follows.
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Br= [G P, GPxxe, GPxue, GPXle] (4.21)

3. In case the left has the same values, we will use B*L, but in case the right has the same
values, we will use B*R, then the conclusion can be determined as follows.

BL* = [GPxB"L, GP«B"L, GP4B*R, GPyB"R+B"R(ps3)]

* * * * * (422)
B = [prB L'B L(psl), prB L, prB R, GP)(B R]

4. In case, all values result from the left and the right triangles are different. The conclusion
can be determined as follows.

B, =GP,.B'L—B L,
B, = MP.B" —B'L g,

*

B; = MP.B" —B"R psy

*

B; =GP,.B'R+B"Ripg,,

(4.23)

Because (B*; < B", < B"3 < B";), we can see that the proposed method can preserve the
convexity of the fuzzy interpolative reasoning result with a trapezoidal fuzzy set. We can see
that the value of the left point (B*1) is smaller than or equal to the values of the reference point
(GPx.B*L and GPx.B*R), which are also smaller than or equal to the value of the right point
(B*4). Regarding the main point (MP) of the trapezoidal fuzzy setcan be calculated by MP.B*=
AVG.GPy B+ ( ((AVG.GPy A*- AVG.GPy A;) x (AVG.GPy B,- AVG.GPy B1)) / (AVG.GPx A,-
AVG.GPx Ay)).

4.3. The validation of the Incircle-FRI to Normality and Convexity (CNF)
condition

The proposed Incircle-FRI method developed related to the representation of the reference
point and fuzziness sides of a triangular fuzzy number by its Incircle properties, this follows
geometrical considerations for performing fuzzy interpolation, which leads to producing
Convex and Normal Fuzzy set (CNF) for all the fuzzy rule bases and observation configurations.
In order to ensure that (Inf(A;) < Inf(A4,) < Sup(4i,) < Sup(As.)), the coordinate of the
conclusion B* should be satisfying with (b*; <5, <b*3<b™y).

In the following, we will study all CNF_Notations that used to prove the normality and
convexity of the Incircle-FRI method according to the core and fuzziness sides conditions as
follows:

If the fuzzy sets of the antecedent and the consequent have a uniform core and boundary
lengths, then the conclusion fuzzy set is always normal if and only if the following conditions
of the Left Fuzziness Side (LFS.PS;) length of the observation by EQq.(4.24) and Eq.(4.25)
hold.
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o IfLFS(A")#0
LFS(PS1)1 <LFS(PS;)2 (4.24)
where

LFS(PS:)1 = LFS_diff(B1By) x (LFS(4) — LFS(A*)),
LFS(PS1)2 = LFS(B) x (LFS_diff(A*Ac) + LFS_diff(A,A*) +2x LFS(AY)

e IfLFS (A =0

LFS(PS1)1 < LFS(PS;)2 (4.25)
where
LFS(PS1)1 = LFS_diff(B1By) x (LFS(4) — LFS(A*)),
LES(PS1)2 = LFS(B) x LFS_diff(AA)
And,

LFS(PS1)(A) = (LFS(PS1)(A1) + LFS(PS1)(A2))/2, and
LFS(PS1)(B) = (LFS(PS1)(B1) + LFS(PS1)(By))/2.

For Core (CoreL and CoreR) and Right Fuzziness Side (RFS(PS3)) lengths, similar equations
to the left fuzziness side (LFS(PSy)) length could be constructed.

According to Eq.(4.26), Eq.(4.27),and Eq.(4.28), the core and fuzziness sides lengths (Left
and Right) of the conclusion can be determined. For verifying the normality of the Left
Fuzziness Side (LFS(PS,)) length of the conclusion, Eq.(4.26) could be applied:

LFS(PS1)I < LFS(PS1)2 (4.26)
where
LFS(PS1)1 = LFS_diff(B1By) x (((LFS(Ay) + LFS_diff(A*A;)) x (LFS(AL)

+ LFS_diff(A2A%))) — ((LFS(A*) + LFS_diff(A*A))x (LFS(AY)
+ LFS_diff(A,A")))

LFS(PS1)2 = ((LFS(A;) + LFS_diff(A*Aq)) x (LFS_diff(A*A;) + LFS(AY))
x LFS(B,)) + ((LFS(A,) + LFS_diff(A,A") x (LFS_diff(A,A%)
+ LFS(A") x LFS(By))

The Core length of the conclusion can be determined by EQ.(4.27) as follows:

For the left core CoreL(GP) of TR,.

CoreL(GP)I < CoreL(GP)2 (4.27)
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where

CoreL(GP)1 =CoreL_diff(B1B2) x (((CoreL(A;) + CoreL_diff(A*A;)) x (CoreL(A,)
+ CoreL_diff(A2A")) — ((CoreL (A") + CoreL_diff(A*A;))x (CoreL (A"
+ Corel_diff(AA")))

CoreL(GP)2 = ((CoreL(A;) + CoreL_diff(A*A;)) % (CoreL_diff(A"A;) + CoreL(A"))
x CoreL(B;)) + ((CoreL(A;) + CoreL_diff(A2A")) x (CoreL_diff(A,A*)
+ CoreL(A") x CoreL(B,))

For the right core length ("CoreR(GP)") can be calculated as the same equations and parameters
of the left core TR_ "CoreL(GP)" as presented above.

For Right Fuzziness Side (RFS(PS3)) length of the conclusion can be determined by the
following EQ.(4.28).

RFS(PS3)1 < RFS(PS3)2 (4.28)
where

RFS(PS3)1 = RFS_diff(B1By) x ((RFS(A1) + RFS_diff(A*A1)) x (RFS(A,)
+ RFS_diff(A,A"))) — ((RFS(A) + RFS_diff(A*A1))x (RFS(AY)
+ RFS_diff(AA%))))

RFS(PS3)2 =((RFS(Ay) + RFS_diff(A*A)) x (RFS_diff(A"A;) + RFS(A))
x RFS(By)) + ((RFS(A) + RFS_diff(AA*)) x (RFS_diff(AsAY)
+ RFS(A")) x RFS(By))

The parameters of the core, left, and right lengths of the previous equations can be defined as
follows:

LFS = TR PSy(Fs)
CoreL = TR .GPx (Fs)
CoreR = TRRGPy (Fs)
RFS = TRgrPS3(Fs)

Fs belongs to fuzzy rules and observation (A;, A*, and B;),and TR, and TRy refer to the left and
right triangular in case the membership function is trapezoidal.

LFS_diff(A*A;) = TRLPS1(A") - TRLPS1(A1)
CoreL_diff(A"A;) = Core_TR_L(A") - Core_TR_L(A;)
CoreR_diff(A*A;) = Core_TRgR(A") - Core_TRgR(A1)
RFS_diff(A"A;) = TRrRPS3(A”) - TRRPS3(A;)

In the same way, we can calculate the left, right and core between (AA", B1B,, A2A1),

69|Page



Moreover, from another point of view, the length ratio of the distance between the fuzzy sets
of the antecedent with observation (A;, A*), and consequent (B;). Eq.(4.29), Eq.(4.30), and
Eq.(4.31) could also be used to check the normality (validity) of the conclusion, which can be
defined as follows:

For the length ratio of the left fuzziness side (LFS(PS)):

LFS.Ratiol= LFS(B) / LFS(A)

LFS.Ratio2=LFS(A) / (LFS(A™A;) + LFS(A2AM) (4.29)
where
LFS (A) = TR_PS1(A2) — TRLPS1(A1)
LFS(B) = TRLPS]_(BZ) — TRLPSJ_(B;L)
LFS(A*A]_) = TRLPS]_(A*) — TRLPS]_(A]_)
LFS(A2A™) = TR.PS;(A2) — TRLPS1(AY)
For the length ratio of the Left Core of TR, (CoreL.Ratio):
CoreL.Ratiol=CoreL(B) / CoreL(A) (4.30)
CoreL.Ratio2=CoreL(A) / (CoreL(A"A;) + CoreL(AAY)) '
where
CoreL(A) = CoreL(A,) - CoreL(A;)
CoreL(B) = CorelL(B;) - CoreL(Bs)
CoreL(A"A;) = CoreL(A") - CoreL (A1)
CoreL(A,A") = CoreL(A,) - CoreL(A")
The Right Core of TRg (CoreR.Ratio), it can be calculated at the same (CoreL.Ratio).
For the length ratio of the right fuzziness side (RFS(PS3)):
RFS.Ratiol=RFS(B) / RFS(A) (4.31)

RFS.Ratio2=RFS(A) / (RFS(A*A;) + RFS(A,A%))

where
RFS (A) = TRRPS3(Az) — TRRPS3(A1)
RFS(B) = TRrPS3(B;) — TRrRPS3(B1)
RFS(A*A;) = TRrPS3(A*) — TRRPS3(Ay)
RFS(A,A") = TRrPS3(A;) — TRRPS3(A%)

4.4. Comparison of the proposed method with some other FRI methods

This subsection discusses the performance of the proposed "Incircle-FRI" method, some
numerical examples in [22], [52], [57], [58], [59] will be compared with the results of KH-FRI
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[3], [25], [39], KHstabilized-FRI [5], VKK-FRI [4], CCL-FRI [52], HS-FRI [22], HTY-FRI
[53], and HCL-FRI [42]. The KH-FRI, the KHstabilized-FRI, and the VKK-FRI methods were
tested using the Matlab FRI toolbox [24], [26]. Also, we present a comparison summary of the
selected FRI methods with Incircle-FRI based on five evaluation criteria (i.e., "CNF property",
"different membership functions", which mean there is no restriction the shape of the fuzzy
sets, "different kinds membership functions of the antecedents and the consequents fuzzy
rules", "the Approximation capability of the fuzziness and core between the observation and
conclusion", and "logically consistent with respect to the ratios of fuzziness sides (see property
1 and property 2)").

Example TR1 [22], [52], [57], [58], [59]:

e All the rule antecedents, consequents, and the observation are triangular fuzzy sets.

e Observation A*=[7,8,9].

Table 1 describes all the attribute values and the results of fuzzy interpolative reasoning
methods, therefore, we conclude the following:

e The conclusion fuzzy set of the proposed Incircle-FRI is represented by triangular
membership function as B* = (GPx.B*-PS;, GPx.B*, GPx.B*+PS3).

e Based on Eq.(4.6), Eq.(4.9), and Eq.(4.10), the reference point value was calculated by
the fuzzy interpolation of the fuzzy sets A;, Az, By, and B,. Where GPyx.B* =5.42.

e Also, basedon Eq.(4.7),Eq.(4.9),and Eq.(4.11), we obtain the left fuzziness PS; = 0.472
and the right fuzziness PS; =1.737.

e The proposed Incircle-FRI gets the interpolated consequence as a triangular fuzzy setB* =
[4.955.427.16].

e Fig. 100 (see Appendix A.1) describes the results of various FRI methods, in which, the
KH [3], [25], [39], KHstabilized [5], and VKK [4] FRI methods generated an abnormal
(non-convex) fuzzy sets. While the FRI methods CCL [52], HS [22], HTY [53], HCL [42],
and the proposed Incircle-FRI have CNF conclusion.

Based on EqQ.(4.13) and Eq.(4.14) and Table 1, the logically consistent properties and the
respect to ratios of the fuzziness two adjacent rules (A; = B;) and (A; = B,), we conclude the
following:
e The left ratio fuzziness RF.PS; (A1, B1) = 0.4 and the ratio RF.PS; (A, B,) = 0.5, and the
left ratio fuzziness RF.PS; (A*, B*) of the proposed Incircle-FRI, CCL FRI, the HCL FRI,
the HTY-FRI and HS-FRI methods are 0.44, 0.44, 0.22, 0.66 and 0.43,
Therefore, the proposed Incircle-FRI, CCL FRI, and HS-FRI satisfy property 1, where
MIN (RF.PS; (A1, B1), RF.PS; (A2, By)) = 0.4 < RF.PS; (A%, B¥) = [Incircle(0.44),
CCL(0.44), HS(0.43)] <MAX (RF.PS; (A4, B1), RF.PS; (A2, B,))=0.5.
e The right ratio fuzziness of rules (A; = By and A; = B;) RF.PS;3 (A1, B1) = RF.PS3 (A2, B))
= 2, and the right ratio fuzziness RF.PS3 (A*, B*) of the proposed Incircle-FRI, CCL FRI,
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the HCL FRI, the HTY FRI, HS FRI, KHstabilized-FRI, and KH-FRI methods are 2, 2,
0.8, 0.88, 1.12, 2, and 2, respectively.
We can see that only RF.PS; (A*, B*) of the proposed Incircle-FRI, CCL FRI,
KHstabilized-FRI, and KH-FRI satisfy Property 2, where MIN (RF.PS3 (A1, B1), RF.PS;3
(A2, B,)) = MAX (RF.PS3 (A1, By), RF.PS5 (As, B,)) = RF.PS3 (A%, B¥) = 2.
Based on the above, the fuzzy interpolative reasoning result of the proposed Incircle-FRI is
logically consistent in terms of Property 1 and property 2.

Table 1. Fuzzy Interpolative Reasoning Results of Example TR1

Attribute Values Methods Result_s of Fuzzy_
Interpolative reasoning

KH-FRI [3],[25],[39] B-=(6.36 5.38 7.38)

A1=[056] KHstabilized-FRI [5] B-=(6.36 5.38 7.38)
A,=[1113 14] VKK-FRI [4] B-=(6.15 5.38 7.84)
B1=[0 2 4] CCL-FRI [52] B-=(4.94 5.38 7.38)
B,=[10 11 13] HS-FRI [22] B*=(5.83 6.26 7.38)
A*=[789] HTY-FRI [53] B-=(5.76 6.42 7.30)
HCL-FRI [42] B-=(6.36 6.58 7.38)

The Incircle-FRI B*=(4.955.427.16)

Example TR2 [22], [52], [58]:
e All the rule antecedents, consequents, and the observation are triangular fuzzy sets.
e Observation A= [8, 8, 8].

Table 2 and Fig. 101 (see Appendix A.2

) give all attribute values and the results of fuzzy interpolative reasoning, we conclude the
following:

e Inwhich the KH-FRI [3], [25], [39], the KHSstabilized-FRI [5], and the VKK-FRI [4], once
again generate a non-convex fuzzy conclusion. The HCL-FRI [42] produces a non-convex
fuzzy set. Although it is a non-triangular fuzzy set, the FRI methods CCL-FRI [52], HS-
FRI [22], HTY-FRI [53], and proposed Incircle-FRI generate normal singleton conclusion.

e By EQ.(4.10), the Incircle-FRI produces a singleton fuzzy set represented by the reference
point GPx.B*=5.42.

e By EQ.(4.11), the left fuzziness PS;=0 and the right fuzziness PS3;=0.

e The proposed Incircle-FRI gets the interpolated consequence as singleton fuzzy set B* =
[5.42,5.42,5.42] based on Eq.(4.12).

e In this example, the proposed Incircle-FRI performs better than the KH, KHstabilized,
VKK, and HCL FRI.

Based on EqQ.(4.13) and Eq.(4.14) and Table 2, the left ratio fuzziness, and the right ratio
fuzziness of this example have the same results in Example TR1 as follows:
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e The results of the proposed Incircle-FRI, CCL-FRI satisfy property 1 for the left ratio
fuzziness RF.PS; (A% B*), where MIN (RF.PS; (A1, B1), RF.PS; (A2, By)) = 0.4 <RF.PS;
(A%, B*) = [Incircle (0.44), CCL (0.44)] <MAX (RF.PS1 (A1, B1), RF.PS; (A2, By)) =0.5.

e While the right ratio fuzziness RF.PS3 (A1, B1) = RF.PS;3 (A2, By) = 2, and the results of
the right ratio fuzziness RF.PS3 (A*, B*) of the proposed Incircle-FRI and CCL-FRI satisfy
Property 2, which are 2.

Based on the above, the fuzzy interpolative reasoning result of the proposed Incircle-FRI is
logically consistent in terms of Property 1 and Property 2 for the left and right ratio fuzziness,

respectively.
Table 2. Fuzzy Interpolative Reasoning Results of Example TR2

Attribute Values Methods Result_s g Fuzzy_
Interpolative reasoning

KH-FRI [3],[25],[39] B-=(7.27 5.38 6.25)

A=[056] KHstabilized-FRI [5] B-=(7.27 5.38 6.25)

Ar=[11 13 14] VKK-FRI [4] B-=(7.00 5.38 7.00)

B1=[0 24] CCL-FRI [52] B*=(5.38 5.38 5.38)

B.=[10 11 13] HS-FRI [22] B-=(6.49 6.49 6.49)

A=[888] HTY-FRI [53] B=(6.49 6.49 6.49)
HCL-FRI [42] B*=(7.27 - 6.25)

The Incircle-FRI B*=(5.425.425.42)

Note: thesign (-) indicates no clear evidence for the methodto handle the case in the example

Example TR3 [22], [52], [58]:

¢ In this example, the antecedents of the fuzzy rules and observation are represented by
singleton and triangular fuzzy sets.

e Observation A*=[5, 6, 8].

Table 3 and Fig. 102 (see Appendix A.3) describe all the results and attributes values of this
example; therefore, we conclude the following:

e The result of the proposed Incircle-FRI is computed using Eq.(4.6), Eq.(4.9), and
Eq.(4.10), which produce a triangular fuzzy set, in which the value of the reference point
GPx.B* is calculated based on the fuzzy interpolation of the fuzzy sets A;, Az, By, and By,
where GPx.B*= 6.37.

e According to Eq.(4.7), Eq.(4.9), and EqQ.(4.11), the left fuzziness PS; = 1.089,and the
right fuzziness PS;= 1.910 are determined.

e Basedon Eq.(4.12), the conclusion of the proposed Incircle-FRI is a CNF triangular fuzzy
setB~=[5.28, 6.37,8.28].

e Meanwhile, the KH-FRI [3], [25], [39], the KHstabilized-FRI [5], the HCL-FRI [42], the
CCL-FRI [52], the HS-FRI [22], and HTY-FRI [53] give a very reasonable conclusion. In
contrast, in this case, the VKK-FRI [4] and the HTY-FRI [53] could not generate a usable
conclusion.
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Example TP1 [22], [52], [58]:
e All the rule antecedents, consequents, and the observation are trapezoidal fuzzy sets.
e Observation A*=[6, 6, 9, 10].
Table 4 and Fig. 103 (see Appendix A.4) describe all the attribute values and the results of FRI
methods, therefore, we conclude the following:
e Basedon EQ.(4.6),Eq.(4.16),and Eq.(4.17), the reference points values are calculated by
the fuzzy interpolation of the fuzzy sets A;, A;, Bi, and B,, where GPx.BL* = 4.54 and
GPx.BR*=17.47.

Table 3. Fuzzy Interpolative Reasoning Results of Example TR3

Attribute Values Methods Result.s of Fuzzy.
Interpolative reasoning
KH-FRI [3],[25],[39] B*=(5.33 6.33 9.00)
A=[3373] KHstabilized-FRI [5] B*=(5.33 6.33 9.00)
A=[1212 12] VKK-FRI [4] B=(- 0.00 -)
Bi=[4 4 4] CCL-FRI [52] B-=(5.33 6.33 8.33)
B.=[10 11 13] HS-FRI [22] B'=(5.71 6.28 8.16)
A"=[568] HTY-FRI [53] B*=(")
HCL-FRI [42] B*=(5.33 6.55 9.00)
The Incircle-FRI B+=(5.286.378.28)

Note: the sign (-) indicates no clear evidence for the methodto handle the case in the example

e Basedon EQ.(4.7),EQ.(4.16),EQ.(4.18),and Eq.(4.19), we obtain the left fuzziness of the
left triangular TR PS; = 0 and the right fuzziness the right triangular TRrPS3; = 1.05.
e Consequently, the Incircle-FRI gets conclusion as trapezoidal fuzzy set B*= [4.54 4.54
7.47 8.53,according to Eq.(4.22).
e Fig. 103 (see Appendix A.4) shows the results of the FRI methods. The HCL-FRI [42] is
unable to generate a conclusion in this case. The KH-FRI [3], [25], [39], the KHstabilized-
FRI [5], the VKK-FRI [4], and the HTY-FRI [53] generate an abnormal trapezoidal fuzzy
set. In contrast, the CCL-FRI [52], the HS-FRI [22], and the proposed Incircle-FRI
generate CNF trapezoidal fuzzy sets.
Concerning ratios of the fuzziness of the two rules (A; = B;) and (A, = B;) obtained by
Eqg.(4.13) and Eq.(4.14), and Table 4, we can see that :
e The left ratio fuzziness RF.PS; (A;, B1) = 0.5, RF.PS; (A;, B;) = 1, and the left ratio
fuzziness RF.PS; (A*, B*) of the proposed Incircle-FRI and CCL-FRI are 0.64 and 0.69.
Therefore, the proposed Incircle-FRI and CCL-FRI methods satisfy property 1, where MIN

74|Page



(RF.PS; (4, B)) < RF.PSi(A*, B*) < MAX (RF.PSy(4, B)) is equal 0.5 < [Incircle(0.64),
CCL(0.69)] <1.

e With the right ratio fuzziness, we canalso see that the ratio RF.PS3 (A1, B1) = RF.PS;3 (A,

B,) = 1, and RF.PS3 (A*, B¥) of the proposed Incircle-FRI, HTY FRI, HS FRI, CCL FRI,
KHstabilized-FRI, and KH-FRI methods are 1, 1.62, 0.71, 1, 1, and 1, respectively. We
can see that the right ratio fuzziness RF.PS; (A*, B*) of the proposed Incircle-FRI, CCL
FRI, KHstabilized-FRI, and KH-FRI satisfy Property 2.

Based on the above, the fuzzy interpolative reasoning results of the proposed method are
logically consistent in terms of Property 1 and Property 2.

Table 4. Fuzzy Interpolative Reasoning Results of Example TP1

Attribute Values Methods Result_s gl Fuzzy_
Interpolative reasoning
KH-FRI [3], [25], [39] B*=(5.45 4.25 7.50 8.5)
A1=[0456] KHstabilized-FRI [5] B*=(5.45 4.25 7.50 8.5)
A=[1112 13 14] VKK-FRI [4] B*=(5.32 4.38 7.38 8.68)
Bi=[023 4] CCL-FRI [52] B*=(4.25 4.25 7.5 8.5)
B,=[10 11 12 13] HS-FRI [22] B*=(5.23 5.23 7.61 8.32)
A’=[66910] HTY-FRI [53] B*=(4.98 7.44 6.44 8.06)
HCL-FRI [42] B+=(-)
The Incircle-FRI B*=(4.54 4.547.47 8.53)

Note: thesign (-) indicates no clear evidence for the methodto handle the case in the example

Example TP2 [52], [59]:

The rule antecedents and the observation are triangular fuzzy sets; the consequents are
trapezoidal fuzzy sets.

Observation A* = [7, 8, 9].

Table 5 and Fig. 104 (see Appendix A.5) show all the results of the FRI methods and attributes
values of this example, based on Eq.(4.6), Eq.(4.7), Eq.(4.16), Eq.(4.17), Eq.(4.18), and
EQ.(4.19) the conclusion of the Incircle-FRI can be calculated by the fuzzy interpolation of the
fuzzy sets A;, Az, By, and By; therefore, we conclude the following:

The reference points GPx.B*. =5.331, GPx.B*r =6.435,and MP.B*=5.9.
The fuzziness values of the left triangular are TR_PS; = 0.3233 and TR_PS3 = 0.0.
The fuzziness values of the right triangular are TRrRPS; = 0.0 and TRgPS3; = 0.898.

Therefore, the Incircle-FRI produced a trapezoidal fuzzy conclusion B*=[5.015.90 5.90
7.33], which is calculated by Eq.(4.23).

In this case, the HCL-FRI is unable to generate any conclusion. The conclusion of the KH-
FRI [3], [25], [39], the KHstabilized-FRI [5], and the VKK-FRI [4] are not convex and
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normal. The CCL-FRI [52], the HS-FRI [22], the HTY-FRI [53], and the Incircle-FRI
generate CNF trapezoidal conclusion.
Basedon by Eq.(4.13)and Eq.(4.14),and Table 5, the ratios of fuzziness the two adjacent rules
(A; = By, A2 = By), and the ratios of fuzziness of the observation and conclusion (A* = B*) of
the FRI methods.

e The left ratio fuzziness of RF.PS; (A1, B1) = 0.4, RF.PS; (A, B,) = 0.5, and the left ratio
fuzziness RF.PS; (A*, B*) of the proposed Incircle-FRI, the HS FRI, the CCL FRI, and
HTY-FRI are 0.44, 0.43, 0.44, and 0.33, respectively, therefore, the proposed Incircle-FRI,
the HS FRI, and the CCL-FRI satisfy property 1, where MIN (RF.PS; (A1, B1), RF.PS; (A2,
Bz)) < RFPS]_ (A*, B*) < MAX (RFPS]_ (A]_, Bl), RFPS]_ (Az, Bz)), which is equal 04 <
(0.44, 0.44, 0.43) <0.5.

¢ Inthe right ratio fuzziness, we canalso see that the ratio RF.PS3 (A1, B;) = RF.PS;3 (A2, By)
=1, and RF.PS; (A~, B) of the proposed Incircle-FRI, the HS FRI, the CCL FRI, HTY
FRI, KHstabilized-FRI, and KH-FRI are 1, 0.67, 1, 0.21, 1, and 1. Therefore, the right ratio
fuzziness RF.PS3 (A*, B*) of the proposed Incircle-FRI, CCL FRI, KHstabilized-FRI, and
KH-FRI satisfy Property 2.

Based on the above, the fuzzy interpolative reasoning results of the proposed method are
logically consistent in terms of Property 1 and Property 2.

Table 5. Fuzzy Interpolative Reasoning Results of Example TP2

Attribute Values Methods Result_s il Fuzzy_
Interpolative reasoning

KH-FRI [3], [25],[39] B*=(6.36 5.38 6.38 7.39)

A:=[056] KHstabilized-FRI [5] B*=(6.36 5.38 6.38 7.38)

Ar=[1113 14] VKK-FRI [4] B=(6.16 5.38 6.38 7.84)

Bi=[0 23 4] CCL-FRI [52] B*=(4.94 5.38 6.38 7.38)

B.=[10 11 12 13] HS-FRI [22] B*=(5.93 6.36 6.80 7.47)

A=[789] HTY-FRI [53] B*=(5.87 6.20 7.20 7.41)
HCL-FRI [42] B-=(-)

The Incircle-FRI B*=(5.015.905.907.33)

Note: the sign (-) indicates no clear evidence for the methodto handle the case in the example

Example TP3 [52]:

e The rule antecedents and the observation are trapezoidal fuzzy sets; the consequents are

triangular fuzzy sets.

e Observation A*=[6, 6, 9, 10].
Table 6 and Fig. 105 (see Appendix A.6) show all the results of the FRI methods and attributes
values to this example. The representative values of the proposed Incircle-FRI are determined
by the fuzzy interpolation of the fuzzy sets A;, A, Bi, and B, using EQ.(4.6), Eq.(4.7),
Eq.(4.16),Eq.(4.17),Eq.(4.18),and Eq.(4.19). This case,
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e The reference points GPx.B*. = 4.3748 and GPx.B*r = 6.6639.

e The fuzziness values of the left triangular are TR_PS; = 0 and TR_.PS; = 0.

e The fuzziness values of the right triangular are TRgRPS; = 0 and TRgPS; = 1.90.

e The proposed Incircle-FRI produced a trapezoidal fuzzy conclusion B*= [4.37 4.37 6.66
8.57] that is calculated according to Eq.(4.22).

e The KH-FRI [3], [25], [39], the KHstabilized-FRI [5], and the HTY-FRI [53] cannot
generate a convex and normal fuzzy conclusion. Meanwhile, the CCL-FRI [52], the HS-
FRI [22], and the VKK-FRI [4] have a CNF trapezoidal fuzzy conclusion.

Basedon EqQ.(4.13) and Eq.(4.14), and Table 6, the left ratio fuzziness of the Rulel (A; = B;)
RF.PS; (A1, B1) = 0.5 and the ratio of the Rule2 (A, = B;) RF.PS; (A2, B;) = 1. Thus, we can
see that:

e The left ratio fuzziness RF.PS; (A*, B¥) of the proposed Incircle-FRI and CCL-FRI are
0.64 and 0.69. Therefore, the proposed Incircle-FRI and CCL-FRI satisfy property 1,
where MIN (RF.PS; (A1, B1), RF.PS; (A2, B,)) = 0.5 < RF.PS; (A, B) [Incircle (0.64),
CCL (0.69)] <MAX (RF.PS; (A1, By), RF.PS; (A2, By)) = 1.

e For the right ratio fuzziness, the ratio RF.PS3 (A1, B;) = RF.PS3 (A2, By) = 2, and the right
ratio fuzziness RF.PS3 (A B*) of the proposed Incircle-FRI, CCL FRI, the HTY FRI, HS
FRI, the VKK-FRI, the KHstabilized-FRI, and the KH-FRI methods are 2, 2, 2.8, 3.1, 3.3,
2, and 2, respectively. We can see that only RF.PS3 (A*, B*) of the proposed Incircle-FRI,
CCL FRI, the KHstabilized-FRI, and the KH-FRI satisfy Property 2, in which RF.PS3 (A4,
B]_) = RFPSg (Az, Bz) = RFPS3 (A*, B*) =2.

Based on the above, the fuzzy interpolative reasoning result of the proposed method is logically
consistent in terms of Property 1 and Property 2.

Table 6. Fuzzy Interpolative Reasoning Results of Example TP3

Attribute Values Methods Result_s gl Fuzzy_
Interpolative reasoning
KH-FRI [3],[25],[39] B-=(5.45 4.25 6.50 8.50)
A:i=[04 56] KHstabilized-FRI [5] B*=(5.45 4.25 6.50 8.50)
A=[11 1213 14] VKK-FRI [4] B-=(5.31 5.38 5.38 8.68)
Bi=[024] CCL-FRI [52] B-=(5.38 5.38 5.38 7.38)
B,=[10 11 13] HS-FRI [22] B-=(5.46 5.46 5.46 8.55)
A'=[66910] HTY-FRI [53] B*=(5.07 7.26 5.26 8.15)
HCL-FRI [42] B-=(-)
The Incircle-FRI B+=(4.37 4.37 6.66 8.57)

Note: the sign (-) indicates no clear evidence for the methodto handle the case in the example
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Table 7 presents asummary of evaluation for the proposed Incircle-FRI method compared with
the current methods (i.e., KH-FRI [3], [25], [39], KHstabilized-FRI [5], VKK-FRI [4], CCL-
FRI [52], HS-FRI [22], HTY-FRI [53], and HCL-FRI [42]) according to the criteria (i.e., "CNF
property", "different membership functions", which mean there is no restriction the shape of
the fuzzy sets, "different kinds membership functions of the antecedents and the consequents
fuzzy rules", "the Approximation capability of the fuzziness and core between the observation
and conclusion", and "logically consistent with respect to the ratios of fuzziness sides (see
property 1 and property 2)").

Table 7. Descriptionofthe Evaluation Criteria ofthe Incircle-FRI Method with Existing Methods

Methods
Criteria KH KHstabilized- VKK HCL | HTY | CCL HS Incircl
FRI FRI FRI | FRI | FRI | FRI | FRI rl;';cle
[1]-[3] [5] [4] [12] | [15] | [14] | [13]
CNF property X X X - - N v N
Handle leferen'_[ Membership J J J « ] J J J
Function
The ANT andthe CON
membership functionscan be \ \ \ X - \ J \
different
The Approximation capability of
the fuzziness and core between X X X X X - - R
observation and Conclusion
Logically con_SIStent W|t_h respect « « « N J
to the ratios of fuzziness

From Table 7 we can see that the Incircle-FRI methods satisfy with these five evaluation
criteria, where the sign (V) indicates the technique is satisfied with all criteria for all selected
examples, while a sign (-) shows the method has a problem in most examples, and the sign (X)
indicates the technique does not satisfy with all examples.

SUMMARY

In this chapter, a new fuzzy interpolative reasoning method called "Incircle-FRI", is
introduced, which is defined for triangular CNF fuzzy sets, for a single antecedent universe and
two surrounding rules from the rule-base. The proposed "Incircle-FRI" is based on the incircle
of a triangular fuzzy number, the Gergonne Point (GP) as a reference point of the triangular
fuzzy set, and the "fuzziness sides", i.e., the distances of the endpoints of the support, and the
core from the incircle InTouch points (noted by PSy, PS,, and PS;in this chapter).

The proposed method calculates the conclusion by holding the same rate of distances among
the observation and the two rule antecedents, and the conclusion and the two corresponding
rule consequents with the Gergonne Points (for the reference point of the conclusion), and with
the "fuzziness sides™ (for the shape of the conclusion). The chapter also extends the suggested
"Incircle-FRI" to trapezoidal-shaped fuzzy sets by decomposing their shapes to multiple
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triangular. The generated conclusions are always a CNF fuzzy set for triangular and trapezoidal
fuzzy sets. The performance of the proposed "Incircle-FRI™ is discussed based on numerical
examples, and a comprehensive comparison to other FRI methods, namely with the (i.e., KH-
FRI [3], [25], [39], KHstabilized-FRI [5], VKK-FRI [4], CCL-FRI [52], HS-FRI [22], HTY-
FRI [53], and HCL-FRI [42]). From the experimental results and Table 7, we can see that the
proposed method is considered one of the best current FRI methods. Consequently, the
proposed method provides a useful method as a fuzzy interpolation in dispersed rules-based
systems.
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CHAPTER -5- Extensions of the Proposed Incircle-FRI Method

INTRODUCTION

In this chapter, we will discuss the extensions of the Incircle-FRI for the hexagonal
membership function, multidimensional antecedent variables, and extrapolation using the
shifting ratio and modification of the weighting. Additionally, to prove the performance
extensions of the "Incircle-FRI™ method, some numerical examples will be used to compare
Incircle-FRI with the existing FRI methods (to KH-FRI [3], [25], [39], KHstabilized-FRI [5],
VKK-FRI [4], CCL-FRI [52], HS-FRI [22], HTY-FRI [53], HCL-FRI [42], MACI-FRI [6],
IMUL-FRI [8], and CRF-FRI [7].

5.1. Extensions of the Incircle-FRI Method

Traditional fuzzy reasoning methods demand a complete fuzzy rule base to conclude a
result, but due to incomplete data or lack of knowledge, complete rule bases are not always
available. Besides, many interpolation methods presume that the two closest adjacent rules to
the observation are available, and flank the observation for each attribute (but not necessarily
in the same order). In practice, however, there may be a different number of the closest rules
to a given observation, and the attribute values of these rules may lie just on one side of the
observation. Some interpolation methods cannot handle cases where fuzzy sets with crisp
borders are involved. These limitations inevitably restrict the potential application of some of
the existing FRI techniques. Although fuzzy interpolation has been applied to control problems
[95], [96], [97], relatively few application examples exist in the area of prediction and
classification.

The proposed “Incircle-FRI" introduced in (Chapter 4) can only handle triangular and
trapezoidal fuzzy sets. In this chapter, the hexagonal membership functions will be discussed,
and also to allow interpolation that requires multiple-antecedent rules. For this reason, we
suggested a modification of the weight estimate and included a shift technique in order to
ensure that the reference point (GP) of the observation and the reference point (GP) of the
interpolated (intermediate) observation are mapped together. This weight calculation and shift
technique ensure more reasonably to interpolate the consequent fuzzy result, and this will also
enhance the capability for extrapolation. It is shown that exploiting the generality of these
extensions, and extrapolation can be performed over multiple-antecedent rules in a
straightforward manner.

5.1.1. Extension of the Incircle-FRI to single antecedent with hexagonal fuzzy set

The Incircle concept of a triangular fuzzy number can extend to hexagonal or any complex
polygonal fuzzy membership functions. A hexagonal fuzzy set based on the Incircle-FRI can
be represented by two triangular fuzzy sets AL= (a;, a,, a3z) and AR= (a4, as, ag). Fig. 51
describes the hexagonal fuzzy set representative values, denoted by (a;, a,, as as, as, ag). azand
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a4 denote the left and right reference points, respectively, a; and ag refer to the left and the right
sides of the support points, respectively, a, and as denote the intermediate points.

al “Bgial > “ps3Al > a3
SD3L(a1a3) SD3R(ada6)

Fig.51. The Main Incircle_Notations ofthe Hexagonal Fuzzy Number Represented by Two Triangular Fuzzy
Sets AL and AR Notations.

Fig. 52 describes an example of the suggested Incircle fuzzy interpolative reasoning using
the hexagonal fuzzy set.

H2 -~

H1 - ’ 1 ’ 1 ’ e

- f-2Ed S L s T LR O L

o
5267 Y

Fig.52. Fuzzy Interpolative Reasoning using Hexagonal Membership Functions

In the following, we will present the main steps that will be used to interpolate the proposed
Incircle-FRI reasoning method in case the Hexagonal fuzzy sets, which represented by two AL
and AR triangular fuzzy sets, Eq.(4.4), Eq.(4.6) and Eq.(4.7) could be used to calculate
Incircle_Notations of AL and AR triangulars separately, then applying the following steps:

Step 1: The two closest fuzzy rules [56] must be determined to perform interpolative for single
antecedent fuzzy rules (m), Ruley, Rule,, ..., and Rulen, which are the nearest to the observation
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A* as shown in Fig. 52. The closest fuzzy rules determined using the average of two reference
points GPx.AL and GPx.AR of the hexagonal fuzzy set by AVG.GPx=(GPx.AL and GPx.AR)/2.
Then, distances can be computed using Eq.(5.1).

D=d(A,A") =d(AVG.GP.A,AVG.GP A" (5.1)

Step2: Supposing that two adjacent fuzzy rules A;and A, are the left and right antecedent fuzzy

sets to the observation fuzzy set A*. Hence, the weight of hexagonal fuzzy rules neighboring
and observation can be determined for each triangular (the left and right) by Eq.(5.2).

GP.AL-GP,.AL| GP,.A'R—GP,.AR|
WL =1- . WR =1- (52)
GP.AL-GP,.AL GP.AR-GP_.AR

Step 3: The two reference points GPx.AL and GPx.AR of the fuzzy interpolative reasoning
result B* could be calculated for left and right triangular by Eq.(5.3).

2 2
GP.B'L=) WL, xGP.BL,,  GP,B'R=) WR, xGP,.BR, (5.3)
i=1 i=1

Step 4: The fuzziness sides of the B*fuzzy set can be calculated for the left triangular by
Eq.(5.4) and the right triangular by Eq.(5.5).

* 2 PSy(BL;
PSM(AL*) x T2, WL; x peulZil,

PSpm(BL*) = if 3; PSp(AL;) > 0 (5.4)
PSM(AL*),
if Vi PSp(AL;) =0

PSp(BR;
PSy(AR*) x Y2, WR; x PSAA:((AR‘_)),

PSp(BR™) = if 3; PSp(AR;) > 0 (5.5)
PSp(AR*),
if V; PSy(AR;) =0
Step 5: Based on the results of steps 3 and 4, the reference points of the conclusion (GPx.BL~
and GPyx.BR*), and the fuzziness sides (PS;and PS3) could be used to determine the conclusion
B~ of the hexagonal fuzzy set. Finally, the conclusion B~ of the Incircle fuzzy interpolative
reasoning for the hexagonal fuzzy setcan be determined by EQ.(5.6).
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. =GP,.B"L—B"Lpg,
, =GP _.BL
s =GP,.B L+ B L,
. =GP.B'R—BR ps,
. =GP,.B'R
6 =GP .B'R+B'Rpg;

(5.6)

Because (B*1 < B*,<B"3 <B*;,<B"5 <B"s), we can see that the proposed method can preserve
the convexity of the fuzzy interpolative reasoning result with a hexagonal fuzzy set.

5.1.2. Extension ofthe Incircle-FRI to multiple fuzzy rules and multiple antecedent
variables.

The case described in Chapter 4 concerns interpolation between two adjacent rules, each
involving one antecedent variable; this means it is easily extendable to rules with multiple
antecedent variables. Of course, the variables determined in both rules must be the same to
make sense for interpolation. Therefore, in the following, Incircle-FRI with multiple fuzzy rules
and multiple antecedent fuzzy interpolative reasoning will be discussed.

The reasoning scheme below is an example with n number of rules and m number of
antecedents.

Ri: If X1isAmnand X2 iS A1z ......... and Xm 1S Aim Then Y is B1;
Ry: If X1isAziand X2 isAz ......... and Xm 1S Aam Then Y is By;
Rn: If Xm is Anmand Xz21iS Amm ......... and Xm 1S Anm Then Y is By;
Observation: If X1is A7 and X2iSA45 ......... and Xm 1S Ay,;

Conclusion: YisB

Let us assume that the observation A; is flanked by four rules with two antecedents rules
on each side; namely Aj; and Az; on the left, and As; and A4 on the right of the first antecedent,
and A3 is flanked by four rules with two rules on eachside; namely A, and Az, on the left, and
As; and Ay, on the right of the second antecedent. The four adjacent fuzzy rules are as follows,
(A111A12 — B1, ApnNAy — By, Ag1AAz; — Bz, and ApA Asp — Ba).

An example of the Incircle-FRI reasoning using multiple fuzzy rules and multiple
antecedents described by trapezoidal fuzzy sets is shown in Fig. 53.

The multiple antecedent fuzzy sets A;; could be denoted by trapezoidal fuzzy set (a1, aijo,
aijs, aija), Which can be represented through two triangular fuzzy sets ALi= (aij1, aij2, aijmp; H)
and AR;;= (aijmp, aij3, aija; H), the observation fuzzy set A]’-‘ is denoted by (a7, a3, a3, a,) ((AL;‘-:
(aj, a3, apyy; H) and AR;= (ajy, a3, ay; H)), the consequent fuzzy set B;is denoted by (bi,,
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biz, bis, bi4) (BLi: (bil, bio, aijMps H) and BR;= (ai,—Mp, bis, bia; H)), wherei=1, 2, ..,nand J =1,
2,..., m and the fuzzy interpolative reasoning result B* is denoted by (B; , B; ,B3 , By).

1 4
Al A21 A*1 A31 A4
o
> X1
1 A~
A12 A22 A*2 A32 A42
]
> X2
A
b2* b3*
B1 B2 B* B3 B4
0 > Y
b1* ba*

Fig.53. Fuzzy Interpolative Reasoning Using Trapezoidal Membership Functions

To interpolate the proposed Incircle fuzzy interpolative reasoning method with multiple
fuzzy rules and multiple antecedents using trapezoidal fuzzy sets (represented by two AL and
AR triangular fuzzy sets), we need to find all Incircle_Notations in Eq.(4.4) - Eq.(4.7) for each
triangular (AL, AR), then applying the following steps:

Step 1: The two closest fuzzy rules [56] must be determined to perform interpolative for single
antecedent fuzzy rules (m), Ruley, Rule,, ..., and Rule,, which are the nearest to the observation
(Ajj < A7 < Ajj+1),as shown in Fig. 53. The closest fuzzy rules determined using the average of
two reference points GPx.AL;; and GPX.AR;; of the trapezoidal fuzzy sets via (AVG.GPxA =
(GPx.ALj; and GPx.AR;;)/2). Then, distances can be computed using Eq.(5.7).

D=d(A;,A")=d(AVG.GP,.A, AVG.GP,.A") (5.7)

Step 2: The weight calculation between trapezoidal fuzzy rules neighboring and observation
could be determined by EQ.(5.8) and EQ.(5.9). The reference point of the intermediate
conclusion B™ can be determined by Eq.(5.10).

B ‘GPX.AJ.*(S) - GPX.A(s)ij‘

, (5.9)
GP,.A,(S) —GP,.A,(s)

w(s)ij =1
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W(s) = o (5.9)

(s)i (5.10)

n
GP.B[,, = > W(s);GPx.B
i=1
where (s) €[L, R] denote the weight of left and right of the Rulei, (0 < WL;; <1), (0 < WR;;
<I),andi=12 .., n j=1,2,..., m ndenotes the number of rules and m denotes the
number of antecedent variables. In the example given for illustration in this subsection, n =4
and m = 2 as shown in Fig. 53. Holding the property of (WLy; + WLy =1), (WR4j + WRy; = 1),
and (W1 + W2 =1).
Step 3: The two reference points GPx.AL and GPx.AR of the fuzzy interpolative reasoning
result B~ could be calculated for left and right triangular by Eq.(5.11).

GP.B'L=) WL, xGP,BL;,  GP,B'R=) WR xGP,.BR (5.11)
i=1 i=1
Step 4: The fuzziness sides of the B* fuzzy set can be calculated for the left triangular by
Eq.(5.12) and for the right triangular by Eq.(5.13).

m . n PS BLI
SRS (ALY x 3 Wik o Bl
j=1 EijPS,\j?%Lij)M) Z PSM (ALu)
j=1
. if 3PS, (AL;)>0
PS,, (BL") = i PSw (Aby) (5.12)
PS,, (AL;")
i=1
m
if v,PS,(AL;)=0
m . n PS BRI
3PS, (ARDx 3T WR x o (BRu)
j=1 EijPSNET%Rij )=0 Z PSM (ARu)
i=1
) if 3PS, (AR;)>0
PS,, (BR") = i PSw (ARy) (5.13)
> PSS, (AR)")
j=1
m
if V,PS,(AR;)=0
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M € [PS;, PS3], PS; refers to the left fuzziness side and PSzdenotes the right fuzziness side
for the two triangle fuzzy sets AL and AR. If PS;or PS; of A; and A, fuzzy sets are bigger than
zero, then the top part of Eq.(5.12) and Eq.(5.13) could be used to conclude the left fuzziness
side PS; and the right fuzziness side PSsof the fuzziness of B~fuzzy set, if both PS;or PS; of
A; and A; fuzzy sets are zero, the bottom part of Eq.(5.12) and Eq.(5.13) could be used.

Step 5: Based on the results of step 3 and 4, the reference points (GPx.BL*and GPx.BR*), and
the fuzziness sides (PS;and PS3) could be used to determine the conclusion B* of the trapezoidal
fuzzy set, which based on the following cases:

1. In case the results of the left and right B*TR_ and B* TRy triangulars fuzzy sets have the
same Vvalues; then, the conclusion can be determined by Eq.(5.14).

*= [GPx.BL*, GPx.BL*, GPx.BR*, GPx.BR"] (5.14)

2. In case the result of the left triangular B*TR, has the same values, and the right triangular
B*TRgr has the same values too, but both left and right values are not the same. The

conclusion values could be defined by (GPyy = (GPx.BL*+ GPx.BR*)/2) as follows.
B*= [GPxx2, GPxixe, GPx1xe, GPyxe] (5.15)

3. In case the left has the same values, we will use B*L, but in case the right has the same
values, we will use B*R, then the conclusion can be determined by Eq.(5.16).

BL*= [GP,B"L, GPxB*L, GPyB"R, GPyB"R+B"Rps3)] (5.16)

BR*= [GPyB"L-B"L 1), GPxB’L, GP,B'R, GPyB*R] '

4. In case all values result from the left and the right triangles are different. The conclusion
can be determined by Eq.(5.17).

B, =GP,.B'L - B*L(PSD

B, =GP_.B'L

*

B, =GP,.B'R
B; = GP,.B'R+ B Rips,,

(5.17)

5.1.3.Extension of the Incircle-FRI to extrapolation using shift ratio and weight
measurement

The Incircle-FRI method is constructed to perform "Interpolation”. Still, it cannot handle
"Extrapolation” mainly due to two factors, which are the weight derivation and the lack of shift
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in a fuzzy set. In the following, we will debate the modification in weight derivation and
introduce the shifting process.

5.1.3.1. Extended weight computation

To extend the Incircle-FRI method to be usable in extrapolation, the weight computation
must be extended. The weight computation, as defined Eq.(5.9) is suitable for two adjacent
single antecedent fuzzy rules, but it is unsuitable for handling more rules and multiple
antecedents. To solve this issue, in [57], extend weight computation is suggested for more rules.
The weight computation not only for the closest rules but also gives adequate weights to
furthest rules.

Fig. 54 represents an example of the various antecedent fuzzy sets with different distances,
dis(y=4, disiz= 7, dis(3=10, dis4)=3, dis(=6, dis=36, dis;)=40. To explain that, let fuzzy
set A, be the observation, and the rest of the fuzzy sets be neighboring rules. Thus, the current
implementation will take the distance between fuzzy set A; and A4, which is disg as the
denominator for Eq.(5.8).

0 : .
Dods(1) ; : > X
< L 9@, 1 gse)

f 0 ) o |
! ) . - s®) .
i — an

Fig.54. Fuzzy Sets Distance Measure

The extended weight computation, an overall distance measure, was considered for the
divisor as in given Eq.(5.18). The denominator of the equation sums up all distances between
the observation and rules. Normalization on the weights must be performed to each antecedent
domain, as presented in EQ.(5.19). This method holds the respective value of the weight, and
it even shows that the farthest distance of rules does not influence the weight distribution.

GPa| —GPa; ‘

w,. =1—

1]

. : (5.18)
;\Gpa’; ~GPa,
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For more details about the difference between the original and extended weight, in [57] a
comparison between them was determined, for example, the weight assigned for furthest rule
from the observation is higher compared to the original method, in the case of using four rules,
the weight between A,As fuzzy sets is 0.036. While, in extended weight, weight is more shared
towards the furthest rule, where A,As is 0.088.

Let us take an extrapolation example (see Fig. 54), the fuzzy set A; is the observation and
fuzzy set A, Az, and A, are the three nearest rule. The distance between all fuzzy sets remains
the same. In this example, the extreme rules distance is represented by dis(s). When computing
the weight value for Waiaz and Waias Using EQ.(5.9), the negative weight value will arise
because the numerator is larger than the denominator. This problem can be resolved using
Eq.(5.19) instead, which will also assist in establishing the extrapolation capability, which will
be further discussed in the following.

(5.19)

5.1.3.2. Extended Shift Ratio

The reference point (GP) of the rule sets can be successfully applied to interpolate the
consequent if the only two most adjacent rules are considered. By implementing the weights
obtained from Eq.(4.9), an interpolated observation can be calculated at the same (GP) as the
real observation. This guarantees that the fuzzy conclusion is interpolated the distance of (GP)
of the observation and rules’ antecedent (See, e.g., in Fig. 47).

Nevertheless, when more than two rules are included, the intermediate observation, GpA',
does not share the same (GP) as the observation, A* asshown in Fig. 55. GpA'is derived from
extended weight, where Waia2 = 0.346, Waoaz = 0.384, and Wapas = 0.269 with their reference
point (GP)ate.g., Ay =3, A, =8,A; =10, and A* = 5. GpA; is determined by Eq.(5.20):

n
GPA; => w,GPA, (5.20)
i=1
where i =1, 2, ..., n refer to the number of rules, j =1, 2, ..., m refer to the number of

antecedents and GpA . In the above example, GpA'is computed, which is 5.648. A shift of

GpA'to GpA~is required to align the intermediate observation to be the same reference point
(GP) of the original observation.
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Fig.55. Interpolation Involving Three Rules

A shift ratio can be derived using the distance between (GP) of the observation and the
intermediate fuzzy set. The shift ratio da can be calculated by Eq.(5.21):

Z Onj (5.21)

Where

5 _ GPA] —GPA
" |GPA,; —GPA|

(5.22)

The reference point (GP) of the last fuzzy rule in the antecedent is indicated by GPA,;,
where j = 1,2, ..., mdenotes the number of antecedents. Eq.(5.22) computes the shift ratio
across an antecedent domain using (GP) distance between the observation and the intermediate
rule concerning (GP) distance of the first and the last rule. As shown in Eq.(5.21) is the average
of the result of Eq.(5.22) from all antecedents fuzzy sets.

The reference point of the fuzzy conclusion, GPx.B*, is next calculated by the shift ratio da
and the intermediate consequent from EQ.(5.10) as 4'using the following:

GPx.B” = GPx.B'+5,(GPx.B, —GPx.B,)). (5.23)

In our example (see Fig. 55), the reference point of the fuzzy conclusion GPx.B*is 4.615.
This shift ratio implementation enables the possibility of extrapolation. Let us consider the
same example, there are only two rules, A, — B, and A; — Bs, with observation A*to show an
extrapolation example. Using Eq.(5.19),we get Wasa,= 0.60 and Waxa3= 0.40,GpA’= 9.6 from
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Eq.(5.20), and with Eq.(5.10) we have GPx.B’ = 8.20. The shift ratio da is -1.512 computed
from Eq.(5.21), the difference between consequents (Bs - Bj) fuzzy sets is 3, and the
extrapolated reference point is GPx.B*= 3.66 by Eq.(5.23).

5.2. Experimental results

In this subsection, several experiments and comparisons are conducted based on the
extensions of the Incircle-FRI in comparison with different FRI methods. Firstly, we present
one example, which aims to prove the performance of the Incircle-FRI with the hexagonal
fuzzy set according to the results of the FRI methods (KH-FRI [3], [25], [39], KHstabilized-
FRI [5], VKK-FRI [4], CCL-FRI [52], HS-FRI [22], HTY-FRI [53], HCL-FRI [42]). Secondly,
we present two different examples (using triangular and trapezoidal fuzzy sets) aim to prove
the validity of the proposed method in case multi antecedent variables comparing to the results
of the FRI methods (KH-FRI [3], [25], [39], KHstabilized-FRI [5], VKK-FRI [4], CCL-FRI
[52], HS-FRI [22], HTY-FRI [53], HCL-FRI [42], MACI-FRI [6], IMUL-FRI [8], and CRF-
FRI [7]). Thirdly, we introduce two different examples (using single and multi-antecedents
variables) to check the performance of the Incircle-FRI with extrapolation property with the
FRI methods (KH-FRI [3], [25], [39], KHstabilized-FRI [5], VKK-FRI [4], HTY-FRI [53],
HCL-FRI [42], MACI-FRI [6], IMUL-FRI [8], and CRF-FRI [7]). The KH-FRI, the
KHstabilized-FRI, VKK-FRI, the MACI-FRI, the IMUL-FRI, and the CRF-FRI methods were
tested by the Matlab FRI toolbox [24], [26].

5.2.1. Incircle-FRI1 with Hexagonal fuzzy set

Example HEX1 [22], [58], [59]:
e All the rule antecedents, consequents, and the observation are hexagonal fuzzy sets.

e The observation describes by hexagonal fuzzy set A*=[6,6.5,7,9, 10, 10.5].
Table 8 and Fig. 106 (see Appendix A.7

) show all the results of the FRI methods and attributes values to this example as follows:

e The representative values of the Incircle-FRI are determined by the fuzzy interpolation of
the fuzzy sets A*, A;, A;, By, and B, using Eq.(4.6),Eq.(4.7), Eq.(5.2), Eq.(5.3), Eq.(5.4),
and Eq.(5.5) that produce a hexagonal fuzzy conclusion B*= [5.59 6.02 6.55 8.63 9.52
10.13].

e By EQ.(5.3),we determined the reference points of the Left triangular GP,.B*.=6.017 and
Right triangular GP,.B*gr = 9.52.

e By Eq.(5.4) and Eq.(5.5), the Leftand Right fuzziness sides of the left triangular value are
calculated, where (TR_PS; = 0.424, TR PS3 = 0.531),the Left and Right fuzziness sides
values of the right triangular are (TRgRPS;= 0.898, TRRPS3=0.601).

e The results of the suggested methods the KH-FRI [3], [25], [39], the VKK-FRI [4], The
CCL-FRI [52], and the HS-FRI [22] generate CNF hexagonal fuzzy conclusion. In
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contrast, the KHstabilized-FRI [5] cannot produce a CNF conclusion, the HTY-FRI [53],
and HCL-FRI [42] have no conclusion atall.

Table 8. Fuzzy Interpolative Reasoning Results of Example HEX1

Attribute Values Methods Result_s gl Fuzzy_
Interpolative reasoning

KH-FRI [3],[25],[39] B-=(5.73 5.74 5.75 5.89 7.25 8.56)
A:=[0134555] KHstabilized-FRI [5] B-=(5.73 5.87 6.00 5.89 7.25 8.56)
Ao=[1111512 13135 14] VKK-FRI [4] B-=(5.60 5.69 5.71 6.26 7.46 8.68)
B:=[00.5134 45] CCL-FRI [52] B-=(5.2 5.4 5.7 8.6 9.7 10.2)
B»=[10.5 11 12 13135 14] HS-FRI [22] B-=(5.47 5.79 6.08 8.42 9.23 9.70)
A"=[66.57 910 10.5] HTY-FRI [53] B*=(-)

HCL-FRI [42] B*=(-)

The Incircle-FRI B+=(5.596.026.558.639.5210.13)

Note: the sign (-) indicates no clear evidence for the methodto handle the case in the example

5.2.2. Incircle-FRI1 with multiple fuzzy rules having multiple antecedents
Example MultiAl [52]:

The Incircle-FRI with multiple antecedent variables where the fuzzy rules are Aj1/ Ay =
B1, A2z1/1 Az, = By, and the observations A7 and A5 are given to determine the
consequence B~ All the rule antecedents, consequents, and the observation are
trapezoidal fuzzy sets.

Observation: A*;)=[67 911],A*,=[68 1012].

By Eq.(5.20), we derive the intermediate observation of the first antecedent A; is (Left
triangular AL. A;=7.5 and Right triangular AR. A;=7.28) and for the second antecedent
A, is (Lefttriangular AL. A,=9.32 and Right triangular AR. A4,=9.50).

Using the derived intermediate reference points (GP) Ay, and A, , the computed shift ratio
from each antecedent domain are determined by Eq.(5.22), where §A; is (for the AL= -
0.06 and AR=0.06) and § A, is (for the AL=-0.04 and AR=0.04). The average shift ratio
could be defined by Eq.(5.21) is §A; = 0and §A; = 0.

Using EQq.(5.10), the intermediate fuzzy consequent reference point is computed, where
the reference point of the left triangular (GPx.BL' = 5.96) and the reference point of the
right triangular (GPx.BR' = 7.86).

Using Eq.(5.23) and the average of the shift ratios, we derive the reference points of the
left triangular GPx.BL*= 5.96 and the reference point of the right triangular GPx.BR*=
7.86.

According to Eq.(5.12) and Eq.(5.13), we can compute the left and right fuzziness sides
of the triangles required to find both extreme points of the fuzzy consequent set. The Left
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fuzziness side of the left triangular (AL.PS;) and the Right fuzziness side of the right
triangular (AR.PS3) are (AL.PS;.B*=1.2) and (AR.PS3.B*=2.0), respectively.

e The fuzzy consequent result hence is formed as B* = (4.755.96 7.86 9.89).

e The conditions and fuzzy interpolative reasoning results are shown in Table 9 and Fig.
107 (see Appendix A.8). Thereis no obvious indication for the HCL-FRI [42] and the HTY -
FRI [53] to handle the fuzzy interpolation with multiple antecedent variables. From Fig.
107 (see Appendix A.8), we can see that the KH method [3], [25], [39], KHstabilized-FRI
[5], VKK-FRI [4], the HS-FRI [22], CCL-FRI [52], MACI-FRI [6], IMUL-FRI [8], and
CRF-FRI [7], and the Incircle-FRI all generated convex and normal results.

Table 9. Fuzzy Interpolative Reasoning Results of Example MultiAl

Attribute Values Methods Result_s o] Fuzzy_
Interpolative reasoning
KH-FRI [3],[25],[39] B-=(5 6.15 8.0 9.88)
Au=[0456] KHstabilized-FRI[5] | B==(5 6.15 8.0 9.88)
Ap=[1234] VKK-FRI [4] B-=(4.9 6.11 8.12 9.88)
B:=[0 23 4] CCL-FRI [52] B-=(4.82 6.17 7.83 9.83)
Axn=[1112 1314] HS-FRI [22] B-=(4.37 5.55 7.48 9.33)
A=[12 14 15 16] HTY-FRI [53] B=(")
B,=[10 11 12 13] HCL-FRI [42] B*=(-)
A"=[67911] MACI-FRI[6] B=(5.32 6.87 7.37 7.87 8.87)
A"=[6810 12] IMUL-FRI [8] B*=(4.3 6.6 7.6 10.68)
CRF-FRI [7] B-=(4.89 6.3 8.0 9.4)
The Incircle-FRI B*=(4.755.967.869.89)
Note: the sign (-) indicates no clear evidence for the methodto handle the case in the example

Example MultiA2 [52], [57]:

e Incircle-FRI with multiple antecedent variables where the fuzzy rules are A1/ A = By,
A2/ Az =By, Asi/1 As; = Bs, and the observations A7 and A3 are given to determine the
consequence B*. All the rule antecedents, consequents, and the observation are
trapezoidal fuzzy sets.

e Observation: A*=[3.5557],A",=[566 7].

e According to Eq.(5.20), we derive the intermediate observation of the first antecedent A is
(AL A; =5.30and AR A; =5.74)and for the second antecedent A4, is (AL A, =5.30and AR
A, =5.74).

e Using the derived intermediate reference points (GP), the computed shift ratio from each
antecedent domain are determined by Eq.(5.22), where §A; = (for the AL= -0.373 and
AR= 0.0373) and § A, = (for the AL= -0.0373 and AR=0.0373). The average shift ratio
based on Eq.(5.21) is A; = 0 and 6A; = 0.
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e Using Eq.(5.10), the intermediate fuzzy consequent reference point is computed where
GPx.BL'=6.27 and GPx.BR' = 6.27.

e Using EQq.(5.23) and the average of the shift ratios, we derive the reference points of the
left triangular GPx.BL*= 6.27 and the reference points of the right triangular GPx.BR*=
6.27.

e According to Eq.(5.12) and Eq.(5.13), we can compute the left and right fuzziness sides
of the triangles that is required to find both extreme points of the fuzzy consequent set. The
Left fuzziness side of the left triangular (AL.PS;) and the Right fuzziness side of the right
triangular (AR.PS3) are (AL.PS;.B*= 1.54) and (AR.PS3.B* = 1.27), respectively.

e The fuzzy consequent result hence is formed as B* = (4.73 6.27 6.27 7.55).

e The fuzzy interpolative reasoning methods results are shown in Table 10 and Fig. 108 (see
Appendix A.9

e ), there is no obvious indication for the HCL-FRI [42] and the HTY-FRI [53] to handle the
fuzzy interpolation with multiple antecedent variables. From Fig. 108 (see Appendix A.9

e ), we can see that the KH method [3], [25], [39], KHstabilized-FRI [5], VKK-FRI [4], the
HS-FRI [22], CCL-FRI [52], MACI-FRI [6], IMUL-FRI [8], and CRF-FRI [7], and the
Incircle-FRI all generated convex and normal results.

Table 10. Fuzzy Interpolative Reasoning Results of Example MultiA2

Attribute Values Results of Fuzzy
Folder 1 Miies Interpolative reasoning
An=[0113] KH-FRI [3],[25],[39] B*=(4.67 6.24 6.24 7.57)
Ap=[1223] KHstabilized-FRI [5] B*=(6.21 7.66 7.66 8.9)
B:i=[022 3] VKK-FRI [4] B+=(4.87 6.26 6.26 7.53)
A21=[89910] CCL-FRI [52] B*=(4.79 6.22 6.22 7.54)
A»=[79910] HS-FRI [22] B*=(6.19 7.65 7.65 8.96)
B»=[9 10 10 11] HTY-FRI [53] B=(-)
Ax=[1113 13 14] HCL-FRI [42] B=(-)
Ax=[1112 12 13] MACI-FRI[6] B*=(5.23 6.57 6.57 7.57)
Bs=[12 13 13 14] IMUL-FRI [8] B*=(4.1 6.25 6.25 8.89)
A"=[35557] CRF-FRI [7] B*=(5.39 6.25 6.25 7.25)
A"=[5667]
The Incircle-FRI B*=(4.736.27 6.27 7.55)
Note: the sign (-) indicates no clear evidence for the methodto handle the case in the example
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5.2.3. Incircle-FRI with extrapolation

Example Extl:

The Incircle-FRI with multiple antecedent variables where the fuzzy rules are A; = By, A,
= B,, and the observation A" is given to determine the consequence B*. All the rule
antecedents, consequents, and the observation are triangular fuzzy sets (with single
antecedent).

Observation: A*=[01 3].

Now, let us study the situation of the fuzzy extrapolation, where the problem exists when

rules are chosen for interpolation, all rules appear on a single side of the observation. Fig. 109
(see Appendix A.10

) illustrates an example with both fuzzy rules appearing on the right side of the observation.

The (GpA") of the intermediate fuzzy setis calculated using Eq.(5.20) as GpA'=6.33.

By the derived (GpA') of the fuzzy set, we can get shift ratio by Eq.(5.21), 6= -1.32.

By Eq.(5.10), the intermediate consequent’s (GPB’) is computed, where GPx.B'= 5.99,
and using Eq.(5.23), the reference point (GP) of the shifted fuzzy consequent set GPx.B~
=5.99.

According to Eq.(4.11), the left and right fuzziness sides are PS;(B*) = 0.83 and PS3(B*)
= 1.28, respectively.

Using Eq.(4.12),we can derive the extrapolated fuzzy consequent result as B*=(5.165.99
7.28).

The fuzzy interpolative reasoning methods results, which are shown in Table 11 and Fig.
109 (see Appendix A.10

), there is no obvious indication for the KH method [3], [25], [39], KHstabilized-FRI [5],
VKK-FRI [4], HCL-FRI [42], HTY-FRI [53], MACI-FRI [6], IMUL-FRI [8], and CRF-
FRI [7] to handle the fuzzy interpolation with extrapolation. Fig. 109 (see Appendix A.10
) shown that the KHstabilized-FRI [5] and the Incircle-FRI are generating a conclusion
with convex and normal results.

Table 11. Fuzzy Interpolative Reasoning Results of Example Extl

Attribute Values Methods In te?Sle:tti:frzL;Zo)r/]ing

KH-FRI [3], [25].[39] | B=()

ALF[355 71 KHstabilized-FRI[5] | B-=(4.82 6 6 7.18)
'212_‘[22 ;0_] ! VKK-FRI [4] B=()
BZ;{Q S ]1’1]_ HTY-FRI [53] B=()
’ HCL-FRI [42] B=(-)
A_0bs=[013]; MACI-FRI [6] B=()
IMUL-FRI [8] B'=()
CRF-FRI [7] B=()

The Incircle-FRI Bx=(5.16 5.99 7.28)
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Note: thesign (-) indicates no clear evidence for the methodto handle the case in the example

Example Ext2:

The Incircle-FRI with multiple antecedent variables where the fuzzy rules are Aj; 1A =
B1, A21 /1 Az, = By, and the observations A; and A’ are given to determine the consequence
B~ All the rule antecedents, consequents, and the observation are triangular fuzzy sets
(with multiple antecedents).

Observation: A*1=[3.557],A",=[567].

Now, let us consider the situation of the fuzzy extrapolation, where the problem exists

when rules are chosen for interpolation, all rules appear on a single side of the observation.
Fig. 110 (see Appendix A.11

) describes an example with both fuzzy rules appearing on the right side of the
observations.
Using Eq.(5.20), the reference point (GpA’) of the intermediate fuzzy set is calculated as

A;=10.32 and 4,= 9.97.
Using EQ.(5.21) and the derived reference points of the intermediate fuzzy sets, we can
get an average shift ratio, A =-1.32.
By Eq.(5.10), the intermediate consequent’s (GPB’) is computed, where GPx.B'=10.99,
and using Eq.(5.23), the reference point (GP) of the shifted fuzzy consequent set GPx.B*
=7.02.
According to Eq.(4.11), the left and right triangle fuzziness sides are PS;(B*) = 0.87 and
PS3(B*) = 1.42, respectively.
Using Eq.(4.12), we can derive the extrapolated fuzzy consequent result as B* = (6.15
7.02 8.44).
The conditions and fuzzy interpolative reasoning results are shown in Table 12 and Fig.
110 (see Appendix A.11
). There is no obvious indication for the KH method [3], [25], [39], KHstabilized-FRI [5],
VKK-FRI [4], HCL-FRI [42], HTY-FRI [53], MACI-FRI [6], IMUL-FRI [8], and CRF-
FRI [7] to handle the fuzzy interpolation with extrapolation. From Fig. 110 (see Appendix
All
), we can see that the KHstabilized-FRI [5] and the Incircle-FRI are generating a
conclusion with convex and normal results.

Table 12. Fuzzy Interpolative Reasoning Results of Example Ext2

Results of Fuzzy

Attribute Values Methods ) .
Interpolative reasoning
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Au=[8910] KH-FRI [3],[25],[39] | B*=()
A=[7910] KHstabilized-FRI[5] | B*=(10 11 11.94)
B:=[9 10 11] VKK-FRI [4] B=(-)
A2=[1113 14] HTY-FRI [53] B-=(-)
A»=[111213] HCL-FRI [42] B-=(-)
B.=[12 13 14] MACI-FRI [6] B=(-)
A"=[3557] IMUL-FRI [8] B=(-)
A"=[567] CRF-FRI [7] B-=(-)
The Incircle-FRI Bx=(6.157.02 8.44)

Note: the sign (-) indicates no clear evidence for the methodto handle the case in the example

SUMMARY

Chapter 5 has presented some extensions of the proposed Incircle-FRI method introduced
in chapter 4. The extensions include the following features: handling hexagonal membership
functions and handling multiple fuzzy rules having multiple antecedents. Further, enabling the
capability of extrapolation, for this reason, the original Incircle-FRI was extended with a
modified general weight calculation and shift process, where the weight between the
observation and the neighboring rules will be derived according to overall distance instead of
using extreme (closest) rules distance of the original method. This weight computation is
crucial for the implementation of the extrapolation capability. The shifting process creates an
intermediate fuzzy rule using existing neighboring rules. A shift ratio is computed between this
intermediate rule and the observation to shift the intermediate fuzzy consequence with the same
ratio that ensures a more reasonable interpolated and extrapolated consequence fuzzy result.
All results of the extensions Incircle-FRI method (Hexagonal fuzzy set, multidimensional
antecedents, extrapolation capability) produce CNF fuzzy conclusion.

Moreover, several experiments and comparisons were conducted, which were based on the
extensions of the Incircle-FRI, aiming to prove the performance of the Incircle-FRI with
different FRI methods. From the experimental results, we can see that the proposed method is
considered one of the best current FRI methods. Consequently, the proposed method is a
suitable approach to be implemented as an inference system.
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Theses related to Chapter 4 and Chapter 5:

Thesis. I:

| introduced a new method for the fuzzy rule interpolation concept called " Incircle-FRI", which
is based on the Incircle of a triangular fuzzy number, the Gergonne Pointas a “reference point”
of the inside circle of triangular fuzzy set, and the fuzziness sides of the triangular. The Incircle-
FRI conclusion is calculated by holding the same rate of the weights among the observation
and the two rule antecedents, and the conclusion and the two corresponding rule consequents
with the Gergonne Points (for the reference point of the conclusion), and with the "fuzziness
sides" (for left and right fuzziness the shape of the conclusion). The " Incircle-FRI" is always
generating a triangular CNF conclusion, if the antecedents and the consequents are triangular
CNF sets, evenif the fuzzy rule-base issparse. I conclude thatthe proposed method isa suitable
approachto be implemented as an inference system.

Thesis. I1:

I introduced an extension of the "Incircle-FRI" to be able to handle trapezoidal and hexagonal
fuzzy sets, which is by decomposing their membership functionshapes into multiple triangulars,
and multiple Incircle triangular fuzzy numbers with the Gergonne Points as reference points. |
conclude that the extended “Incircle-FRI™ can generate a trapezoidal, or hexagonal CNF
conclusion if the antecedents and the consequents are all trapezoidal, or all hexagonal CNF
sets, even if the fuzzy rule-base is sparse. Therefore, the Incircle-FRI method is a suitable
approachto be implemented as an inference systemwith trapezoidal and hexagonal fuzzy sets.

Thesis. I1:

I introduced an extension of the "Incircle-FRI" to be able to handle multiple fuzzy rules having
multiple fuzzy antecedents. | used a modification weightestimate and included a shifttechnique
to ensure to interpolate the consequent fuzzy resultto be more logical and also to enable the
capability for extrapolation. | conclude that the extensions of the “Incircle-FRI" always
produce CNF conclusion, for all the handled antecedents and consequents configuration of the
original method even if the fuzzy rule-base is sparse. Therefore, the Incircle-FRI method is a
suitable approach to be implemented as an inference system with these extensions.
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The results introduced in chapter 4 and chapter 5 support the statement of Thesis I, 11, 111, and [99].
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CHAPTER -6- An FRI Benchmark System

INTRODUCTION

Many of the FRI methods suffer from not satisfying some FRI conditions (see chapter 2
subsection 2.6) related to the type of applicable linguistic terms and rule-base structure. A
proper benchmark system could be built by analysing a set of conditions of the fuzzy sets such
as (core, boundary, slopes, etc.) to compare the performance of different FRI conclusions. The
construction of such a benchmark system is not straightforward because of numerous FRI
methods and their special requirements. A good solution is to construct an FRI benchmark
system based on the common criteria of the FRI methods according to fuzzy rule-base, fuzzy
values, and observation configurations. Some of the required properties are not held in case of
a given FRI method, e.g., the first method of the FRI "KH method". In this chapter, we will
study all cases of the KH-FRI method to construct the initial FRI benchmark, highlighting the
problematic situations for KH-FRI. Additionally, the benchmark will be used as a baseline to
compare and evaluate the performance of existing and upcoming FRI methods.

6.1. A Survey Study Related to "Normality and 'Linearity’" Properties to
Compare FRI Methods Basedon Arbitrary Examples

Before discussing the process of constructing a benchmark system for the CNF and PWL
properties, | will present a survey study to explain the difference between the CNF and PWL
properties. This survey study aims to use (arbitrary examples) to compare the results of the FRI
methods according to the normality and linearity of the fuzzy conclusion using different
features.

6.1.1. Arbitrary examples of experiments

We will present and discuss different examples (arbitrary examples) to compare the FRI
methods (KH, KH Stabilized, MACI, IMUL, CRF, VKK, GM, FRIPOC, LESFRI, and SCALE
MOVE) according to CNF and PWL properties. Various features are used for comparing: "the
number of dimensions”, "the shape of membership functions”, and "the number of membership
functions”. The triangular, trapezoidal, and singleton membership functions are used to describe
the antecedent, consequent, and observation. The FRI methods selected are tested by the FRI
MATLAB toolbox.

The arbitrary examples will be described in details as follows:

e Examples FRI_EX1 and FRI_EX2 describe the antecedent and consequent by a single
dimension, these examples will compare the results based on the difference between the
number of the fuzzy sets by the same membership functions for antecedent, consequent,
and observation.
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e The Example FRI_EX3 will represent the antecedent and consequent by a single
dimension; the same number of the fuzzy sets is used for the antecedent, consequent part.
This example describes the antecedent, consequent by a different membership function,
where the observation represented by the trapezoidal membership function.

e Examples FRI_EX4 and FRI_EX5 were selected to show the results by the same
membership functions of the antecedents and consequent using different shapes of the
observation.

e Examples FRI_EX6 and FRI_EX7 describe by three dimensions of the antecedent parts
and single dimension for the consequent part.

Table 13 summarizes the arbitrary examples. The antecedents and observations are shown in
Fig. 56 - Fig. 62, the consequents part and conclusions have appeared in Fig. 63 - Fig. 72.

Table 13. The Arbitrary Examples

No. Dimensions Type of Membership Functions No. of Membership Functions
=32l Antecedents | Consequents | Antecedents | Consequents [Observations [Antecedents | Consequents
Example FRI_EX1 1 1 Triangular Triangular Triangular 2 2
Example FRI_EX2 1 1 Triangular Triangular Triangular 4 4
Example FRI_EX3 1 1 Triangular Trapezoidal | Trapezoidal 4 4
Example FRI_EX4 1 1 Trapezoidal Trapezoidal Singleton 4 4
Example FRI_EX5 1 1 Triangular Triangular Singleton 4 4
Example FRI_EX6 3 1 Triangular Trapezoidal Triangular 3 3
Example FRI_EX7 3 1 Triangular Trapezoidal Singleton 3 3

m Example 1: The Antecedent and Observation membership functions

o ]
A*
057 1
A1 A2
. X,
1 2 3 4 5 5] 7 8 9 1

o
o o

Fig.56. The Antecedent and Observation Fuzzy Sets Related to Example (FRI_EX1)

m Example 2: The Antecedent and Observation membership functions
1t
A*
0.5
A A2 A3 Ad
o J(1
0 1 2 3 4 5 (3] 7 8 9 10

Fig.57. The Antecedent and Observation Fuzzy Sets Related to Example (FRI_EX2)
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m Example 3: The Antecedent and Observation membership functions
A*
0.5
A1l A2 A3 Ad
o J(1
] 1 2 3 4 5 B 7 8 9 10

Fig.58. The Antecedent and Observation Fuzzy Sets Related to Example (FRI_EX3)

m Example 4: The Antecedent and Observation membership functions
1t
A*
0.5
A1 A2 A3 Ad
0 X4
0 2 4 B 8 10 12 14

Fig.59. The Antecedent and Observation Fuzzy Sets Related to Example (FRI_EX4)

i) Example 5: The Antecedent and Observation membership functions
1k
A*
0.5
A1 A2 A3 A4
0 X4
o 1 2 3 4 5 53 7 8 9 10

Fig.60. The Antecedent and Observation Fuzzy Sets Related to Example (FRI_EX5)

Example 6: The Antecedents and Observations membership functions

1 t I
1 A* 1 A* 1 A*
0.5 0.5 0.5
A1 A12 A13 A21 A23 A3l A32 A33
0 . 0 A2 XZD X
0 10 20 30 40 50 0 20 40 60 80 0 20 40 60 80 100

Fig.61. The Antecedents and Observations Fuzzy Sets Relatedto Example (FRI1_EX6)

Example 7: The Antecedents and Observations membership functions
N I

1 A* 1 A* 1 A*
0.5

0.5 0.5

A1 A12
D A13 X, A21 A22 A23 X A31 A32 A33

20 30 40 50 60 70 8 0 20 40 60 80

100

Fig.62. The Antecedents and Observations Fuzzy Sets Related to Example (FRI1_EX7)
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Fig.72. Arbitrary Examples: Scaleand Move Conclusions

6.1.2. Discussion of arbitrary examples results:

The results mentioned above of the arbitrary examples conclude the following:

According to the antecedents and observations are shown in Fig. 56, Fig. 57, Fig. 59, and
Fig. 60, the FRI methods (KH, KH Stabilized, MACI, IMUL, CRF, VKK, GM, FRIPOC,
LESFRI, and SCALE MOVE) could be a suitable approach to be implemented as an
inference system, in case a single dimension antecedent, where the antecedent and
consequent have the same type of membership functions (Triangular/Trapezoidal),despite
the type of observation membership function, Fig. 63 - Fig. 72 describe the results of
Examples (FRI_EX1, FRI_EX2, FRI_EX4, and FRI_EX5).

Concerning the antecedents and observations are shown in Fig. 58, the FRI methods (KH,
KH Stabilized) could be a suitable approach to be implemented as an inference system, in
case a single dimension antecedent, in which the antecedent and consequent have a different
type (Triangular and Trapezoidal), respectively, based on the type of the observation, Fig.
63 and Fig. 64 represented the results of the Example (FRI_EX3).

According to the antecedents and observations are shown in Fig. 58, the FRI methods
(MACI, IMUL, CRF, GM, FRIPOC, and LESFRI) could be a suitable approach to be
implemented as an inference system, in case a single dimension, where the antecedent and
consequent have a different type (Triangular/ Trapezoidal), regardless of the type of the
observation, Fig. 65 - Fig. 67 and Fig. 69 - Fig. 71 illustrated the results of the Example
(FRI_EX3).

Regarding the antecedents and observations are shown in Fig. 61 and Fig. 62, the FRI
methods (MACI and GM) could be a suitable approach to be implemented as an inference
system, in case multi-dimension antecedents, where the antecedent and consequent have a
different type of membership functions (Triangular/ Trapezoidal), despite the type of
observation membership function, Fig. 65 and Fig. 69 described the results of Examples
(FRI_EX6 and FRI_EX7).

According to the antecedents and observations are shown in Fig. 61 and Fig. 62, the FRI
methods (IMUL and CRF) could be a suitable approach to be implemented as an inference
system, in case multi-dimension antecedents, where the antecedent and consequent have a
different type of membership functions (Triangularand Trapezoidal),regardless of the type
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of observation membership function, Fig. 66 and Fig. 67 described the results of Examples
(FRI_EX6 and FRI_EX7).

e Regarding the antecedents and observations are shown in Fig. 62, the FRI method
(FRIPOC) could be a suitable approach to be implemented as an inference system, in case
multi-dimension antecedents, where the antecedent and consequent have a different type of
membership functions (Triangular and Trapezoidal), in case of the type of observation
membership function is singleton, Fig. 70 shown the results of the Example (FRI_EX7).

e On the other hand, regarding the antecedents and observations are shown in Fig. 58, the FRI
method (VKK) suffers from the abnormality in case a single dimension antecedent, where
the antecedent and consequent have a different type (Triangular and Trapezoidal),
respectively, based on the type of the observation, Fig. 68 illustrated the results of the
Example (FRI_EX3).

e Referring to the antecedents and observations shown in Fig. 61 and Fig. 62,the FRI methods
(KH, KH Stabilized, and VKK) suffer from the abnormality in case multi-dimension
antecedents. In contrast, the antecedent and consequent have a different type of membership
functions (Triangular / Trapezoidal), regardless of the type of observation membership
functions, Fig. 63, Fig. 64 and Fig. 68 described the results of Examples (FRI_EX6 and
FRI_EX7).

e According to the antecedents and observations are shown in Fig. 61, the FRI method
(FRIPOC) suffers from the piecewise linearity in multi-dimension antecedents. In contrast,
the antecedent and consequent have a different type of membership functions (Triangular/
Trapezoidal), in case the type of observation membership function is triangular, which the
results shown in Fig. 70 and described in the Example (FRI_EX6).

e Regarding the antecedents and observations are shown in Fig. 61 and Fig. 62, the FRI
method (LESFRI) suffers from the abnormality, in case multi-dimension antecedents. In
contrast, the antecedent and consequent have a different type of membership functions
(Triangular and Trapezoidal), in case the type of observation membership function is
triangular, which the results shown in Fig. 71 and defined in Examples (FRI_EX6 and
FRI_EX7).

Based on the above, we are going to construct the initial benchmark examples for two of
the most important recommended properties of the FRI concept, which are CNF and PWL
properties, to be a baseline for comparing and evaluating FRI methods. The survey study in
(6.1) gave a general description for comparing FRI methods according to normality and
linearity based on different features, but these examples are not sufficient to be used as
benchmark examples for comparing FRI methods with CNF and PWL properties. Therefore, in
the following subsections, the initial benchmark examples of CNF and PWL properties will be
constructed, the properties are following the KH-FRI method, taking into consideration
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investigating all the conditions of the core, boundary, and slopes of the fuzzy rule bases and
observation, | will present in details these initial benchmark examples below.

6.2. FRI Benchmark Examples of the CNF Property for the Koczy-Hirota
Interpolation Method.

The original KH-FRI produces the output based on a-cuts. The most significant benefit of
the KH-FRI is its low computational complexity. Despite many advantages, in some antecedent
fuzzy set configuration, the KH-FRI suffers from the abnormality of the conclusion (see more
details in [17], [32]). The study in [18], [41] discusses the normality property and gives some
boundary conditions for the observation, the antecedent, and consequent fuzzy sets. Where the
normality of the conclusion necessarily holds.

The main goal of this subsubsection is to take these boundary conditions and construct
CNF_Benchmark Examples to highlight the problematic properties of the original KH Fuzzy
Rule Interpolation. Besides, this CNF_Benchmark Examples could be used for testing other FRI
methods against these ill conditions. All CNF_Benchmark Examples introduced in this
subsubsection are implemented by the MATLAB FRI Toolbox [24], [26], which provides an
easy-to-use framework for FRI applications.

6.2.1. Preliminaries and basic definitions related to CNF property

A fuzzy set defined on a universe of discourse that holds total ordering is a convex and
normal fuzzy (CNF) set. If it has a height equal to one, and having membership grade of any
elements between two other elements greater than, or equal to the minimum membership degree
of these tow boundary elements. I.e a convex fuzzy set can be defined by (Vx,y €U), (V1 €
[0.1]): (ua(Ax + (1=2y)) Z min (ua(x), ua(Y))))-

Fig. 73 describes some properties of the membership functions. The support of the fuzzy set
is the set of all elements in the universe of discourse with a greater than zero membership
degree. The a-cut and the strong a-cut of a fuzzy set is the crisp subset of the universe where
the membership degrees are higher (strong a-cut), or higher, or equal (a-cut) than a specified o
value. The kernel of a fuzzy set is the crisp subset of the universe, where the membership
degrees are equal to 1. The width of a convex fuzzy set is the length of the support, an interval
in the case of a convex fuzzy set. (see subsubsection 4.1.1) for more details about these
properties)
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Fig. 73. Support and a-Cuts of Triangular and Trapezoidal Fuzzy Sets

A typical example of a sparse fuzzy rule-base was presented in the KH-FRI reasoning method
in [42]. Itcould be briefly described as follows. From the rule-base, the two closest surrounding
fuzzy rules to the observation are taken into consideration only (see Fig. 73, the observation

and the two surrounding antecedent fuzzy sets):

If Xis AjthenY is By
If Xis A,thenY is B,

The two rules will be abbreviated as A; = B; and A, = B,, respectively. Suppose that these
two rules are adjacent, as shown in Fig. 74. Thus, we can see that when observation A* has no
overlapping with fuzzy sets A; or Ay, none of the rules are firing, no results could be obtained

by classical fuzzy reasoning.

If Xis AjthenY is By
If Xis A,thenY is B>
Observation: Xis A*

Conclusion: Y =(B")

*

FRI reasoning methods could provide interpolated conclusion B* when the observation A
does not overlap with any of the rule antecedents A; and A,. According to the interpolation
concept that was suggested by Koczy and Hirota in [3], [25], and [14]. In the following, some
definitions related to linear interpolation (KH-FRI) can be introduced:

e Definition of the Preceding CNF Sets: Referring to all fuzzy sets that must be normal and
convex in the universe X; by P(X;). The a-cuts are intervals. Then for (A1, Ay €P(X))), if (va €
(0,1]), Ay is precedes A, (A1 < Ay) if:

inf(A;,) < inf(Az), SUP(As,) <Sup(Az) (6.1)

Where A, and A,, are a-cut sets of A; and Ay, respectively, inf (A;,) is the infimum of A;, and
sup (A;,) is the supremum of A, (i=1,2).
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e Definition of the Lower and Upper Fuzzy Distances: Given a fuzzy relation (R<: (A1, A2)
| A, Az €P(X)), (A1<Ay), if fuzzy sets A; and A; satisfy R <, the lower (dL) and the upper (dU)
fuzzy distances between A; and A; by the resolution principles [46], [47], it can be defined by
Eq.(6.2):

dL (Ay, A)): R<— P([0,1])
udL(9): Y wego11 o /d(inf(A14), inf(As))
dU (A, Ay): R<— P(/0,1])
pdU(3): Y ueqon) & /d(sup(A14), SUP(Azg))

(6.2)

Where 6 € [0,1] and d is the Euclidean distance, or more generally the Minkowski distance.

e Definition of the KH Linear Fuzzy Rule Interpolation: When A; = B;, A, = B, be disjoint
fuzzy rules on the universe of discourse X x Y, and A;, A, By, and B, be fuzzy sets on Xand Y,
respectively. Assume that A* is the observation of the input universe X. If (A; < A* <Ay) then
the KH linear fuzzy rule interpolation between R; and R; is defined by Eq.(6.3):

d(A1, A*) : d(A*,A,) = d(B1, B*) : d(B*,B») (6.3)

Where d refers to the fuzzy distance according to Definition the KH Linear Fuzzy Rule
Interpolation that could be used between the fuzzy sets (A;, A%, A;) and (B, By).

e Definition ofthe Lower and Upper Distances Between a-cuts: Let A; and A, be fuzzy sets
on the universe of discourse X with |X] < oo, then the lower and upper distances between a-Cuts
sets A;, and A,, are determined via Eq.(6.4):

dL (Ass, Az) = d(inf(A,), inf (Az,)),

dU (Asa Azy)= d(sup(As), sup (Az)) (6.4)

According to Definitions of the Preceding CNF Sets, the KH Linear Fuzzy Rule Interpolation
and the Lower and Upper Distances Between a-cuts the FERI of (dU) and (dL) a-cuts, the
formula can be rewritten as Eq.(6.5):

dL (A% AL): dL (A%, As) = dL (B, B,.): dL (B*, Ba,)
dU (A% A;,) 1 dU (A*,A5,) = dU (B* By,) : dU (B*, Bsy)

Thus, the infimum (inf) and supremum (sup) of the conclusion can be determined by Eq.(6.6)
and Eq.(6.7):

(6.5)
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dL(A A, ) xinf(B,,)+dL(A, A, )xinf(B,,)

Inf(B,) = p .
dL(Aa’ Aia) + dL(Aa’ AZa)
(6.6)
Sup(B;) = dU(Aa,Aia)xsuE)(Bw)erU(Af,Aza)xsup(Bla)
dU(Aa’ A&.a)+dU(Aa’A2a)
then,
B*, = (inf (B*,); sup (B*,)). (6.7)
Finally, consequence B~ can be constructed by Eq.(6.8):

ae[0,1]

6.2.2. The original KH fuzzy linear interpolation

The original Koczy and Hirota interpolation (later referred as KH-FRI) [3], [7], [16], [25],
[39], [40] requires the antecedents and consequences fuzzy sets to be convex and normal (CNF)
[15], [43]. In this case, the approximated conclusion can be generated by decomposing the fuzzy
setsinto a-cuts. The KH-FRI is defined for a single-dimensional antecedent space, for two rules,
whose antecedents surround the observation:

(A< A< Ay)
And
(Bl< Bg)

According to the concept of fuzzy distance [16] in KH-FRI (see Definition of the Preceding
CNF Sets), the fuzzy distance of two CNF sets can be defined by the distance of lower and
upper endpoints of their a-cuts. The "linear interpolation™ idea of the KH-FRI is that the rate of
the upper and lower fuzzy distances between observation and antecedents. It must be the same
as the rate of the fuzzy distances between the two rule conclusions and the consequent.
Therefore, regarding the previous definitions and resolution principles of fuzzy sets, the
conclusion B” for the KH-FRI method is produced directly based on a-cuts of the observation
and the two surrounding fuzzy rules.

A key advantage of the original KH approach is its low computational complexity for fuzzy
rules. Since it deals with two rules only from the rule base during the determination of
consequent. The antecedents of those rules are the closest flanking to the observation,
(A <A"<A)) (See Fig. 74).
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Fig. 74.Fuzzy Interpolative Reasoningwith an Invalid Conclusion for the KH-FRI

On the other hand, searching for these two rules could be a computationally demanding task.
Despite the advantages, in some rule and observation configurations, the conclusion can be
abnormal, or not always directly interpretable. Therefore, in the following, the conditions of
normal and abnormal conclusions will be presented in detail.

6.2.3. The convexity and normality of the KH-FRI conclusion

Several FRI techniques followed the resolution principle, which requires turning the problem
of fuzzy interpolation into an infinite family of crisp interpolations. That is according to the a-
cuts of the fuzzy rules and observation, then merging the results and conclude the fuzzy solution,
(see Eq.(6.8)).

In the case of the KH-FRI, several necessary conditions must be held, requiring all fuzzy sets
to be convex and normal (CNF). This condition guarantees that all a-cuts are intervals and exist.
The CNF property of the conclusion fuzzy setcan be checked if all a-cuts are connected. The
KH-FRI cannot produce any results if the a-cuts are not connected (see cases in [35]). The
conclusion is created as intervals by determining their lowest and highest endpoints. Therefore,
the convexity condition is automatically satisfied. Fig. 75 representsa convex and a non-convex
fuzzy set.
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Fig.75.AConvex(a)anda Non-Convex (b) Fuzzy Set

In contrast, the normality of the conclusion is not always satisfied. The conclusion is normal
if the membership function assumes all values between 0 and 1. So, the condition will be
satisfied if (inf(B*,) < sup(B*,)) for all a. Otherwise, if the condition is not satisfied, the
membership function will suffer from an abnormality, asshown in Fig. 76.

To generate the initial CNF_Benchmark Examples,we should collect which equations in [18],
[41] have been used to determine and verify the normality of the conclusion. If the shape of the
antecedent and consequent fuzzy sets is restricted to triangular and trapezoidal, the membership
functions can be described by three or four points. In the case of trapezoidal, it has four values
(a1, a2, as, a4),and in case of triangular, it could consider as a special trapezoidal a, = as (see
Fig. 73).

alpha=1 inf2/sup1 supl__inf2 supl___inf2 inf2/sup1
c
-
T
c
: \ /\
2
£
o
] i : ~ ‘
o
E
Q
E
alpha=0 inf1 sup2 inf1 sup2 infl/sup2 sup2 inf1

Fig.76.Forms ofthe Abnormal Conclusions

Additionally, a singleton membership function is also a particular trapezoidal membership
function, where all the values (ai, a, as a4) are the same. Accordingly, the characteristic points
of the KH-FRI conclusion can be defined by the following equations in [41]. The conclusion is
that B* is normal if and only if (Yinf1, Yinf2, Ysup1, and Ysup2) are met the following conditions:
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(az1—ay)xby+(aj—ar )by

Yinf1 = pa— <
__ A{an—a3)xbn+(ay—ai2)xbxn <
Yinf2 = drr—a12 = (6.9)
_ (ax—az)*biz+(az—ai3)=bax; < '
Ysupl = da3—d13 =
_ (ay—ay)«by+(ay—ai4)*bay
Ysup2 =

axa—ap4

According to Eq.(6.10) - Eqg.(6.12), the conclusion core and boundary lengths can be

determined. To verify the normality of the LefT Boundary (LTB) length of the conclusion,
Eq.(6.10) could be applied:

Length.LT Boundl <Length.LT Bound?2 (6.10)
where

Length.LT Boundl=db BX(((KalLTB+da1LTB) X (KaZLTB+da2LTB)) —
((Ka* rp+da s) * (Ka*Lte+daz 1s)))

Length.LT Bound2=((Ka1LTB+da1LTB) x (dalLTB+Ka*LTB) x Kby 1 B) +
((KagLrg+day 1) % (daz re+Kats) * Kby 18)

The core length of the conclusion can be determined by Eq.(6.11) as follows:

Length.Corel <Length.Core?2 (6.11)

where

Length.Corel=dbcore % (((Kaicoretdaicore) X (Kazcoretdazcore)) —
((Ka*coretdaicore) % (Ka*coret+dazcore)))

Length-Corez:((Kalcore+dalcore) x (dalcore+Ka*c0re) x Kchore) +
((KaZ(:ore + daZcore) X (daZCore+ Ka*core) x Kblcore)

For RighT Boundary (RTB) length of the conclusion can be determined by the following
Eq.(6.12):

Length.RT Boundl <Length.RT Bound2 (6.12)

where

Length.RT Bound1=dbgrs % (((Kairrg+dasrrs) % (Kazrre+dasrrs)) —
((Ka*rrg+dairrB) % (Ka'rrs+dasrrs)))

Length.RT Bound2=((Ka1RTB+da1RTB) X (dalRTB+Ka*RTB) x Kbort B) +
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((Kagrrgt+dagrrs) * (dagzrre+Karre) X Kbirrs)
where the parameters of the core length for Eq.(6.11) canbe defined as follows:

Kajcore=a13—a12, Kaeore=az3—az
Kbicore=b13—Db12, KD2gore=023—b22
Ka*core=X3—X2, da1core=X2—a13

The LTB and RTB boundary can be constructed similarly to the core length parameters (as
above parameters). From another point of view, the length ratio of the distance between the
fuzzy sets of the antecedent with observation (Ka;, Ka*) and consequent (Kb;) Eq.(6.13),
Eq.(6.14),and EQq.(6.15) could also be used to check the normality (validity) of the conclusion,
which can be defined as follows:

For the length ratio of the left Boundary:
RatioLT1= LTBound (Kp1 p2) / LTBound (Kaz,a2)-

6.13
RatioLT2= LTBound(Kaz1 a2) / (LTBound (Ka*Ka;)+ LTBound(Ka,Ka*)). (6.13)
where
LTBound(Kpz p2)= b1 - by,
LTBound(Ka1,a2)= @21 - 212,
LTBound(Ka*Kaj)=a*1- ai,
LTBound(KazKa*)=ay - a*.
For the length ratio of the core:
RatioC1= Core(Kp p2)/Core(Ka a2), (6.14)
RatioC2= Core(Kaz1 a2)/(Core(Ka*Ka;)+Core(Ka,Kax)). '
where
Core(Kpi,b2)= b2 — b3,
Core(Kaz,a2)= az— ais,
Core(Ka*Kaj)=a*;- ais,
Core(KazKa*)=az-a*.
For the length ratio of the right Boundary:
RatioRT1=RTBound (Kp1,n2) / RTBound (Ka1 a2)- (6.15)

RatioLT2= RTBound(Kaz,a2) / (RTBound (Ka #Kal)+ RTBound(Ka,Ka*)).

where
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RTBound(Kbl,bg)= b23— b14,
RTBound(Ka1,a2)= a23— a1a,
RTBou nd(Ka*Kal): a*3—aia,
RTBound(Ka,Ka*)=as3-a*.

6.2.4. Reference values the CNF property

According to the main corollaries in [18], [41], the normality of the KH-FRI conclusion can
be determined as follows:

1) Corollary CNFCR1: Ka;= Kb; = Ka”

If rules Ay = B, A, = By, and the observation A* have the same core and left-right
boundary lengths as the antecedent (Ka;) and consequent (Kb;) fuzzy sets, the conclusion will
always be normal. For this corollary, Eq.(6.10) - Eq.(6.15) could validate the normality.

2) Corollary CNFCR2: Ka; = KA, Kb; = KB

If the fuzzy set of the antecedent (Ka; = KA) and the consequent (Kb; = KB) have a uniform
core and boundary lengths, then the conclusion fuzzy setis always normal if and only if the
following conditions by Eq.(6.16) and EQ.(6.17) must hold:

For the core length:

o If Ka*#0
Length.Corel <Length.Core2 (6.16)

where

Length.CO r61= dbcore X (Kacore_Ka*core),
Length.Core2=Kb % (daicoretrdazcoret2> Ka*gore)

e |fKa*=0

Length.Corel <Length.Core2 (6.17)
where

Length.Corel= dbgyre X (Kacore—Ka*core),
Length.Core2= Kbgyre % dacore

and

dacore=az2—a13

For left and right boundary lengths, similar equations to the core length could be constructed.

3) Corollary CNFCR3: Ka; = Ka", Kb; = KB
In this corollary, if the antecedent fuzzy sets and observation have the same core and
boundary lengths, and the fuzzy sets of the consequent have the same length too, then the
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conclusion fuzzy set is always normal. To verify the normality condition EQq.(6.16) and
EQ.(6.17) for the core and boundary lengths are used.

4) Corollary CNFCR4: The antecedents and consequences have uniform core length

The conclusion fuzzy set is always normal if the length ratio of the distance between the
fuzzy sets of the antecedent and consequent (distance KB) / (distance KA) does not exceed
the length ratio of themselves. Eq.(6.13), Eq.(6.14),and EqQ.(6.15) can be used to verify the
normality condition, in other words, the consequents have not shorter length, ie., the
consequents are not less than fuzzy the antecedents.

Fig. 77 illustrates all the core and boundary CNF_Notations (Ka, Kb) that are used in
Eq.(6.10) - Eq.(6.15), as follows:

daCore
KalCorel daiCore Ka*Core _da2Core_ VKa2Core
Alphai1 |  faiz w13 S E— - >

KaiLTBound

Ka1RTBound
-]

Ka'LTBound

Alpha 0

1A a1 aa a2l aza
Antecedent and Observation fuzzy sets
dbCore

Kb1Core § I Kb2Core
12 2 b23a

Kb1RTBound

KbiLTBound

Alpha 0

)
Consequent fuzzy sets Y

Fig.77.CNF_Notations Related to Core and Boundary Lengths of Trapezoidal Fuzzy Sets

6.2.5. The KH-FRI CNF benchmark

In the following, the CNF_Benchmark Examples will be constructed to highlight the
conditions of the normality conclusion of the KH-FRI. Various corollaries introduced to check
the normality of the conclusion based on the core and (Left-Right) boundary lengths have a
primary role in determining the normality. According to the prerequisites of the KH-FRI, one-
dimensional antecedents and consequents with trapezoidal, triangular, and singleton fuzzy sets,
and two rules of the rule-bases could be considered. In the rest of the subsubsection, all the
calculations and figures were prepared by the fuzzy rule interpolation (FRI) toolbox. The
current version of the FRI toolbox is freely available to download in [24].

We will discuss the special cases where the conclusion of the KH-FRI is normal and abnormal
according to the equations and corollaries explained previously.

First of all, the normality condition is always satisfied with the KH-FRI if any of the
following cases are met:
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e Case CNF.C1: Whenthe core and boundary lengths of the observation are greater or equal
than the antecedent fuzzy sets (KA™ >= KA), if (Ka; = KA), the normality of the KH-FRI
conclusion fuzzy setwill always be satisfied. In this case, there is no restriction on the shape

and size of the consequent (KB). Table 14 illustrates the Example "CNF.KH_NOR.C1" that
demonstrates Case CNF.C1.

Table 14. The Normal Conclusion of the KH-FRIwith Fuzzy Sets Accordingto Case CNF.C1

BExample ("CNF.KH_NOR.C1")
CNF_Notations thatprove case CNF.C1 (KA™>=KA), if (Kai = KA)

The values of the fuzzysets: The case of the Core and (LF and RF) Boundary
Ai=[1223]A=[7889] conclusion:
Bi=[2222]B,=[8888] The length (LFBound) is (NORMAL)
A'=[4556]B=[5555] The length (Core) is (NORMAL)

The length (RFBound) is (NORMAL)
The length ratiobetween KA, Ka*, and KB: The Lengths notations to determine the normality:
LTBound: RatioLT1=1.20,RatioLT2=1.25 LTBound1=0,LTBound2=0
Core: RatioCl=1,RatioC2=1 Corel=0,Core2=0
RTBound: RatioRT1=1.20, RatioRT2=1.25 RTBoundl =0,RTBound2=0

The Antecedent (Trianguwlar) and Observation (Triangulars) The Conseguent (Singleton) and Conclusion (Singleton)

e Case CNF.C2: When the core and boundary lengths of the fuzzy sets are the same (KA =
KB) if (Ka;=KA) and (Kb;=KB), the normality of the KH-FRI conclusion fuzzy setis always
satisfied. In this case, there is no restriction on the shape and size of the observation A”.

Table 15 illustrates Example "CNF.KH_NOR.C2_1"and Example "CNF.KH_NOR.C2_2"
to demonstrate Case CNF.C2.

Table 15. The Normal Conclusion ofthe KH-FRIwith Fuzzy Sets Accordingto Case CNF.C2

Example ("CNF.KH_NOR.C2_1")
CNF_Notations thatprove case CNF.C2 when (KA = KB)

The values of the fuzzysets: The case of the Core and (LF and RF) Boundary
A=[125254] A=[675759] conclusion:

Bi=[125254]B,=[6757509] The length (LFBound) is (NORMAL)
A-=[455555] B=[45555.5] The length (Core) is (NORMAL)

The length (RFBound) is (NORMAL)
The length ratiobetween KA, Ka*, and KB: The Lengths notations to determine the normality:

LTBound: RatioLT1=1,RatioLT2=1.16 LTBound1=3.5,LTBound2==6
Core: RatioCl=1,RatioC2=1 Corel=0,Core2=0
RTBound: RatioRT1=1, RatioRT2=1.16 RTBoundl =3.5,RTBound2 =6
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The Antecedent (Triangular) and Observation (Triangular) The Conseguent (Triangular) and Conclusion (Triangular)

Bample ("CNE.KH_NOR.C2_2")

The values of the fuzzysets: The case of the Core and (LF and RF) Boundary
A1=[1234] A=[6789] conclusion:
B1=[1 23 4] B=[6 7 8 9] The length (LFBound) is (NORMAL)
A-=[44.85.2 6] B~=[4 4.8 5.2 6] The length (Core) is (NORMAL)
The length (RFBound) is (NORMAL)
The length ratiobetween KA, Ka*, and KB: The Lengths notations to determine the normality:
LTBound: RatioLT1=1,RatioLT2=1.25 LTBound1=0.8,LTBound2=4.8
Core: RatioC1=1,RatioC2=1.11 Corel=2.4,Core2=44
RTBound: RatioRT1=1, RatioRT2=1.25 RTBoundl =0.8, RTBound2 =4.8

The Antecedent { Trapezoidal) and Observation (Trapezoidai) The Consequent (Trapezoidal) and Conclusion (Trapezoidal)
; T ; : : : " " . . ; .

e Case CNF.C3: If the core and boundary lengths of fuzzy sets (KB > KA), where (Kai = KA)
and (Kbi= KB), the conclusion of the KH-FRI is always normality. Table 16 represents
Example "CNF.KH_NOR.C3_1" and Example "CNF.KH_NOR.C3_2" that describes Case
CNF.C3.

Table 16. The Normal Conclusion of the KH-FRIwith Fuzzy Sets according to Case CNF.C3

BExample ("CNF.KH_NOR.C3_1")
CNF_Notations thatprove case CNF.C3 when (KB > KA)

The values of the fuzzysets: The case of the Core and (LF and RF) Boundary
A=[152225] A=[657775] conclusion:
Bi=[1234]B=[6789] The length (LFBound) is (NORMAL)
A=[45454545]B=[44555 6] The length (Core) is (NORMAL)

The length (RFBound) is (NORMAL)
The length ratiobetween KA, Ka*, and KB: The Lengths notations to determine the normality:
LTBound: RatioLT1=0.88, RatioLT2=1 LTBound1=2,LTBound2=4.5
Core: RatioC1=0.80, RatioC2=1 Corel=0,Core2=5
RTBound: RatioRT1=0.88, RatioRT2=1 RTBoundl =2,RTBound2=4.5
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The Antecedeant (Trangular) and Observation (Singleton) The Consequent (Trapexoidal) and Concilusion [ Trapeaz oidal)

Bxample ("CNF.KH_NOR.C3_2")

The values of the fuzzysets: The case of the Core and (LF and RF) Boundary
A=[2222] A,=[888 8] conclusion:
Bi=[1234]B=[6789] The length (LFBound) is (NORMAL)
A-=[4.5555.5] B-=[3.08 45 5.5 6.916] The length (Core) is (NORMAL)
The length (RFBound) is (NORMAL)
The length ratio between KA, Ka*, and KB: The Lengths notations to determine the normality:
LTBound: RatioLT1=0.66, RatioLT2=1.09 LTBound1l=-2,LTBound2=6.5
Core: RatioC1=0.66, RatioC2=1 Corel=0,Core2=6
RTBound: RatioRT1=0.66, RatioRT2=1.09 RTBoundl =-2,RTBound2=6.5
The Antecedant (Singleton) and Observation ( Triangular) The Consequent (Trapezoidal) and Conclusion (Trapezoidal)

r
a1 AZ
0 & B2
A 81
L ¥4
1 2 ] 4 B 8 7 [ ] 10 1 2 a3 4 5 8 7 [ 2 10

In contrast, the abnormality of the conclusion can appear in Case CNF.C4 (KB < KA). So,
to demonstrate the abnormality problem, we will consider the length ratio between Ka*and KB
based on Eq.(6.13), Eq.(6.14), and EQ.(6.15). Therefore, we will address the problem with
different lengths of core and boundary.

Table 17 - Table 20 describe the results of Eq.(6.10) - Eq.(6.15) to prove the normality of
the KH-FRI conclusion will not be satisfied. The Example "CNF.KH_ABNOR.C4_1"in Table
17 shows the problem with the core length. Example "CNF.KH_ABNOR.C4_2" and Example
"CNF.KH_ABNOR.C4_3"in Table 18 and Table 19 illustrate the problem of the left and right
boundary. The Example "CNF.KH_ABNOR.C4_4"in Table 20 shows the problem in both the
core and boundary lengths.
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Table 17 describes the abnormality in the core length of the KH-FRI conclusion.

Table 17. The Problemwith Core Length, Abnormal Conclusion

Bample ("CNF.KH_ABNOR.C4_1")

The values of the fuzzysets:
A=[1234]A=[6789]
B:=[15252538] B,=[6575759]
A=[4.25.25.26.7] B= [4.7 5.7 4.7 6.6]

The case of the Core and (LF and RF) Boundary
conclusion:

The length (LFBound) is (NORMAL)

The length (Core) is (PROBLEM)

The length (RFBound) is (NORMAL)

The length ratio between KA, Ka*, and KB:
LTBound: RatioLT1=1,RatioLT2=1.33
Core: RatioC1=1.25,RatioC2=1
RTBound: RatioRT1=0.92,RatioRT2=1.6

The Lengths notations to determine the normality:
LTBound1=0,LTBound2=5
Corel=5,Core2=0

RTBoundl =-9.25, RTBound2=17.28

The Antecedent | Trapezoidal) and Observation (Triangular)

SN

The Consequent (Triangular) and Conclusion (Trapezoidal)

™
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An explanation of the abnormality of the left boundary length in the KH-FRI conclusion is

shown in Table 18.

Table 18. The Problemwith Left Length, Abnormal Conclusion

Bample ("CNF.KH_ABNOR.C4 2")

The values of the fuzzysets:
Ai=[125254] A=[6575759]
Bi=[12345] B,=[6.5789.5]

A+=[4.5 4.9 5.1 5.5] B*= [5.27 4.4 5.6 6.0]

The case of the Core and (LF and RF) Boundary
conclusion:

The length (LFBound) is (PROBLEM)

The length (Core) is (NORMAL)

The length (RFBound) is (NORMAL)

The length ratiobetween KA, Ka*, and KB:
LTBound: RatioLT1=1.5,RatioLT2=1.15
Core: RatioC1=0.8, RatioC2=1.04
RTBound: RatioRT1=1,RatioRT2=1.12

The Lengths notations to determine the normality:
LTBound1=30.15, LTBound2 =6.80
Corel=-0.8,Core2=5.2

RTBoundl = 3.85,RTBound2=5.85

The Anfecedent (Triangwar) and Observation (Trapezoidal)

The Conseguent (Trapezoidal)l and Conclusion [ Trapezoidal)

120|Page




An illustration of the abnormality in the right boundary length in the KH-FRI conclusion is
displayed in Table 19.

Table 19. The Problemwith Right Length, Abnormal Conclusion

Bample ("CNF.KH_ABNOR.C4 3")

The values of the fuzzysets: The case of the Core and (LF and RF) Boundary
A1=[15252543] A,=[6575758.3] conclusion:

Bi=[12335] B:=[6788.9] The length (LFBound) is (NORMAL)
A=[45495155]B=[44.456 4.94] The length (Core) is (NORMAL)

The length (RFBound) is (PROBLEM)

The length ratiobetween KA, Ka*, and KB: The Lengths notations to determine the normality:
LTBound: RatioLT1=1,RatioLT2=1.11 LTBound1=2.4,LTBound2=4.4

Core: RatioC1=0.80, RatioC2=1.04 Corel =-0.8,Core2=5.2

RTBound: RatioRT1=1.40, RatioRT2=1.14 RTBoundl =25.65, RTBound2=16.76

The Antecedent (Triangwar) and Observation (Trapezoidal) The Consequent (Trapezoidal) and Conclusion ( Trapezoidal)
w

Table 20 describes the abnormality in both core and boundary lengths in the KH-FRI
conclusion.

Cox=

Table 20. The Problemwith Core and Boundary Lengths, Abnormal Conclusion

BExample ("CNF.KH_ABNOR.C4_4")

The values of the fuzzysets: The case of the Core and (LF and RF) Boundary
A=[2225 3] A=[67.588] conclusion:

Bi=[2 22 2] B,=[8 8 8 8] The length (LFBound) is (PROBLEM)
A-=[5555] B-=[6.5 5.27 4.72 4.4] The length (Core) is (PROBLE M)

The length (RFBound) is (PROBLEM)
The length ratiobetween KA, Ka*, and KB: | The Lengths notations to determine the normality:

LTBound: RatioLT1=1.5,RatioLT2=1 LTBound1=27,LTBound2=0
Core:RatioC1=1.2,RatioC2=1 Corel=3,Core2=0
RTBound: RatioRT1=1.2,RatioRT2=1 RTBoundl =9,RTBound2=0

The Antecedernt (Trapezoidal) and Observafion (Singlaton) The Conseguent (Singleton) and Conclusion (Trapezoidai)

M

A1 A Az

B B2

L]
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6.2.6. Discussion of the CNF benchmark examples

The casesand equations were discussed earlier have been used to construct CNF_Benchmark
Examples. The CNF_Benchmark Examples are classified into two groups, as shown in Table
14 - Table 20. The first group contains Examples "CNF.KH_NOR.C1"
"CNF.KH_NOR.C3_2" described the normality conclusion of the KH-FRI, where Corollaries
of the normality condition (Corollaries CNFCR1- CNFCR4) are met. The second group
includes Examples "CNF.KH_ABNOR.C4_1" — "CNF.KH_ABNOR.C4_4" described the
abnormality conclusion of the KH-FRI. The abnormality could appear in case the corollary (KB
< KA), if (KA* <KB).

Referring to Example "CNF.KH_NOR.C1" as shown in Table 14, we conclude the
following:

e The core and boundary lengths of fuzzy sets of the observation (KA®) is large or equal
than the antecedents (KA) (see case CNF.C1) and if (Ka; = KA), then the conclusion is
always normal. In this case, there is no restriction on the shape and size of the
consequent (KB).

- E.g., the core lengths of the antecedent fuzzy setsare (KA;=0 (2-2), KA,=0 (8-8),and
the average length of the antecedent fuzzy sets KA=0 (5-5)), and for the observation
fuzzy set (KA™=0).

e Regarding Eq.(6.16)and Eq.(6.17),all CNF_Notations satisfy the normality conclusion,
Le.:

- The core length (Corel=0) is less than or equal to (Core2=0),

- The left length (LTBound1=0) is also less than (LTBound2=0).

- The right length (RTBound1=0) is also less than (RTBound2=0).

e From another side, the length ratio using Eq.(6.13),Eq.(6.14), and Eq.(6.15) are also
satisfied with the normality, i.e.:

- The length ratio of the core (RatioC1=1) is less than or equal (RatioC2=1).

- The length ratio of the left boundary (RatioLT1=1.20)is less than (RatioLT2=1.25).

- The length ratio of the right boundary (RatioRT1=1.20)is less than (RatioRT2=1.25).

e In this case (KA>=KA") and if (Ka; = KA), the conclusion B*= [5 5 5 5] is always
normal.

In the Example "CNF.KH_NOR.C2_2'" as shown in Table 15, we conclude the following:
e The core and boundary lengths of fuzzy sets antecedents (KA) are equal consequents
(KB) (see case CNF.C2), and if (Kaj= KA), (Kb;= KB), then the conclusion is always
normal. In this case, there is no restriction on the length of the observation (KA®) fuzzy

set.
- E.g., the right lengths of the antecedents fuzzy sets are (KA;=1 (4-3), KA,=1 (9-8),
and the average length of the antecedent fuzzy sets KA=1), and the consequents fuzzy
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sets are (KB;=1 (4-3), KB,=1 (9-8), and the average length of the consequents fuzzy
sets KB=1).
e The normality conclusion is satisfying, according to Eq.(6.16). l.e.:
- The core length (Corel=4.2) is less than (Core2=4.4).
- The left length (LTBound1=0.8) is less than (LTBound2=4.8).
- The right length (RTBound1=0.8) is less than (RTBound2=4.8).
e Also, according to the length ratio using Eq.(6.13), Eq.(6.14),and Eq.(6.15) are also
satisfied with core and boundary, i.e.:
- The length ratio of the core (RatioC1=1) is less than (RatioC2=1.11).
- The length ratio of the left boundary (RatioLT1=1)is less than (RatioLT2= 1.25).
- The length ratio of the right boundary (RatioRT1=1)is less than (RatioRT2=1.25).
e Inthis case (KA=KB), and if (Kaj= KA), (Kb;=KB), the conclusion B*=[44.85.26] b
always normal.

For Example "CNF.KH_NOR.C3_1" as shown in Table 16, we conclude the following:

e The core and boundary lengths of fuzzy sets consequents (KB) are large than
antecedents (KA) (see case CNF.C3), where (Kai = KA) and (Kbi= KB), then the
conclusion is always normal.

- E.g., the left lengths of the consequents fuzzy sets are (KB;=1 (2-1), KB,=1 (7-6), and
the average length of the consequents fuzzy sets KB=1). The antecedents fuzzy sets
are (KA;=0.5 (2-1.5), KA,=0.5 (7-6.5). The average length of the antecedent fuzzy
sets KA=0.5).

e The normality conclusion is satisfying according to Eq.(6.17),i.e.:

- The core length (Corel=0) is less than (Core2=5).

- The left boundary length, (LTBoundl = 2) is less than (LTBound2 = 4.5), the
conclusion is normal.

- The right boundary length, (RTBoundl = 2) is less than (RTBound2 = 4.5), the
conclusion is normal.

e Also, according to the length ratio using Eq.(6.13),Eq.(6.14), and Eq.(6.15), are also
satisfied for core and boundary, i.e.:

- The length ratio of the left boundary LTBound: (RatioLT1= 0.88) is less than
(RatioLT2=1),

- The length ratio of the core: (RatioC1=0.80) is less than (RatioC2=1),

- The length ratio of the right boundary RTBound: (RatioRT1= 0.88) is less than
(RatioRT2=1).

e Inthis case (KB>KA), where (Kai = KA) and (Kbi= KB), the conclusion B*=[44.555
6] is always normal,

Nevertheless, the second group includes Examples "CNF.KH_ABNOR.C4 1"
"CNF.KH_ABNOR.C4_4", the abnormality conclusion could appear in case the length of the
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consequence (KB) is less than the length of the antecedents (KA) with taking into consideration
the length ratio (Ka® < KA). Therefore, all CNF_Notations used to check the normality
conclusion are proved these examples not satisfied with CNF property. EQ.(6.13) - Eq.(6.15)
are important to prove abnormality in the core and boundary conditions (e.g., in case the core
length, when ratio [Core(KA)/Core(KB))] does not exceed ratio [Core(KA)/(Core(Ka*.KA;) +
Core(KAz.KaM))D.

In Example "CNF.KH_ABNOR.C4_1" as shown in Table 17, we conclude the following:
e The core and boundary lengths of the fuzzy sets consequents (KB) are less than
antecedents (KA). The observation fuzzy set is less than consequent fuzzy sets (KA™ <

KB) (see case CNF.C4), then the conclusion is always abnormal.

- l.e., the core lengths of the consequents fuzzy sets are (KB;=0 (2.5-2.5), KB,=0 (7.5-
7.5),and the average length of the consequents fuzzy sets KB=0), and the antecedents’
fuzzy sets are (KA;=1 (3-2), KA,=1 (8-7). The average length of the antecedent fuzzy
sets KA=1), and the core length of the observation fuzzy set KA*=0 (5.2-5.2).

e For the length ratio CNF_Notations used to prove the problem (abnormality in the core),
using (Eq.(6.14)) as follows:

- The length ratio of core is not satisfied, as (RatioC1=1.25)exceeds the (RatioC2=1).

e From another side, Eq.(6.17) also demonstrates anissue for the core length.

- The core length values, (Corel=5)is greater than (Core2 =0).

e In this case (KB<KA) and (KA™ < KB), the conclusion B*=[4.7 5.7 4.7 6.6] is always

abnormal, as shown by values of the core (5.7 is greater than 4.7).

In Example "CNF.KH_ABNOR.C4_2"asshownin Table 18, we conclude the following:
e The core and boundary lengths of the fuzzy sets KB < KA and KA* < KB. In this case,
the conclusion B*= [5.27 4.4 5.6 6.0] is always abnormal, where the problem could

appear in the left values as (5.27 is greater than 4.4).

- l.e., the left lengths of the consequents fuzzy sets are (KB;=1 (2-1), KB,=0.5 (7-6.5),
and the average length of the consequents fuzzy sets KB=0.75). The antecedents fuzzy
sets are (KA;=1.5 (2.5-1), KA,=2 (7.5-5.5), and the average length of the antecedent
fuzzy sets KA=1.75), and the left length of the observation fuzzy set KA*=0.4 (4.9-
4.5).

e For the length ratio CNF_Notations used to prove the problem (abnormality in the core),
using (Eq.(6.13)) as follows:

- The length ratio of the left boundary is not satisfied, where (RatioLT1= 1.5) exceeds
the (RatioLT2=1.15).

e Also, using Eq.(6.10) demonstrates a problem as follows:

- The left length values, where (LTBound1=30.15) is greater than (LTBound2 = 6.80),

the conclusion is suffering from the abnormality.
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In Example "CNF.KH_ABNOR.C4_3"as shownin Table 19, we conclude the following:

The core and boundary lengths of KB < KA and KA* < KA. In this case, the conclusion

B*=[44.4 5.6 4.94] is always abnormal, where the problem could appear in the right

values (5.6 is greater than 4.94).

l.e., the right lengths of the consequents fuzzy sets are (KB;=0.5 (3.5-3), KB,=0.9 (8.9-

8), and the average length of the consequents fuzzy sets KB=0.7). The antecedents fuzzy

sets are (KA;=1.8 (4.3-2.5),KA,=1.3 (8.8-7.5). The average length of the antecedent

fuzzy sets KA=1.55), and the right length of the observation fuzzy set KA*=0.4 (5.5-

5.1).

For the length ratio CNF_Notations used to prove the problem (abnormality in the core),

using Eq.(6.15) as follows:

- The length ratio of the right boundary is not satisfied, where (RatioRT1= 1.40)
exceeds (RatioRT2=1.14).

Also, using Eq.(6.12) demonstrates a problem as follows:

- The left length values, where (RTBoundl1=25.65) is greater than (RTBound1=6.76),
and therefore, the conclusion is suffering from the abnormality.

In Example "CNF.KH_ABNOR.C4_4"as shownin Table 20, we conclude the following:

We can see the problems in both of the core and boundary lengths, where the conclusion
B*=[6.55.27 4.72 4.4] is always abnormal.

Regarding the CNF_Notations by Eq.(6.10),Eq.(6.11),Eq.(6.12),and Eq.(6.17) of the
left and right boundary are not satisfied with the normality:

- Left Boundary length: LTBound1=27 > LTBound2=0,

- Core length: Corel=3 > Core2=0,

- Right Boundary length: RTBound1=9 > RTBound2=0.

Also, EQ.(6.13) - Eq.(6.15) are not satisfied because (Ratiol) is greater than (Ratio2)
for the core and boundary of the conclusion:

- Left ratio: RatioLT1=1.5 > RatioLT2=1

- Core: RatioC1=1.2 > RatioC2=1

- Right ratio: RatioRT1=1.2 > RatioRT2=1

Based on all examples and cases of the CNF property benchmark, we conclude the
following:
Regarding the examples of the first group. We conclude that all examples are satisfied with

CNF property according to the difference between the core and boundary conditions of the
fuzzy rules and observation fuzzy sets. Where the conclusion is always "normal" in case:
o (KA* >=KA), if (Kaj = KA).

o (KA = KB), if (Kaj=KA) and (Kb; =KB).

¢ (KB > KA), if (Kaj = KA) and (Kb; =KB)

1.
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Moreover, all CNF_Notations in Eq.(6.10) - Eq.(6.15) of the core and Left-Right boundary
(lengths and ratios) proved that the normality conclusion, which is always satisfied with the
CNF condition.

2. On the other hand, regarding the examples of the second group. We conclude that all
examples are not satisfied with CNF property according to the difference between the core
and boundary conditions of the fuzzy rules and observation, where the conclusion is always
abnormal in case:

e (KB < KA), if (KA*<KB).

Furthermore, all CNF_Notations in Eq.(6.10) - Eq.(6.15) of the core and Left-Right boundary

(lengths and ratios) proved that the abnormality conclusion, which is always not satisfied with

the CNF condition.

6.3. FRI Benchmark Example of the PWL Property for the Koczy-Hirota
Interpolation Method

Among several conditions for fuzzy interpolation techniques which were recommended in
[15], [17] and [43], the conservation of the Piecewise Linearity (PWL) is animportant property
for reducing the computational complexity, in case of a-cut based FRI methods (like the studied
KH-FRI). If the FRI method preserves the Piecewise Linearity of the fuzzy sets, and all the
fuzzy values, and the observation are PWL fuzzy sets, the FRI calculations can be reduced some
related a-cut levels.

The most significant benefit of the KH-FRI is its low computational complexity.
Notwithstanding the advantages, in some antecedent fuzzy set configuration, the KH-FRI
conclusion suffers from preserving a PWL (for more details see [4], [5]). The preservation of
PWL is a significant property to be able to eliminate the FRI calculations between two
consecutive a-cuts. The studies in [41], [44], and [45] discuss the PWL property and gives some
conditions for the fuzzy rules and observation fuzzy sets, where the PWL of the conclusion
necessarily holds.

This subsubsection aims to highlight the problematic properties of the KH-FRI method to
prove its efficiency with PWL condition to construct PWL_Benchmark Examples. This
benchmark can serve as a baseline for testing other FRI methods against cases that the KH-FRI
is not satisfied with the linearity condition. All benchmark examples in this subsubsection are
constructed using notations and equations detailed in [41], [44], [45], and implemented in the
MATLAB FRI Toolbox [24], [26], which provides an easy-to-use framework to represent the
conclusions of the FRI methods.

6.3.1. The shape of the KH-FRI conclusion in case of PWL fuzzy sets

The main concept of the KH-FRI is based on the resolution and extension principles [90], in
which the FRI can be decomposed to the problem into an infinite family of crisp issues
corresponding to a-cuts of fuzzy rule bases and observation. The interpolation conclusion can
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be solved for every a-cuts independently. And it can deduce the fuzzy solution by combining
these results into a fuzzy approximation (see Eq.(6.8)).

Most FRI methods require some constraints to be satisfied: all the fuzzy sets of fuzzy rules
and observation must be convex and normal, or briefly a CNF set. Let us assume (A) is a fuzzy
set; thus, (A) is called normal when (Height(A) = max(x) € U(u1a(x))), and is convex if each of
its a-cuts is connected. Thus, the Membership Functions (MF) of fuzzy rules and observation
(e.g., trapezoidal and triangular) are also restricted to be PWL because it will be much easier for
calculation with such functions because it depends on a-cuts. Definitions (Definition of the
Preceding CNF Sets - Definition of the Lower and Upper Distances Between a-Cuts in previous
subsection 6.2) could be introduced to realize the interpolation concept.

Fig. 78 represents the linear interpolation method between two fuzzy rule bases and
observation described by trapezoidal Membership Function (MF) for o € [0, 1]. The
characteristic points of the trapezoidal MF denoted by vector a= [ai, a,, as, as], where the
support (a; and a4) represents by P (0, L) and P (0, U), the core (a; and a3) describes by P (1,
L) and P (1, U), in which L denotes to lower, and U denotes to upper. In the case of triangular
MF, it can be represented by P (0, L), P (0, U), and P (1, (L and U)), in which a,=a; for the
core fuzzy setA.

2

MF
antecedents

=]
=]

2

MF
Consequent

N ]

b1 bi4 b*1 b*4 b21

o]
=]

Fig.78. The Ratioofthe Lower and Upper Distances Calculated Between the Interpolation of Two Piecewise
Linear Rules. The Shape ofthe Conclusion (B") Shows for the a -Cuts Level Betweena €(0,1) [41]

6.3.2. The piecewise linearity of the KH-FRI conclusion

Many FRI methods are not preserving the PWL in conclusion (see casesin [32]). The KH-
FRI is one of them, which also cannot fulfill this condition. Most of the FRI methods, which
hold the PWL condition, the FRI calculations are restricted to a small finite set of a-cut levels,
which will be called the necessary cuts. For PWL membership functions (e.g., trapezoidal and
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triangular), an obvious assumption is to define the set of significant cuts by the united
breakpoint set a. However, this is not true in general because in many FRI methods, the
conclusion B~is severely distorted and non-linear (i.e., the PWL condition not holds).

Theoretically, the conclusion of the KH-FRI can be calculated by its a-cuts. All a-cuts should
be considered, but for practical reasons, only a finite set is taken into consideration during the
computation. Now, let us determine which PWL_Notations will be used to calculate the
characteristic points of the lower and upper of fuzzy rule bases and observation fuzzy sets that
can be defined as follows:

For antecedent fuzzy set:
A = a . (aiz — air) + ai

6.18
Aiqu = o . (ai3 — aig) + aig (6.18)
For consequent fuzzy set:
Biww = a . (biz — biz) + b1
6.19
Biww = a . (biz — bis) + bis (6.19)
For observation fuzzy set:
A*ocL =a. (a*z - a*l) +a" (6 20)

A =a.(a*s— Cl*4) +a*y

The conclusion of the linear interpolation (left slope) could be calculated for a-cut levels by
the statement as follows:

State ment PWLST1: The equations of the left and right slopes to breakpoint levels 0 and a can
be calculated for the two fuzzy rule bases A; — Bi, A, — B,, and the observation A* as follows:

DL, xa® + DL, xa + DL,
CLy xa +clLy,

B, =

(6.21)

_ DR, xa’+DR,xa+ DR,
CRy x o +CR,

(6.22)

where

DL,= (CL3.CL5) + (CLl.CL7)
DL,= (cLs.cLg) + (cLs.CLs) + (cLj.cLg) +(cLa.cLy)
DLs= (cL4.cLg) + (cLy.CLg)

And

cLy=a*% —a* —ap+ay; Clo=a* —au; Cls=axy —axn —a*m+ax

CLy = ax1 — a*; Cbs = b1 — b11; Cle=b11; Cly = by — by
Clg = bgi;Clo= a1 — a2 + @2 — an; CLip=ax —an
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Similar to the left slope equation, the right slope canbe constructed, it can replace the index
1 of the characteristic points fuzzy setai), ax), "), b1zyand boeyy by index 4, and index 2 of
ai(2), ax2), a"(2), biz) and by are replaced by 3, and the sign in X replaced by its opposite
(negative direction tangents).

On the other hand, authors in [41], [44], [45] also introduced other equations to calculate the
left and right slopes of the conclusion as follows:

The left slope of the conclusion:

B: = (DL, clg) - (DL, cbychy) + (DLcly)  p, . (DLycLy) — (DLycly,) (6.23)
cLZ.(cLy.a +CLyp) cL, cl?

it can be written:

+(C.a+D)=yH+yL (6.24)
a+B

where
A= (DLy.clg) — (DL, cly.cLiy) +(DL.cLy,)
cLd

=S . _bL . (DL cly) = (DL cly)
CI—g CLQ CLQ

Where y, refersto astraight line and yy denotes the hyperbola, B, is the curve that represents
the superposition of y, and yy (for more details see Figure (11) in [41], [45]). Similar equations
of the left slope can calculate the right slope.

6.3.3. Reference values for the PWL property

The KH-FRI conclusion is not preserving the PWL property, becuase the rate calculated by
the KH fundamental equation between two adjacent fuzzy rules and the observation, which are
changing for all the a levels. According to the main corollaries in [41], [44], [45], the linearity
of the left and right slopes of the KH-FRI conclusion could be determined as follows:

The condition of polynomiality when (cLg= 0). Then, we get:

1) Corollary PWLCR1:
The flanks of B” are piecewise polynomial if and only if the two antecedents A; and A, have
equivalent PWL slopes, obtainable from each other by geometric translations:

a1z —ann=ax—axn (6.25)
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If we require linearity of the pieces, the condition must be met, when (DL; = 0).
Consequently, the linearity conclusion canbe demonstrated:

2) Corollary PWLCR2:

This corollary will be satisfied in three different cases that slopes of the conclusion B* are
preserving PWL. Hence, if this corollary is done suitably, the KH-FRI conclusion will always
be satisfied if the following cases are held:

2.1) Case PWLC1:
If the left and right slopes of the antecedents A; and the consequents B; are equivalent to
PWL on the universe of discourse, then the left slope PWL_Notations can be defined as:

Ai=ap—ap=axp—ax

6.26
Bi=bi—b11=bp—bxn (6.26)

2.2) Case PWLC2:

If the left and right slopes and characteristic points of the two adjacent fuzzy rule bases A;
=B; and A, =By are equivalent in the universe of discourse, then the left slope PWL_Notations
could be determined as follows:

Ar =Birapn—an=Dbi—bn

6.27
Ay =2Byran—an=Dby—bxn (6.27)

In this case, there is no restriction on the shape of observation A*.

2.3) Case PWLCa3:
If the antecedents A; and the observation A~are satisfied with PWL. The B~ slopes are linear
only if Corollary PWLCR1 is applied.

The left slope PWL_Notations can be determined as follows:
d=d* (6.28)

where
ax—an=an—an=4d
a*Z _ a*l — d*

For this case, there is no restriction on the consequents B;.

2.4) Case PWLC4:

If all the variables on the universe of discourse are covered by equidistant fuzzy sets A;, B;,

and A~ then PWL_Notations of the left slope can be described as follows:
Ai=ap—an=ax»—ax

6.29
Bi=bip—bi1=byn—bn (6:29)
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A =a*—an

In [41], [44], [45], the upper bound is presented the possible highest deviation between the
real and approximated linear functions, hence, if there is a vast difference between them, the
validity of the method is violated between characteristic points of the fuzzy sets in the interval
[0, 1], and at the same time could question the applicability of any new method. Regarding the
beneficial computational properties of the KH-FRI would not hold anymore. Consequently,
different views were introduced to determine the deviation from the calculated linear
interpolation. Therefore, the approximating linear equation of the conclusion defined to give a
straight line that will be used to compare with real function. It can be determined as follows:

For the left slope of conclusion B* for two endpoints [0, 1] are:
. _ DL, B = DL, + DL, + DL,

- ' 6.30
“ DL, ™ cL, + L, (6.30)

Then, the equation of the left slope of the linear approximation is determined as:
BaL(approx) =ax(B, —By )+By (6.31)

Fig. 79 describes the maximum difference between the real function and its PWL
approximation, which can be determined by statement PWLST2:

Approximation
conclusion

Consequent

i

y

b1 b21

Fig.79. The Difference Betweenthe Linear Approximation and Real Function ofthe Left Slope for the a-Cuts
Level Between a.€(0,1) [41], [45]

Statement PWLST2: The error of the approximating nonlinear slope of the determined
conclusion could be defined by a linear slope between (0 and 1), which expressed in terms of
the membership degree running through [0, 1] as follows:

. D
AB = _bh e (6.32)
cly xa +cL,
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DL, N DL, DL, +DL, +DL, <o+ DL, _ DL,
cLyxa+cL, cL, cL, +cly, (cLyxea)+cL, cLy

In Eqg.(6.23) could be used to verify the PWL condition, and for further PWL_Notations
presented to check the upper limit of the error canbe given by calculating the difference yy(0)
- yu(1) (for more details see [41], [45]), which can be determined as follows:

A
B(L+ B)

(DLy.cL3) — (DL, cLy.cLyy) + (DL, cL5,)
cL-CLyg-(CLy +CLy,)
Where, the linearity error can be determined by Statement PWLST3:

E=yH(0)-yHD=

(6.33)

Statement PWLST3: The linearity error of B (for the left slope) does not exceed ¢ > 0 if:

(DL, +cLy,.6) ++/(DL, +cLy,.6)2 —4.DL,.(DL, —cLy, &)
2.(DL, —cLyy.5)
< cl, 1
S, B (6.34)
(DL, +¢cL,,.£) —/(DL, +cLyy.€)? —4.DL,.(DL, —cL,,.¢)
2.(DL, —cL,.€)

Which are proved by:
The left slope:

Left.slope= ((DL, — (cL,, x £))xCL3) —

(6.35)
((DL, xcL,, +cL2, xg)xcL, + (DL, xcL))) <=0

The right slope:
Rightslope= ((DR, —(cR,, x&))xCRZ) —

(6.36)
(DR, xCR,, +CRZ x &) x CR, + (DR, xCcR2)) <=0

The value ¢ is assumed 0 to verify PWL_Notations of the statement PWLST3.

The general case of the linear interpolation canonly use two breakpoint values (o = 0 and a
=1) for computing the support and the core conclusion, which may not be satisfactory because,
in most cases, the results obtained are somewhat disappointing. For this reason, it will be needed
to calculate for a much larger number of a-cuts levels. In the next subsubsection, we will discuss
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all cases used in constructing the PWL_Benchmark Examples. These cases will be analyzed

according to the PWL condition, which values of a-cut levels to every step of 0.1, « € [0, 1]
will be considered.

6.3.4. The KH-FRI PWL benchmark

In this subsubsection, the validity of the PWL condition of the KH-FRI method will be
investigated. The statements and equations in the previous sub subsections could be used to
check the linearity of the KH-FRI conclusion, and also to construct the PWL_Benchmark
Examples. The left and right slopes of the fuzzy rule and observation play a significant role in
preserving the conclusion’s linearity. To represent the fuzzy sets of the antecedent, consequent,
and observation in the PWL_Benchmark Examples, we use one-dimensional input and output
variables, triangular membership function, and two fuzzy rules. PWL_Benchmark Examples
and their results tested by the MATLAB FRI toolbox. The current version of the FRI toolbox
is freely available to download in [24].

PWL_Benchmark Examples are divided into two groups. The first group presents the rule-
base, observation configurations, where the KH-FRI conclusion is satisfied with the PWL
condition. The second group shows the examples that the conclusions of the KH-FRI are not
satisfied with the PWL condition. We will discuss the cases related to the PWL property of the
KH-FRI conclusion.

The KH-FRI conclusion is always satisfied with PWL condition if the following cases are
met:

For Case PWLC1: Whenthe left and right slopes A; and B; fuzzy sets are identical (e.g., for
left slop a1, — a1 = @z — azpand by, — b1y = by — b2y), therefore, the conclusion of KH-FRI
will always be satisfied with the linearity condition. Table 21 illustrates the PWL_Notations of
the Example "PWL.LIN.C1" that demonstrate the linearity conclusion related to Case PWLCL1.

Table 21. The Preserving PWL Conclusionof The KH-FRI with Fuzzy Setsand PWL_Notations to Case PWLCL.

Example "PWL.LIN.C1"
The characteristic points of the fuzzy sets: The length of leftand rightslopes of the fuzzy sets:
A;=[0226] A=[10 12 12 16] A"=[7 88 9] Forleft: A;=2,A,=2,A'=1,B:=2,B,=2
B:=[022 6] B,=[10 1212 16] B'=[7 88 9] ForRight: Ai=4, A;=4,A’=1,B1=4,B,=4
PWL_Notations by Eq.(6.32): PWL_Notations by Eq.(6.33): PWL_Notations by E0.(6.34):
AB’Left =0 E.Left= NAN Left.Slope=1
AB’Right=0 E.Right=NAN Right.Slope =1
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The Antecedent and Observation The Consequent and Conclusion

Al A A2 B1 . B2

For Case PWLC2: If two adjacent fuzzy rule bases A; — B; and A, — B; (e.g., for left slop:
Rulel (a;2 — @11 = b1y — b11), Rule2 (ax — a1 = byy — by1) have the same left and right slopes
and the same characteristic points on the universe of discourse, then the KH-FRI conclusion
will always be satisfied with the linearity condition. Table 22 explains the Example
"PWL.LIN.C2" that indicate to Case PWLC2.

Table 22. The Preserving PWL Conclusionof The KH-FRI with Fuzzy Sets and PWL_Notations to Case PWLC2.

BExample "PWL.LIN.C2"

The characteristic points of the fuzzy sets: The length of leftand rightslopes of the fuzzy sets:
A=[0334]A=[10111114] A"=[566 7] Forleft: A;=3,A=1,A'=1,B:=3,B,=1
Bi=[0334]B,=[101111 14] B'=[566 7] ForRight: A;=1,A;=3,A"=1,B1=1,B,=3
PWL_Notations by Eq.(6.32): |PWL_Notations by Eq.(6.33): PWL_Notations by Eq.(6.34):
AB"Left=0 E.Left=0 Left.Slope=1
ABRight=0 E.Right=0 Right.Slope =1
Tl?e Antece?ent and Qbservati?n ‘ The 90nsequent and Concll.fsion
A1 A* A2 B1 B’ B2

08 1 08

06 [ 1 06

04} 1 04t

0zf 1 o2k

For Case PWLC3: When the fuzzy sets of the antecedents A; and the observation A* have
the same left and right slopes PWL, therefore, the conclusion of the KH-FRI will always be
satisfied with the linearity condition. Table 23 defined PWL_Notations of Example
"PWL.LIN.C3" regard to Case PWLC3.
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Table 23. The Preserving PWL Conclusionof The KH-FRI with Fuzzy Setsand PWL_Notations to Case PWLC3.

Example "PWL.LIN.C3"
The characteristic points of the fuzzy sets: The length of leftand rightslopes of the fuzzy sets:
A;=[0336] A=[13 16 16 19] A"=[6.59.5 95 Forleft: A;=3,A,=3,A’=3,B,=1,B,=2
125] Bi=[12 23] B,=[79911] B'=[45555 7] |ForRight: A;=3,A,=3,A’=3,B:=1,B,=2

PWL_Notations by Eq.(6.32): |PWL_Notations by Eq.(6.33):  |PWL_Notations by Eq.(6.34):
AB’Left =0 E.Left= NAN Left.Slope=1
AB’Right=0 E.Right=NAN Right.Slope =1

The Antecedent and Observation The Consequent and Conclusion

08

06

0.4
A1 A2

0z

For Case PWLC4: When the left and right slopes for all fuzzy sets of two adjacent fuzzy
rule bases and observation are equidistant (A; = B; = A”), therefore, the conclusion of the KH-
FRI will always be satisfied with the linearity condition. Table 24 illustrates PWL_Notations
to Example "PWL.LIN.C4" which indicates to Case PWLC4.

Table 24. The Preserving PWL Conclusionof The KH-FRI with Fuzzy Setsand PWL_Notations to Case PWLCA4.

Example "PWL.LIN.C4"
The characteristic points of the fuzzy sets: The length of leftand rightslopes of the fuzzysets:
Ai=[1223]A=[10111112] A=[5667] |Forleft: Ai=1,A=1,A'=1,B1=1,B,=1
Bi=[1223]B,=[10111112] B'=[566 7] ForRight: Ai=1A,=1,A'=1,B;=1,B,=1

PWL_Notations by Eq.(6.32): | PWL_Notations by Eq.(6.33): PWL_ Notations by Eq.(6.34):
AB’Left =0 E.Left = NAN Left.Slope=1
AB’Right=0 E.Right=NAN Right.Slope =1

Thg Antecedept and 0b§ervation i ‘ The Consequent and Conclusion

However, the conclusions of the KH-FRI are not satisfied with PWL condition based on
Eq.(6.32),Eq.(6.33) and EQ.(6.34) if the following cases hold.

According to Case PWLC1: When the left and right slopes A; and B; are incompatible (e.g.,
for leftslop (a12 — @11 # az — az) and (b12 — b11 = by — b21), Whereas A; # A%, in this case, the
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linearity conclusion of KH-FRI is not satisfied. Example "PWL.NONLIN.C1" constructed to
prove the problem, which will be described by three different situations based on the
characteristic points of the observation A*to compare its linearity conclusions.

Table 25 illustrates PWL_Notations that describe the problem according to the three
situations.

Table 25. The Problemwith Slopesto Case PWLC1 Whichis not Preserving PWL

Example "PWL.NONLIN.C1" situation1when e.g., theleftslope (b1(2) -b1(1) = b2(2) - b2(1)) = A”

The characteristic points of the f,‘fzzy sets: The length of leftand rightslopes of the fuzzy sets:
A;=[0228] A,=[14 20 2022] A™=[9 11 11 13] Forleft: A=2 A=6 A"=2 B,=2 B,=2

Bi=[022 4] B,= [3 1111 13] For Right: Ai=6, A;=2, A'=2, B;=2, B,=2

B'=[5.79 6.50 6.50 7.21]

PWL_ Notations by Eq.(6.32): PWL_Notations by E£0.(6.33): |PWL_Notations by Eq.(6.34):
AB” Left (Maximum-deviation) =0.08 |E.Left=1.2857 Left.Slope=0

AB’Right (Maximum-deviation) = 0.08 | E.Right = 1.2857 Right.Slope =0

The Antecedent and Observation The Consequent and Conclusmn

LA

Example "PWL.NONLIN.C1"s |tuat|on2wheneg theleftslope(bl(2) b1(1) = b2(2) - b2(1))<A

The characteristic points of the fuzzy sets: .
N The length of leftand rightslopes of the fuzzy sets:
A=[0228] A;=[1420 2022] A'=[8111114] |’ ") A2 Arg, /_\gzgy Bfiz, e y

Bi= [022 4] B.= [9 11 11 13] _ :
: ForRight: A;=6, A;=2, A'=3, B,=2, B,=2
B= [5.14 6.50 6.50 7.86] OrRIgt:-Au=0, Az 1745

b

PWL_Notations by E0.(6.32): PWL_Notations by Eq.(6.33): |PWL_Notations by Eq.(6.34):
AB” Left (Maximum-deviation)=0.04 |E.Left=0.6429 Left.Slope=0
AB’Right (Maximum-deviation) = 0.04 | E.Right = 0.6429 Right.Slope =0

The Antecedent and Observation The Consequent and Conclusmn
T T T T T T T r ; T

0 2 4 6 8 10 12 14 16 18 20 2

BExample "PWL.NONLIN.C1" situation3when e.g., the Ieftslope(bl(Z)— bl(l) = b2(2) - b2(1)) > A"

The characteristic points of the fuzzy sets: .
N The length of leftand rightslopes of the fuzzy sets:
A=[0228] A=[14 20 2022] A"=[10 11 11 12] For |eﬁ:gA1=2 A,=6 A*=gl Bl=|02e B2=2 ’

Bi= [022 4] B.= [9 11 11 13] A e
; ForRight: A;=6, A;=2, A'=1, B;=2, B,=2
B'= [6.4286 6.5 6.5 6.571] OFRIgNt:-A=5. Az 1= B

136|Page



PWL_ Notations by Eq.(6.32): PWL_ Notations by Eq.(6.33): | PWL_Notations by Eq.(6.34):
AB’ Left (Maximum-deviation)=0.121 |E.Left=1.9286 Left.Slope=0
AB’Right (Maximum-deviation) =0.121 | E.Right = 1.9286 Right.Slope =0

The Antecedent and Observation The Consequent and Conclusion

A*

About Case PWLC2: When the two adjacent fuzzy rule bases A; — B; and A, — B, have
the same left and right slopes but have different characteristic points on the universe of
discourse, in this case, the linearity conclusion of KH-FRI is not satisfied. Example
"PWL.NONLIN.C2" constructed to prove the issue, as shown in Table 26.

Table 26. The Problemwith Slopesto Case PWLC2 Whichis not Preserving PWL

Example "PWL.NONLIN.C2"
The characteristic points of the fuzzy sets: The length of leftand rightslopes of the fuzzysets:
Ai=[0334]A=[10111114] A’=[566 7] Forleft: A;=3,A=1,A'=1,B:=3,B,=1
Bi=[1445]B,=[1516 16 19] B'=[8 858.59.2] |ForRight: Ai=1,A,=3, A"=1,B:=1,B,=3
PWL_ Notations by Eq.(6.32): PWL_Notations by Eq.(6.33): |PWL_Notations by Eq.(6.34):
AB’ Left (Maximum-deviation) = 0.028 |E.Left=0.500 Left.Slope=0
AB’Right (Maximum-deviation) =0.017 | E.Right = 0.300 Right.Slope=0

The Antecedent and Observation The Consequent and Conclusion
T T T T T T T T T T T r

0sf B

Referring to Case PWLC3: When the left and right slopes of the antecedents A; (a;2— an
= ayy — az,) and the observation A~ are not equivalent, whereas A; # Bj, then the linearity
conclusion of KH-FRI is not satisfied. Refer to Corollary PWLCR1, Example
"PWL.NONLIN.C3" is applied the polynomial condition when (a1, — a11 = az — az1); however,
it is not linear. Table 27 describes PWL_Notations which prove the problem to this case.
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Table 27.The Problemwith Slopesto Case PWLC3 Whichisnot Preserving PWL

Bxample "PWL.NONLIN.C3"
The characteristic points of the fuzzy sets: The length of leftand rightslopes of the fuzzy sets:
A;=[0337] A=[15 18 18 22] A*=[7 88 10] Forleft: A=3,A,=3,A’=1,B:=2,B,=1
Bi= [022 5] B= [8 99 10] B'= [3.73 4.33 4.33 6.0] | For Right: A;=4, A;=4,A"=2,B,=3,B,=1
PWL_Notations by Eq.(6.32): PWL._Notations by Eq.(6.33): [PWL_Notations by Eq.(6.34):
AB’ Left (Maximum-deviation) =0.033 |E.Left = NAN Left.Slope=0
AB’Right (Maximum-deviation) = 0.067 | E.Right = NAN Right.Slope =0

The Consequent and Conclusion
T T T T T T

The Antecedent and Observation

According to Case PWLC4: When values of the left and right slopes of fuzzy rule bases
and observation are not similar (A; # Bi # A”), then the linearity conclusion of KH-FRI is not
satisfied. Example "PWL.NONLIN.C4" created to demonstrate the problem, as shown in Table
28.

Table 28. The Problemwith Slopesto Case PWLC4 Whichis not Preserving PWL

Example "PWL.NONLIN.C4"
The characteristic points of the fuzzy sets:
A1=[1224]A,=[1012 12151 A™=[6 77 8]
Bi=[022 5] B,= [12 1313 14]
B'=[6.67 7.5 7.5 8.27]

The length of leftand rightslopes of the fuzzy sets:
Forleft: A;=1,A=2,A"=1,B:=2,B,=1
ForRight: Ai=2,A,=3,A"=1,B:=3,B,=1

PWL_Notations by Eq.(6.32):
AB’Left (Maximum-deviation)=0.031
AB’Right (Maximum-deviation)=0.101

PWL_Notations by Eq.(6.33):
E.Left=1.1667
E.Right=4.2273

PWL._Notations by Eq.(6.34):
Left.Slope=0
Right.Slope =0

The Antecedent and Observation

A*

A2

The Consequent and Conclusion

5
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6.3.5. Discussion of the KH-FRI PWL benchmark examples

In the following, the PWL_Benchmark Examples and their notations will be discussed in
detail. Examples "PWL.LIN.C1" to "PWL.LIN.C4" shown in Table 21 - Table 24 demonstrate
PWL configurations, where the conclusions of the KH-FRI are always preserving PWL
property, according to Eq.(6.32) is always equal to 0 because the values of the real and linear
approximation functions are similar. Also, by Eq.(6.33) is NAN or, in some cases, is equal to 0
because the parameters cLg or CRg are equal to O (see Corollary PWLCR1 and PWLCR2).
Eq.(6.34) could always be satisfied with preserving the PWL when left.Slope and right.Slope
are 1.

According to examples of the first group, two examples will be taken to demonstrate the
linearity (PWL) of the KH-FRI.

Referring to Example "PWL.LIN.C1" as shown in Table 21, we conclude the following:

e The conclusion of the KH-FRI is satisfied with PWL condition related to Case PWLC1,
where, the support length of the left and right slopes of antecedent A; and consequent Bi
fuzzy sets are similar.

e Using Eq.(6.32), Eq.(6.33),and Eq.(6.34), the conclusion is always satisfied with the
linearity property. E.g.,

- The left slope of antecedent fuzzy sets: (A;=2 and A,=2) and (B;=2 and B,=2).
- The right slope of antecedent fuzzy sets: (A;=4 and A,=4) and (B;=4 and B,=4).

e Fig. 80 shows the result of AB*, which is obtained by Eq.(6.32) for all a-cut levels to

the left and right slopes that are equal to 0.

o - Levels 0.000 | 0.100| 0.200 | 0.300| 0.400 | 0.500 0.600 | 0.700 | 0.800 | 0.900 | 1.000
Real B* | 5.000 | 5.100 | 5.200 | 5.300 | 5.400 | 5.500 | 5.600 | 5.700 | 5.800 | 5.900 | 6.000
Left Slope japprox B* 5.000 | 5.100 | 5.200 | 5.300 | 5.400 | 5.500 | 5.600 | 5.700 | 5.800 | 5.900 | 6.000
AB* 0.000 | 0.000 0.000 | 0.000 | 0.000 | 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Real B* | 6.000 | 6.100 | 6.200 | 6.300 | 6.400 | 6.500 | 6.600 | 6.700 | 6.800 | 6.900 | 7.000
Right Slopejapprox B* 6.000 | 6.100 | 6.200 | 6.300 | 6.400 | 6.500 | 6.600 | 6.700 | 6.800 | 6.900 | 7.000
| AB* 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

Fig.80. The Difference Between the Linear Approximation and Real Functions of the Left and Right Slopes for o
€[0,1] To Example "PWL.LIN.C1”

e The estimated error PWL_Notations are proved the non-linearity as follows:

- By EQ.(6.33) is NAN for left and right slopes (E.left = NAN, E.right = NAN), the
PWL_Notations of Corollary PWLCR1 and PWLCR2 are also demonstrated, where
(e.g., for left slope) DL, is O (because of cLy = 0).

- By EQ.(6.34) is 1 for left and right slopes (Left.Slope =1, Right.Slope =1).(6.33)
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Anothercase ofthe preserving linearity, it is evident by Example ""PWL.LIN.C2" as shown
in Table 22, we conclude the following:

The conclusion of the KH-FRI is satisfied with linearity condition when slopes of two

fuzzy rule bases are equivalent; this example is restricted to the characteristic points of

the two fuzzy rule bases, which must be identified as mentioned in Case PWLC2. E.g.,

- The Rule A; = B; (for the lower A;=3 and B;=3), and (for the upper A;=1 and B;=1).

- The Rule A; = B, (for the lower A;=1 and B;=1), and (for the upper A;=3 and B;=3).

- The characteristic points A;7=[0334] =B;=[0334]and A,=[101111 14] =B,=
[10111114].

AB~ of the left and right slopes that are equal 0, which computed by Eq.(6.32).

The estimated error PWL_Notations are proved the non-linearity as follows:

- By EQ.(6.33) is 0 for left and right slopes (E.left = 0, E.right = 0), despite the
parameters cLg and DL; (by PWL_Notations of Eq.(6.34)) are "not zero", e.g., for left

slope, cLg =-2 and DL1 are -2.
- By EQ.(6.34) is 1 for left and right slopes (Left.Slope =1, Right.Slope =1).(6.33)

In contrast, Examples "PWL.NONLIN.C1" — "PWL.NONLIN.C4" describe cases, in which
the conclusions of the KH-FRI are not satisfied with PWL (the second group). These examples
have been presented based on two facts, either if the conclusion is close to linearity (Example
"PWL.NONLIN.C1" situation2) or far from linearity (Example "PWL.NONLIN.C1" situation3).

According to Eq.(6.34), the conclusion is not satisfied with the PWL condition because the
values are always 0 for (left.Slope and right.Slope). Eq.(6.32) and Eq.(6.33) will be discussed
in detail as follows:

According to Example "PWL.NONLIN.C1" as shown in Table 25, we conclude the
following:

There are three different situations based on the characteristic points of the consequents
and the observation as:

- Situationl (When (b12 — by = b22 - b21) = A*),

- Situation2 (When (b12 —buu=by— b21) < A*),

- Situation3 (when (b1z — b13 = by — byy) > A”).

Fig. 81 shows the difference between real and linear approximation functions for each
situation. Using Eq.(6.32),the maximum deviation for left and right slopes in situationl
is 0.08, and situation2 is smaller than situationl, which is 0.04, in contrast, situation3
has the high deviation is 0.121.
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a - Levels 0.000 | 0.100 | 0.200 | 0.300 | 0.400 | 0.500 | 0.600 | 0.700 | 0.800 | 0.900 | 1.000
Situation 1| 0.000 | 0.032 | 0.056 | 0.071 | 0.079 | 0.080 | 0.075 | 0.064 | 0.048 | 0.026 | 0.000

AB* Situation 2| 0.000 | 0.016 | 0.028 | 0.036 | 0.040 | 0.040 | 0.038 | 0.032 | 0.024 | 0.013 | 0.000
Left Slope | Situation 3 [ 0.000 | 0.048 | 0.083 | 0.107 | 0.119 | 0.121 | 0.113 | 0.096 | 0.072 | 0.039 | 0.000
Situation 1| 0.000 | 0.026 | 0.043 | 0.064 | 0.075 | 0.080 | 0.079 | 0.071 | 0.056 | 0.032 | 0.000

AB* Situation 2| 0.000 | 0.013 | 0.024 | 0.032 | 0.038 | 0.040 | 0.040 | 0.036 | 0.028 | 0.016 | 0.000
Right Slope| Situation 3| 0.000 | 0.039 | 0.072 | 0.096 | 0.113 | 0.121 | 0.119 | 0.107 | 0.083 | 0.048 | 0.000

Situation 1

Situation 2

Situation 3

1

0.8

N 06

0.4

0.2

0

0 0
56 58 6 62 64 66 68 7 72 74 5 55 6 6.5 7 75 8 63 6.35 6.4 6.45 65 6.55 66 6.65 67

‘ ——Leftreal conclusion - — Leftapprox conclusion Right real conclusion = = Right approx conclusion ‘

Fig.81. The Difference Between the Linear Approximation and Real Functions of the Lefi and Right Slopes for o.
€1[0,1] To Example "PWL.NONLIN.C1 "

e On the other hand, Eq.(6.33) shows the error ratios for the three situations, situation3
has a large error ratio compared to situationl and situation2, where the error ratio of the
left and right slopes of (situation3 is 1.9286), (situationl is 1.2857),and (situation2 is
0.6429). Therefore, situation3 is far from linearity, in contrast to situation2, which is
closer than situationl to linearity.

e Using Eq.(6.34), the conclusion is always not satisfied with the PWL condition, where
the value is always O for (left.Slope and right.Slope).

In Example "PWL.NONLIN.C2" as shown in Table 26, we conclude the following:

e The problem appears when the left and right slopes of fuzzy rule bases are the same, but
the characteristic points of the fuzzy sets of A; and B; are different on the universe of
discourse. In this case, the conclusion KH-FRI is not satisfied with linearity. E.g.,

- The Rule A; = B; (for the lower A;=3 and B;=3), and (for the upper A;=1 and B;=1).

- The Rule A, = B, (for the lower A;=1 and B;=1), and (for the upper A;=3 and B;=3).

- The characteristic points A;=[0334] =B;=[1445]and A,=[101111 14] =B,=
[1516 16 19].

e Referring to EQ.(6.32), the deviation for the left slope is greater than the right slope,
where the left slope is 0.028, and the right slope is 0.017,as shown in Fig. 82.
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AB*

a - Levels|

Left Slope

Right Slope|

0.000

0.000

0.000
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0.009

0.007
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0.300

0.022

0.015

0.400

0.026
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0.500

0.028

0.017

0.600

0.027

0.016

0.700
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0.013

0.800

0.019

0.010

0.900

0.011

0.006

1.000

0.000

0.000
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0

84

86

| —— Leftreal conclusion = = Left approx concision

Right real conclusion

= = Right approx conciusion

Fig.82. The Difference Between the Linear Approximation and Real Functions of the Left and Right Slopes for o
€1[0,1] To Example "PWL.NONLIN.C2 ”

e Also, Eq.(6.33) describes the error ratio, where the left slope is 0.5 is far from linearity
to the right slope is 0.3.
e According to Eq.(6.34), the conclusion is always not satisfied with the PWL condition,

where the value is always 0 for (left.Slope and right.Slope).

In Example "PWL.NONLIN.C3" as shown in Table 27, we conclude the following:

The conclusion of KH-FRI is not satisfied with linearity according to the results of

equations and PWL_Notations, when the left and right slopes of the antecedents A; (ax
—aj; = axp — az) and the observation A* are not equivalent whereas A; # Bi.

Fig. 83 shows the difference between real and linear approximation functions, where

the maximum deviation for left and right slopes are 0.033 and 0.067, respectively, by

Eq.(6.32).

AB*

a - Levels|

Left Slope

Right Slope|

0.000

0.000

0.000

0.100

0.012

0.024

0.200

0.021

0.043

0.300

0.028

0.056

0.400

0.032

0.064

0.500

0.033

0.067

0.600

0.032

0.064

0.700

0.028

0.056

0.800

0.021

0.043

0.900

0.012

0.024

1.000

0.000

0.000

‘ = Leftreal conclusion = = Leftapprox conclusion

Rightreal conclusion = = Right approx conclusion |

Fig.83. The Difference Between the Linear Approximation and Real Functions of the Left and Right Slopes for o
€1[0,1] To Example "PWL.NONLIN.C3 "

Eq.(6.33) determines the error ratio for the left and the right slopes are NAN, by referring
to Corollary PWLCR1, this example has achieved the condition of polynomiality
because the left and right slopes of A; and A, are similar, but not linear.

Using EQq.(6.34), the conclusion is always not satisfied with the PWL condition because
the value of this equation is always 0 for (left.Slope and right.Slope).
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Also, in Example "PWL.NONLIN.C4" as shown in Table 28, we conclude the following:
o All fuzzy sets of fuzzy rule bases and observation are different (A; # B; # A4”), then the
conclusion KH-FRI is also not satisfied with the linearity condition.
e Additionally, Fig. 84 shows the difference between real and linear approximation

functions as follows:

AB*

a - Levels|

Left Slope | Right Slope

0.000

0.000

0.000

0.100

0.409

0.207

0.200

0.535

0.365

0.300

0.556

0.475

0.400

0.525

0.538

0.500

0.467

0.556

0.600

0.390

0.529

0.700

0.303

0.459

0.800

0.207

0.347

0.900

0.106

0.193

66 68 7 72 74

76 78 8 82 84

1.000

0.000

0.000

‘ —— Leftreal conclusion = = Leftapprox conclusion

Right real conclusion = = Right approx conclusion ‘

Fig.84. The Difference Between the Linear Approximation and Real Functions of the Left and Right Slopes for o.
€[0,1] To Example "PWL.NONLIN.C4 "

e Eq.(6.33) determines the error ratio of the linearity in the right slope is 4.2273, which
is so far from the left slope of which is 1.1667.

e According to Eq.(6.34), the conclusion is always not satisfied with the PWL condition
because the value is always 0 for (left.Slope and right.Slope).

Based onall examples and cases of the PWL benchmark, we conclude the following:

1. All examples of the first group of the PWL_Benchmark Examples are satisfied with PWL
property, as proved by the difference between Left and Right slopes condition between the
fuzzy rules and observation, the conclusion is always preserving on the linearity if one of

the below conditions is met;

» The left and right slopes A;and B; fuzzy sets are identical.

» The two adjacent fuzzy rule bases A; — B; and A, — B have the same left and right
slopes and the same characteristic points on the universe of discourse.

 The fuzzy sets of the antecedents A; and the observation A* have the same left and right

slopes.

* The left and right slopes for all fuzzy sets of two adjacent fuzzy rule bases and observation

are equidistant (A; = B; = A”).
Moreover, all PWL_Notations of the Left and Right slopes (The error of approximating the
nonlinear slope Eq.(6.32), the upper limit of the error Eq.(6.33), the linearity error Eq.(6.34)
of the fuzzy sets and the difference between real function and linear approximation) are also

satisfied with the PWL condition.

2. On the other hand, all examples of the second group of the PWL_Benchmark Examples are
not satisfied with PWL property, as proved by the difference between Left and Right slopes
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condition of the fuzzy rules and observation, where the conclusion is always not preserving
on the linearity if one of the below conditions is met:

e The left and right slopes A; and B; are incompatible, whereas A; # A* and (Situationl: B;
= A", Situation2: B; < A”, Situation3: B; > A").
e The two adjacent fuzzy rule bases A; — B; and A, — B have the same left and right
slopes but have different characteristic points on the universe of discourse.
e The left and right slopes of the antecedents A;j (212 — a1 = a; — a,1) and the observation
A~ are not equivalent, whereas A; # Bi.
e The values of the left and right slopes of fuzzy rule bases and observation are not similar
(Ai #Bj £ 4%).
Moreover, all PWL_Notations of the Left and Right slopes (Eq.(6.32), Eq.(6.33), Eq.(6.34),
and the difference between real function and linear approximation) proved that the conclusion

is always not satisfied with the PWL condition.

6.4. The Application of the CNF and PWL Benchmark Examples

This subsection will discuss the efficiency of the CNF and PWL benchmarks compared to
some of the FRI methods implemented via the FRI Toolbox. Besides, the validity of the
proposed Incircle-FRI method will be discussed based on this benchmark and compared to other
FRI methods.

6.4.1. Testing FRI methods based on the CNF benchmark examples

In the following, some of the FRI methods (KHstabilized [5], MACI [6], VKK [4], and CRF
[7]) will be tested and compared according to the CNF_Benchmark Examples. Tooffer a simple
way of comparison, we focus on the cases that demonstrated abnormal conclusion (Examples:
"CNF.KH_ABNOR.C4_1"—"CNF.KH_ABNOR.C4_4"). This comparison shows the difference
between the results of the selected methods according to the CNF property. Fig. 85 introduces
the antecedents and observation part of Examples ("CNF.KH_ABNOR.C4 1" -
"CNF.KH_ABNOR.C4 4" as shown in Table 17 — Table 20 and Fig. 86 - Fig. 89 describe the
results of the FRI methods (KHstabilized [5], MACI [6], VKK [4], and CRF [7]).

The Antecedent and Observation
T T T
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The Antecedent and Observation
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Fig.85. The Antecedents and Observations Related to Examples ('CNF.KH_ABNOR.C4_1"-

"CNF.KH_ABNOR.C4 4"
The Consequents and Conclusmn by(KHstab|l|zed FRI) Related to Example ’CNF KH ABNOR ca_1”
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The Consequentsand Conclusion by (KHstabilized-FRI) Related to Example "CNF.KH_ABNOR.C4_4"
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Fig.86. The Conclusions ofthe KHstabilized-FRI Method Related to CNF_Benchmark Examples
("CNF.KH_ABNOR.C4_1"- "CNF.KH_ABNOR.C4_4")

The Consequentand Conclusion by (MACI-FRI) Related to Example "CNF.KH_ABNOR.C4_1"
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The Consequentand Conclusion by (MACI-FRI) Related to Example "CNF.KH_ABNOR.C4_2"
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The Consequentand Conclusion by (MACI-FRI) Related to Example "CNF.KH_ABNOR.C4_3"
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The Consequentand Conclusion by (MACI-FRI) Related to Example "CNF.KH_ABNOR.C4_4"
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Fig.87. The Conclusions ofthe MACI-FRI Method Relatedto CNF_Benchmark Examples
("CNF.KH_ABNOR.C4_1"— "CNF.KH_ABNOR.C4_4")
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The Consequentand Conclusion by (VKK-FRI) Related to Example "CNF.KH_ABNOR.C4_1"
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Fig.88. The Conclusions ofthe VKK-FRI Method Related to CNF_Benchmark Examples
("CNF.KH_ABNOR.C4_1"- "CNF.KH_ABNOR.C4_4")

The Consequentand Conclusion by (CRF-FRI) Related to Example "CNF.KH_ABNOR.C4_1"
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The Consequentand Conclusion by (CRF-FRI) Related to Example "CNF.KH_ABNOR.C4_2"”

The Consequentand Conclusion by (CRF-FRI) Related to Example "CNF.KH_ABNOR.C4_3"”

The Consequentand Conclusion by (CRF-FRI) Related to Example "CNF.KH_ABNOR.C4_4"

Fig.89. The Conclusions ofthe CRF-FRI Method Relatedto CNF_Benchmark Examples

6.4.2. Testing the Incircle-FRI method based on the CNF benchmark examples

In the following, the proposed Incircle-FRI will be tested to prove the validity of the
conclusions according to the CNF property. First, the Incircle-FRI will be tested according to
CNF_Benchmark Examples (see section 6.2). Second, it will be tested according to all examples
used in chapter 4. Third, it will be tested using examples with different core and fuzziness sides

("CNF.KH_ABNOR.C4_1"- "CNF.KH_ABNOR.C4_4")

between fuzzy rules and observation fuzzy sets.

1. According to the CNF_Benchmark Examples presented in subsection 6.2, which was
constructed to test the CNF property, in the following, we examine the Incircle-FRI based
on this benchmark. Table 29 - Table 32 introduce the CNF_Notations that prove the

preservation of the CNF property of the Incircle-FRI.
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Table 29. The CNF_Notations ofthe Incircle-FRI Result Related to Example "CNF.KH_ABNOR.C4_1"(in
subsection6.2), Whichis PreservingCNF

The values of the fuzzysets:

A1=[123 4] A2=[6789]
B1=[1525253.8] B2=[6.5757.59]
A"=[4.25.25.2 6.7] B'=[4.82 5.55 5.55 6.49]

The case of the Core, LFs and RFs conclusion:
The length (LFs) is (NORMAL)
The length (Core) is (NORMAL)

The length (RFs) is (NORMAL)

The lengths of the Core and Fuzziness sides:
LFS_length: LFS1 =(0),LFS2=(0.88)

CoreL: Corel=(-56.7273), Core2=(431.0204)
CoreR: Corel=(-25.06), Core2=(566.41)
RFS_length: RFS1=(0.0941), RFS2=(2.423)

Length ratios of the Core and Fuzziness sides:
LFS.Ratiol=(0),LFS.Ratio2=(0)
CorelL.Ratiol =(1), CoreL.Ratio2=(1)
CoreR.Ratiol =(1), CoreR Ratio2 = (1)
RFS.Ratiol=(0),RFS.Ratio2 = (0)
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Table 30. The CNF_Notations ofthe Incircle-FRI ResultRelated to Example "CNF.KH_ABNOR.C4_2 "(in
subsection6.2), Whichis Preserving CNF

The values of the fuzzysets:
A1=[125254] A»=[6575759]
Bi=[12345] B:=[6.5789.5]
A'=[4.54.95.15.5] B'=[4.36 4.86 5.29 5.87]

The case of the Core, LFs and RFs conclusion:
The length (LFs) is (NORMAL)

The length (Core) is (NORMAL)

The length (RFs) is (NORMAL)

The lengths of the Core and Fuzziness sides:
LFS_length: LFS1=(-0.71),LFS2 =(4.20)
CoreL: Corel=(-34.0508), Core2=(383.2101)
CoreR: Corel=(-28.722), Core2= (567.0)
RFS_length: RFS1=(0),RFS2=(0.767)

Length ratios of the Core and Fuzziness sides:
LFS.Ratiol =(0),LFS.Ratio2=(1)
CoreL.Ratiol =(1),CoreL.Ratio2=(1)
CoreR.Ratiol=(1), CoreR Ratio2 = (1)
RFS.Ratiol=(0),RFS.Ratio2 = (0)

" T T T

The Consequentand Conclusion by (Incircle-FRI) Related to Example "CNF.KH_ABNOR.C4_2"
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Table 31. The CNF_Notations ofthe Incircle-FRI Result Related to Example "CNF.KH_ABNOR.C4_3"(in
subsection6.2), Whichis Preserving CNF

The values of the fuzzysets:
A1=[1525254.3] A2=[6.5757.5 8.8]
Bi=[12335] B2=[6 788.9]
A"=[454.95.155] B'=[4.10 4.80 5.23 5.65]

The case of the Core, LFs and RFs conclusion:
The length (LFs) is (NORMAL)

The length (Core) is (NORMAL)

Thelength (RFs) is (NORMAL)

The lengths of the Core and Fuzziness sides:
LFS_length: LFS1=(0),LFS2=(0.5137)
CoreL: Corel=(-32.58), Core2=(381.728)
CoreR: Corel=(-28.89), Core2=(558.87)
RFS_length: RFS1=(0.409), RFS2=(0.681)

Length ratios of the Core and Fuzziness sides:
LFS.Ratiol=(0), LFS.Ratio2=(0)
CorelL.Ratiol = (1), CoreL.Ratio2= (1)
CoreR.Ratiol=(1), CoreRRatio2 = (1)
RFS.Ratiol=(-0.68), RFS.Ratio2= (1)

The Consequentand Conclusion by (Incircle-FR

1) Related to Example "CNF.KH_ABNOR.C4_3"
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Table 32. The CNF_Notations ofthe Incircle-FRI ResultRelated to Example "CNF.KH_ABNOR.C4_4"(in
subsection6.2), Whichis Preserving CNF

The values of the fuzzysets:
A1=[2225 3] A2=[67.588]
Bi=[2222] B2=[88 88]

A"=[5555] B"=[5.03 5.023 5.03 5.03]

The case of the Core, LFs and RFs conclusion:
The length (LFs) is (NORMAL)

The length (Core) is (NORMAL)

The length (RFs) is (NORMAL)

The lengths of the Core and Fuzziness sides:
LFS_length: LFS1=(0),LFS2=(0)

CoreL: Corel=(-57.2133), Core2=(458.7421)
CoreR: Corel=(-28.48), Core2=(467.93)
RFS_length: RFS1=(0),RFS2=(0)

Length ratios of the Core and Fuzziness sides:
LFS.Ratiol=(0),LFS.Ratio2=(1)
CoreL.Ratiol = (1), CoreL.Ratio2= (1)
CoreR.Ratiol=(1), CoreR Ratio2 = (1)
RFS.Ratiol=(0),RFS.Ratio2 = (1)

" T T T T

B1

8

The Consequentand Conclusion by (Incircle-FRI) Related to Example "CNF.KH_ABNOR.C4_4"
T

B2 -

2. According to the suggested examples in chapter 4, which was presented to test the proposed
Incircle-FRI, in the following. Table 33 - Table 38 introduce the CNF_Notations that
demonstrate the CNF property of the Incircle-FRI.
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Table 33. The CNF_Notations ofthe Incircle-FRI Result Related to Example CNFIncircle(TR1) (inchapter 4),
Which isPreserving CNF

Example CNFIncircle(TR1)
In case the (Aj), (A"),and (Bj) are Triangular

The values of the fuzzysets:
A1=[056] A2=[1113 14]
B1=[02 4] B2=[10 11 13]
A'=[789] B'=[4.95 5.42 7.16]

The case of the Core, LFs and RFs conclusion:
The length (LFs) is (NORMAL)

The length (Core) is (NORMAL)

The length (RFs) is (NORMAL)

The lengths of the Core and Fuzziness sides:
LFS_length: LFS1 =(-6.25),LFS2=(5.05)
CoreL: Corel=(0.104),Core2=(1.29)
CoreR: Corel=(13.07),Core2=(15.83)
RFS_length: RFS1=(0), RFS2=(2.288)

Length ratios of the Core and Fuzziness sides:
LFS.Ratiol =(0.310), LFS.Ratio2=(1)
CorelL.Ratiol = (1), CoreL.Ratio2= (1)
CoreR.Ratiol=(1), CoreR Ratio2 = (1)
RFS.Ratiol = (0), RFS.Ratio2 = (0)

Table 34. The CNF_Notations ofthe Incircle-FRI Result Related to Example CNFIncircle(TR2) (inchapter 4),
Which isPreserving CNF

Example CNFIncircle(TR2)
In case the (Aj)and (Bj) are Triangular, (A") is Singlton

The values of the fuzzysets:
A1=[056] A2=[1113 14]
B1=[02 4] B2=[10 11 13]
A"=[8 8 8] B'=[5.42 5.42 5.42]

The case of the Core, LFs and RFs conclusion:
The length (LFs) is (NORMAL)

The length (Core) is (NORMAL)

The length (RFs) is (NORMAL)

The lengths of the Core and Fuzziness sides:
LFS_length: LFS1 = (-6.705), LFS2=(8.472)
CoreL: Corel=(-32.15), Core2=(1359)
CoreR: Corel=(46.16), Core2=(1520)
RFS_length: RFS1=(0), RFS2=(1.14)

Length ratios of the Core and Fuzziness sides:
LFS.Ratiol =(0.310), LFS.Ratio2 = (1)
CorelL.Ratiol = (1), CoreL.Ratio2= (1)
CoreR.Ratiol=(1), CoreR Ratio2 = (1)
RFS.Ratiol=(0),RFS.Ratio2 = (0)

Table 35. The CNF_Notations ofthe Incircle-FRI Result Related to Example CNFIncircle(TR3) (inchapter 4),
Which is Preserving CNF

Example CNFIncircle(TR3)
In case the (Aj)is Singlton,and (A”) is Triangular and (B;) (Singlton & Triangular)

The values of the fuzzysets:
A1=[333] A2=[12 12 12]
Bi1=[44 4] B2=[10 11 13]
A'=[568] B'=[5.28 6.37 8.28]

The case of the Core, LFs and RFs conclusion:
The length (LFs) is (NORMAL)

The length (Core) is (NORMAL)

The length (RFs) is (NORMAL)

The lengths of the Core and Fuzziness sides:
LFS_length: LFS1 =(-0.353), LFS2=(0.707)
CoreL: Corel=(18.06), Core2=(1406)
CoreR: Corel=(-22.63), Core2=(1521)
RFS_length: RFS1=(-4.236), RFS2=(8.472)

Length ratios of the Core and Fuzziness sides:
LFS.Ratiol =(0), LFS.Ratio2=(0)
CorelL.Ratiol =(0.75), CoreL.Ratio2= (1)
CoreR.Ratiol=(0.80), CoreR.Ratio2= (1)
RFS.Ratiol=(0),RFS.Ratio2 = (0)
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Table 36. The CNF_Notations ofthe Incircle-FRI Result Related to Example CNFIncircle(TP1) (inchapter 4),
Which isPreserving CNF

Example CNFIncircle(TP1)

In case the (Aj) and (Bj) are Trapezoidal, and (A") is Triangular
The values of the fuzzysets: The case of the Core, LFs and RFs conclusion:
A1=[045 6] A2=[11 12 13 14] The length (LFs)is (NORMAL)
Bi=[02 34] B2=[1011 12 13] The length (Core) is (NORMAL)
A’=[6 69 10] B'=[4.54 4.54 7.47 853] The length (RFs) is (NORMAL)
The lengths of the Core and Fuzziness sides: Length ratios of the Core and Fuzziness sides:
LFS_length: LFS1 =(-3.069), LFS2 = (2.918) LFS.Ratiol =(0.319), LFS.Ratio2=(1)
CorelL: Corel=(68.90), Core2=(989.37) CorelL.Ratiol =(1),CoreL.Ratio2= (1)
CoreR: Corel=(-130.9), Core2=(2081) CoreR.Ratiol=(1), CoreR Ratio2 = (1)
RFS_length:RFS1=(0), RFS2=(1.896) RFS.Ratiol=(0),RFS.Ratio2 = (0)

Table 37. The CNF_Notations ofthe Incircle-FRI Result Related to Example CNFIncircle(TP2) (inchapter 4),
Which isPreserving CNF

Example CNFIncircle(TP2)

In case the (Aj)and (A") are Triangular, and (B;) is Trapezoidal
The values of the fuzzysets: The case of the Core, LFs and RFs conclusion:
A1=[056] A2=[1113 14] The length (LFs)is (NORMAL)
B1=[02 34] B2=[1011 12 13] The length (Core) is (NORMAL)
A"=[789] B'=[5.015.90 5.90 7.33] The length (RFs) is (NORMAL)
The lengths of the Core and Fuzziness sides: Length ratios of the Core and Fuzziness sides:
LFS_length: LFS1 =(-6.250), LFS2=(5.4113) LFS.Ratiol =(0.310), LFS.Ratio2 = (1)
CoreL: Corel=(0.104), Core2=(135) CorelL.Ratiol =(1),CoreL.Ratio2= (1)
CoreR: Corel=(13.0),Core2=(1851) CoreR.Ratiol=(1), CoreR Ratio2 = (1)
RFS_length: RFS1=(0), RFS2=(1.270) RFS.Ratiol = (0), RFS.Ratio2 = (0)

Table 38. The CNF_Notations ofthe Incircle-FRI Result Related to Example CNFIncircle(TP3) (inchapter 4),
Which is Preserving CNF

Example CNFIncircle(TP3)

In case (Ai)is Trapezoidal,and (A*)and (Bi) are Triangular
The values of the fuzzysets: The case of the Core, LFs and RFs conclusion:
A1=[045 6] A2=[11 12 13 14] The length (LFs) is (NORMAL)
B1=[02 4] B2=[10 11 13] The length (Core) is (NORMAL)
A'=[669 10] B'=[4.37 4.37 6.66 8.57] The length (RFs) is (NORMAL)
The lengths of the Core and Fuzziness sides: Length ratios of the Core and Fuzziness sides:
LFS_length: LFS1 =(-3.069), LFS2=(2.610) LFS.Ratiol =(0.310), LFS.Ratio2 = (1)
CoreL: Corel=(68.90), Core2=(945.35) CorelL.Ratiol =(1), CoreL.Ratio2= (1)
CoreR: Corel=(-130.9), Core2=(180) CoreR.Ratiol=(1), CoreR Ratio2 = (1)
RFS_length: RFS1=(0), RFS2=(3.416) RFS.Ratiol=(0), RFS.Ratio2 = (0)

3. The following examples present with different core and fuzziness sides of the fuzzy sets to
examine the CNF property of the Incircle-FRI. Table 39 - Table 42 describe the
CNF_Notations that prove the preservation of the CNF property of the Incircle-FRI.
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Table 39. The CNF_Notations ofthe Incircle-FRI Result Related to Example CNFIncircle(Diff1), Whichis
PreservingCNF

BExample CNFIncircle(Diff1)
In case (Aj) and (Bj) are Singlton,and (A") is Triangular

The values of the fuzzysets:

A=[2222] A.=[888 8]
Bi=[3333]B:=[9999]

A*=[455 6] B"=[5.07 5.77 5.77 6.93]

The case of the Core, LFs and RFs conclusion:
Thelength (LFs) is (NORMAL)

The length (Core) is (NORMAL)

The length (RFs) is (NORMAL)

The lengths of the Core and Fuzziness sides:
LFS_length: LFS1=(0),LFS2=(0)

CoreL: Corel=(-40.71), Core2=(593.66)
CoreR: Corel=(-679), Core2=(656.18)
RFS_length: RFS1=(0), RFS2=(0)

Length ratios of the Core and Fuzziness sides:
LFS.Ratiol=(0),LFS.Ratio2=(0)
CorelL.Ratiol =(1),CoreL.Ratio2= (1)
CoreR.Ratiol= (1), CoreR Ratio2 = (1)
RFS.Ratiol=(0), RFS.Ratio2 = (0)

The Antecedents and Observation
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Table 40. The CNF_Notations ofthe Incircle-FRI Result Related to Example CNFIncircle(Diff2), Whichis
PreservingCNF

Example CNFIncircle(Diff2)
In case (A, (A"), and (Bj) are Triangular fuzzy sets (A" is Compatible with Rule1)

The values of the fuzzysets:
A1=[122 3] A>=[9 10 10 11]
B:1=[233 4] B,=[9 1111 13]
A"=[1223]B'=[207 3.0 3.00 3.93]

The case of the Core, LFs and RFs conclusion:
Thelength (LFs)is (NORMAL)

The length (Core) is (NORMAL)

The length (RFs) is (NORMAL)

The lengths of the Core and Fuzziness sides:
LFS_length: LFS1=(0),LFS2=(1.162)
CoreL: Corel=(113.1),Core2=(515.56)
CoreR: Corel=(142.9),Core2=(657.2)
RFS_length: RFS1=(0),RFS2=(1.162)

Length ratios of the Core and Fuzziness sides:
LFS.Ratiol = (0), LFS.Ratio2 = (0)
CorelL.Ratiol =(1),CoreL.Ratio2= (1)
CoreR.Ratiol=(1), CoreR Ratio2 = (1)
RFS.Ratiol=(0),RFS.Ratio2 = (0)

The Antecedents and Observation

The Consequents and Conclusion
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Table 41. The CNF_Notations ofthe Incircle-FRI Result Related to Example CNFIncircle(Diff3), Whichiis
PreservingCNF

BExample CNFIncircle(Diff3)
In case (Ai), (A),and (Bi) are Trapezoidal fuzzy sets (whenthe left and rightsides are equal zero)

The values of the fuzzysets: The case of the Core, LFs and RFs conclusion:
A=[1133]A=[9911 11] Thelength (LFs) is (NORMAL)
Bi=[224 4] B,=[9913 13] The length (Core) is (NORMAL)
A" =[5577]B=[5.74 574 8.26 8.26] The length (RFs)is (NORMAL)
The lengths of the Core and Fuzziness sides: Length ratios of the Core and Fuzziness sides:
LFS_length: LFS1 =(0),LFS2=(0) LFS.Ratiol =(0), LFS.Ratio2=(0)
CoreL: Corel=(-112.4),Core2=(718.0) Corel.Ratiol =(0.849), CoreL.Ratio2 = (1)
CoreR: Corel=(-143.5), Core2=(1.530) CoreR.Ratiol= (1), CoreR Ratio2 = (1)
RFS_length: RFS1=(0), RFS2=(0) RFS.Ratiol=(0), RFS.Ratio2 = (0)
The A‘ntecedents and Obser\‘tation ‘ The Cfmsequents and Concl,.lsion
oer Al A2 1 °r B1 B, B2
o 0

o . My . .
0 5 10 15 0 5 10 15

Table 42. The CNF_Notations ofthe Incircle-FRI ResultRelated to Example CNFIncircle(Diff4), Whichis
PreservingCNF

Example CNFIncircle(Diff4)
In case (Ai), (A"),and (B;) are different core and fuzziness sides fuzzy sets

The values of the fuzzysets: The case of the Core, LFs and RFs conclusion:
Ai=[1133]A=[9 11 1113] The length (LFs)is (NORMAL)
B1= [233 4] B,=[9 910 10] The length (Core) is (NORMAL)
A’=[5555] B'=[5.135.135.13 5.13] The length (RFs)is (NORMAL)
The lengths of the Core and Fuzziness sides: Length ratios of the Core and Fuzziness sides:
LFS_length: LFS1 = (0),LFS2=(3.70) LFS.Ratiol =(-0.437),LFS.Ratio2= (1)
CoreL: Corel=(-75.57), Core2=(893.56) CorelL.Ratiol =(0.671), CoreL.Ratio2 = (1)
CoreR: Corel=(41.05),Core2=(991.12) CoreR.Ratiol=(0.779), CoreR.Ratio2 = (1)
RFS_length: RFS1=(0), RFS2=(3.702) RFS.Ratiol=(-0.4370),RFS.Ratio2 = (1)
The Antecedents and Obseryation ‘ The Cfmsequents and Concl‘usion
Al 1 B2
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6.4.3. The CNF benchmark examples discussion

The CNF conclusion property of the studied FRI methods (KH-FRI [3], [25], [39],
KHstabilized-FRI [5], MACI-FRI [6], VKK-FRI [4], and CRF-FRI [7]) as shown in Fig. 86,
Fig. 87, Fig. 88 and Fig. 89, concerning the CNF_Benchmark Examples
"CNF.KH_ABNOR.C4_1"-"CNF.KH_ABNOR.C4_4" can be summarized as follows:

1. MACI-FRI and CRF-FRI methods are suitable approach to be implemented as an inference
system because its conclusions succeeded with CNF property to CNF_Benchmark
Examples.

2. VKK-FRI method, the abnormal conclusion exceeded in CNF_Benchmark Example
"CNF.KH_ABNOR.C4_1"only. However, it failed with CNF property in CNF_Benchmark
Examples "CNF.KH_ABNOR.C4_2", "CNF.KH_ABNOR.C4_3", and
"CNF.KH_ABNOR.C4_4".

3. KHstabilized-FRI method suffered from abnormality according to CNF_Benchmark
Examples "CNF.KH_ABNOR.C4_1"-"CNF.KH_ABNOR.C4_4".

Table 43 illustrates the results of the studied FRI methods, as shown by the values of the
conclusions B*.

Table 43. The Conclusions ofthe Selected Methods (KH, KHstabilized, MACI, VKK, and CRF) Related to
Examples "CNF.KH_ABNOR.C4 1"- "CNF.KH_ABNOR.C4 4"

Approximate ConclusionB”
Method Example Example Example Example
CNF.KH_ABNOR.C4 1 [CNF.KH_ABNOR.C4 2| CNF.KH_ABNOR.C4 3 | CNF.KH_ABNOR.C4_4
KH-FRI Abnormal conclusion Abnormal conclusion Abnormal conclusion Abnormal conclusion
[31.[251,[39] [4.75.74.76.6] [5.274.45.6 6.0] [44.45.64.94] [6.55.27 4.72 4.4]
KHstabilized- - . . .
FRI Abnormal conclusion Abnormal conclusion Abnormal conclusion Abnormal conclusion
5] [4.75.74.76.6] [5.274.45.6 6.0] [44.45.64.94] [6.55.27 4.72 4.4]
MACI-FRI Normal conclusion Normal conclusion Normal conclusion Normal conclusion
[6] [4.25.25.26.6] [3.8945555.57] [3.54.5555.56.1] [555 5]
VKK-FRI Normal conclusion Abnormal conclusion Abnormal conclusion Abnormal conclusion
[4] [4.65.25.26.66] [out range] [out range] [5.3555.3]
CRF-FRI Normal conclusion Normal conclusion Normal conclusion Normal conclusion
[7] [3.95.255.256.75] [4.54.95.05.1] [4.84.95.05.4] [5555]
According to CNF_Benchmark Examples ("CNF.KH_ABNOR.C4_1"
"CNF.KH_ABNOR.C4_4") and different Examples ("CNFIncircle(TR1)"

"CNFIncircle(Diff4)") and their results as shown in Table 29 - Table 32, the Incircle-FRI
conclusion is a suitable approach to be implemented as an inference system because its
conclusions succeeded with CNF property with all examples. The validity of the Incircle-FRI
method with CNF property, which is proved by values of the conclusions B* as shown in Table
44 and Table 45.
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Table 44.The Conclusions ofthe Incircle-FRI Method Related to Examples ('CNF.KH_ABNOR.C4 1 "-

"CNF.KH_ABNOR.C4 4"

Approximate Conclusion B™ ofthe Incircle-FRI method

Example Example Example Example
"CNF.KH_ABNOR.C4_1" "CNF.KH_ABNOR.C4_2" "CNF.KH_ABNOR.C4_3" "CNF.KH_ABNOR.C4_4"
Normal Normal Normal Normal
[4.82 5.55 5.55 6.49] [4.36 4.86 5.29 5.87] [4.10 4.80 5.23 5.65] [5.03 5.023 5.03 5.03]

Table 45. The Conclusions ofthe Incircle-FRI Method Related to Examples CNFIncircle(TR1) —

CNFIncircle(Diff4)

Approximate Conclusion B" ofthe Incircle-FRI method

BExample "CNFIncircle(TR1)"

BExample "CNFIncircle(TR2)"

BExample "CNFIncircle(TR3)"

Normal
[4.95 5.42 7.16]

Normal
[5.42 5.42 5.42]

Normal
[5.28 6.37 8.28]

Bxample "CNFIncircle(TP1)"

Bxample "CNFIncircle(TP2)"

Example "CNFIncircle(TP3)"

Normal Normal Normal
[454 454 7.47 853] [5.01 5.90 5.90 7.33] [4.37 437 6.66 8.57]
BExample BExample BExample Bxample
"CNFIncircle(Diff1)" "CNFIncircle(Diff2)" "CNFIncircle(Diff3)" "CNFIncircle(Diff4)"
Normal Normal Normal Normal
[5.07 5.77 5.77 6.93] [2.07 3.0 3.00 3.93] [5.74 5.74 8.26 8.26] [5.135.13 5.13 5.13]

6.4.4. Testing FRI1 methods based on the PWL benchmark examples

In the following, the FRI methods (KHstabilized-FRI [5], VKK-FRI [4], FRIPOC-FRI [10],
and VEIN-FRI [63]) will be compared according to the PWL_Benchmark Examples of the KH
method. To offer a simple way of comparison, we focused on the cases where the KH-FRI
method demonstrated the fails of preserving PWL, which was represented by Examples
("PWL.NONLIN.C1" situationsl, 2, 3, "PWL.NONLIN.C2", "PWL.NONLIN.C3" and
"PWL.NONLIN.C4") as shown in Table 25 - Table 28. Therefore, this comparison shows the
difference between the selected methods related to the PWL property for each example.
Multiple o levels were computed to perform the comparisons. Fig. 90 introduces the
antecedents and observation part of Examples. Fig. 91- Fig. 94 describe the conclusions of the
FRI methods (KHstabilized-FRI [5], VKK-FRI [4], FRIPOC-FRI [10], and VEIN-FRI [63])
and illustrate the difference between the real conclusion (red line) and linearity approximated
conclusion (black line).
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Fig.90. The Antecedents and Observations Related to Examples ( 'PWL.NONLIN.C1 "Situationsl,2,3,
"PWL.NONLIN.C2" "PWL.NONLIN.C3 "and "PWL.NONLIN.C4 ")
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Fig.91. The Approximated and Real Conclusions ofthe KHstabilized-FRI1 Method to Examples
("PWL.NONLIN.C1 "Situations1,2,3, "PWL.NONLIN.C2 " "PWL.NONLIN.C3"”and "PWL.NONLIN.C4")
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Fig.92. The Approximated and Real Conclusions ofthe VKK-FRI Method to Examples ( 'PWL.NONLIN.C1”
Situations1,2,3, "PWL.NONLIN.C2 " "PWL.NONLIN.C3 “and "PWL.NONLIN.C4")
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Fig.93. The Approximated and Real Conclusions ofthe FRIPOC-FRI Method to Examples ('PWL.NONLIN.C1”
Situations1,2,3, "PWL.NONLIN.C2 ", "PWL.NONLIN.C3”and "PWL.NONLIN.C4")
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Fig.94. The Approximated and Real Conclusions ofthe VEIN-FRI Method to Examples ( "PWL.NONLIN.C1 "
Situations1,2,3, "PWL.NONLIN.C2 ", "PWL.NONLIN.C3"”and "PWL.NONLIN.C4")

6.4.5. Testing the Incircle-FRI method based on the PWL benchmark examples

The Incircle-FRI was constructed to preserve the PWL property and handle two a levels in
triangular and trapezoidal fuzzy sets. Therefore, according to the PWL_Benchmark Examples
presented in subsection 6.3, which was constructed to test the PWL property, we examine the
Incircle-FRI based on this PWL_Benchmark using multi-levels of a-cuts. Fig. 95 introduces the
difference between the real conclusion of the Incircle and linear approximation functions that
prove the preservation of the PWL property of the Incircle-FRI.
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Fig.95. The Approximated and Real Conclusions ofthe Incircle-FRI Method to Examples ( "PWL.NONLIN.C1 "
situations1,2,3, "PWL.NONLIN.C2"; "PWL.NONLIN.C3"and "PWL.NONLIN.C4 ")

6.4.6. The PWL benchmark examples discussion

According to the results of the FRI methods (KHstabilized-FRI [5], VKK-FRI [4], FRIPOC-
FRI [10], VEIN-FRI [63], and Incircle-FRI) (Fig. 91- Fig. 95) based on PWL_Benchmark
Examples ("PWL.NONLIN.C1" situations1,2,3, "PWL.NONLIN.C2", "PWL.NONLIN.C3" and
"PWL.NONLIN.C4"), we conclude the following:

» KHstabilized-FRI and FRIPOC-FRI methods are not preserving the PWL property to
PWL_Benchmark Examples ("PWL.NONLIN.C1" situations1,2,3, "PWL.NONLIN.C2",
"PWL.NONLIN.C3" and "PWL.NONLIN.C4").

* VKK-FRI method succeeded with preserving PWL property in PWL_Benchmark
Examples, except Example "PWL.NONLIN.C4", which appeared with a little bit
deviation on the right side.

* VEIN-FRI method succeeded with PWL property on PWL_Benchmark Examples
("PWL.NONLIN.C1" situations1,2, "PWL.NONLIN.C2" and "PWL.NONLIN.C3"), in
contrast, the Examples ("PWL.NONLIN.C1" situation3 and "PWL.NONLIN.C4")
appeared with a little bit deviation in the bottom boundary.

* Incircle-FRI method is preserving the PWL property on PWL_Benchmark Examples
("PWL.NONLIN.C1" situations1,2,3, "PWL.NONLIN.C2", "PWL.NONLIN.C3" and
"PWL.NONLIN.C4").

Table 46 presents a summary of the results for the selected FRI methods according to the
PWL_Benchmark Examples ("PWL.NONLIN.C1" situations1,2,3, "PWL.NONLIN.C2",
"PWL.NONLIN.C3" and "PWL.NONLIN.C4") to PWL property, where the plus sign (+)
indicates that the technique is satisfied with PWL property, while a minus sign (-) shows the
method has a little bit deviation in some cases. The cross sign (X) indicates that the method did

not preserve the PWL property.
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Table 46. Summary ofthe FRI Methods and Their Conformity to PWL_Benchmark Examples
("PWL.NONLIN.C1 "situations1,2,3, "PWL.NONLIN.C2 ", "PWL.NONLIN.C3"and "PWL.NONLIN.C4".

Methods
Bamples KH KHStabilized VKK FRIPOC VEIN Incircle
FRI FRI FRI FRI FRI FRI
[3],[25],[39] [5] [4] [10] [63]
"PWL.NONLIN.C1" X X T X - -
situationl
"PWL.NONLIN.C1" X X T X - "
situation2
"PWL.NONLIN.C1" X X T X = "
situation3
"PWL.NONLIN.C2" X X T X - -
"PWL.NONLIN.C3" X X T X - -
"PWL.NONLIN.C4" X X - X "
SUMMARY

Regarding the general conditions and criteria that have been suggested for unifying the
common requirements, FRI methods have to be satisfied. One of the most common conditions
is the demand for a Convex and Normal Fuzzy (CNF) conclusion in case all the rule antecedents
and consequents are CNF sets, and another condition is the fuzzy set of the conclusion must
preserve a Piecewise Linearity (PWL), in case all antecedents and consequents of the fuzzy
rules are preserving PWL sets at a-cut levels. The KH-FRI is the one, which cannot fulfill these
conditions. The main goals of this chapter were:

Introduced different arbitrary examples to compare FRI techniques based on the various
features: No. of Dimensions, Type of Membership Functions, and No. of Membership
Functions for the antecedent and consequent, as presented in Table 13. These arbitrary
examples used to classify and compare FRI methods based on the criteria of the normality and
linearity properties. The results of the arbitrary examples were described as follows: KH, KH
Stabilized, LESFRI, and VKK methods suffered from the abnormality, in case of having multi-
dimension antecedents and different type of membership functions which was described in
Examples (FRI_EX6 and FRI_EX7). The VKK method suffered from the abnormality, in case
of having single-dimension, as shown in Example (FRI_EX3). The FRIPOC method suffered
from non-preserve piecewise linearity in case of multi-dimension antecedents and different
types of membership functions, asshown in Example (FRI_EX6). In contrast, MACI, IMUL,
CRF, GM, and SCALE MOVE methods did not suffer from abnormality and piecewise
linearity for all arbitrary examples.

Investigate equations and notations related to CNF and PWL properties, which aim to
highlight the problematic properties of the KH-FRI method to prove its efficiency with CNF
and PWL properties. This chapter was focusing on constructing benchmark examples to be a
baseline for testing other FRI methods against situations that are not satisfied with the normality
and linearity properties for KH-FRI. The CNF_Benchmark Examples were created based on
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different examples ("CNF.KH_ABNOR.C4_1" - "CNF.KH_ABNOR.C4 _4") and their cases
that based on (the core and boundary of the rule-bases and observation fuzzy sets), it proved
the conclusion of the KH-FRI is always abnormal. While the PWL_Benchmark Examples that
were constructed based on different examples ("PWL.NONLIN.C1" situationsl,2,3,
"PWL.NONLIN.C2", "PWL.NONLIN.C3" and "PWL.NONLIN.C4") and their cases that
based on (the left and right slopes of the rule-bases and observation fuzzy sets), which
determine the conclusion of the KH-FRI is not preserving on the linearity. Moreover, this
chapter proved the efficiency of the benchmark CNF and PWL properties to examine some FRI
methods. Concerning the proposed Incircle-FRI method, it proved that it is a suitable approach
to be implemented as an inference system because its conclusions succeeded with CNF and
PWL properties on all CNF and PWL benchmark examples.

Thesis related to Chapter 6:
Thesis. IV:

| introduced the initial benchmark system (set of benchmark examples) for the most
important properties of the FRI concept (CNF and PWL properties), constructing benchmarks
are based on analyzing all cases of the core, boundary, and slopes conditions of the
antecedents, consequents, and observation fuzzy sets. The KH-FRI CNF and PWL Benchmark
are suitable for highlighting some problematic points of the KH-FRI and other FRI methods
that originated from the KH-FRI. Therefore, CNF and PWL Benchmarks are suitable for
evaluating and comparing FRI methods, where the KH-FRI is not satisfied with CNF and PWL
properties.

The results introduced in this chapter are supporting the statement of Thesis 1V and [32], [35], [94]
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CHAPTER -7- Contribution

The dissertation’s main contribution is the proposal of a new fuzzy interpolative reasoning
method based on the properties of the Incircle triangular fuzzy number. The suggested method
is based on the center point of the incircle triangular fuzzy number as a reference point of the
fuzzy set. The main sides of the triangular are indicated SD1, SD,, and SD3 (see Fig. 96 for
Incircle_Notations). The tangents length and vertices of the triangle with its Incircle, which
denotes PSy, PS,, and PS3, referred to as "fuzziness sides". The proposed Incircle-FRI is always
producing triangular CNF fuzzy conclusion by holding the same rate of the weights among the
observation and the two rule antecedents, and the conclusion and the two corresponding rule
consequents with the reference points, and with the “fuzziness sides™ (see Fig. 97).

PS3
SD3(a1a3)

Fig.96. Triangular Fuzzy Number Incircle_Notations.

0
- . . a" a21 > X
all  PS1A1 gpa,,  PS3A1 al3 a't PSIAT ... PS3A® a3 PS1A2 ., ,PS3A2 223
A
b22
1
B2
g %
] ©
0 >y
bil PS1B1 gpagy PS3B1 b13 b1 PSIB® gpgg. PS3B° b3 B21 psiB2 . PS3B2 B

Fig.97. Fuzzy Interpolative Reasoning using Triangular Membership Functions
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The proposed Incircle-FRI can also be extended to handle singleton, trapezoidal (see Fig.
98), and hexagonal (see Fig.99) membership functions. The proposed Incircle-FRI method can
also extend to be able to handle fuzzy interpolative reasoning with multiple antecedent
variables and multiple fuzzy rules. Extending the Incircle-FRI with general weight calculation
and a shift process, the suggested FRI method can also perform extrapolation. (see Chapter 4,
5 for the details and the related Thesis I, 11, and 111.)

A
a12 Al a13 a22 A2 a23
GPA1L PAIR GP.A2L' GP.AZR
al'l PS1AIL  PS3AIL  PSI1AIR PS3A1R =14 a*1 ps1AL  psaa’L  PS1A"R Psaa’m A4 821 psiA2l  psaazL  PSIAZR PS3A2R @24 ’x
A SDIAIL&R S U gpaRsLaR e * SDIAZLER ®
b12 B1 b13 b*2 B* b*3 b22 B2 b23
GPBIL PBIR GP.B2L lGP.B2R
b1 psisiL  pssmiL  PSIBIR PsiBIA b14 BT PSIB'L  ps3s’L_ PSIB'R PS3B'R b4 b21 PsiBaL | psimaL  PSiB2R psisan  b24 >Y
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Another important contribution of the dissertation is the proposal of a novel FRI benchmark
system. The suggested benchmark is far not ready. The CNF (Convex and Normal Fuzzy) and
PWL (Piecewise Linearity) benchmark examples are just the first step and a methodology to
construct a comprehensive FRI (Fuzzy Rule Interpolation) benchmark system, which is built
upon the weaknesses of the existing FRI methods, and can also highlight the strengths of the
newcomer ones. (See Chapter 4, 6 for the details and the related Thesis 1V.)

The main scientific results of the research presented in this work are summarized in the
following Theses:

Thesis. I:

| introduced a new method for the fuzzy rule interpolation concept called " Incircle-FRI", which
is based on the Incircle of a triangular fuzzy number, the Gergonne Pointas a “reference point”
of the inside circle of triangular fuzzy set, and the fuzziness sides of the triangular. The Incircle-
FRI conclusion is calculated by holding the same rate of the weights among the observation
and the two rule antecedents, and the conclusion and the two corresponding rule consequents
with the Gergonne Points (for the reference point of the conclusion), and with the "fuzziness
sides" (for left and right fuzziness the shape of the conclusion). The " Incircle-FRI" is always
generating a triangular CNF conclusion, if the antecedents and the consequents are triangular
CNF sets, evenif the fuzzy rule-base issparse. I conclude thatthe proposed method is a suitable
approachto be implemented as an inference system.

Thesis. I1:

| introduced an extension of the "Incircle-FRI" to be able to handle trapezoidal and hexagonal
fuzzy sets, which is by decomposing their membership functionshapes into multiple triangulars,
and multiple Incircle triangular fuzzy numbers with the Gergonne Points as reference points. |
conclude that the extended “Incircle-FRI" can generate a trapezoidal, or hexagonal CNF
conclusion if the antecedents and the consequents are all trapezoidal, or all hexagonal CNF
sets, even if the fuzzy rule-base is sparse. Therefore, the Incircle-FRI method is a suitable
approachto be implemented as an inference systemwith trapezoidal and hexagonal fuzzy sets.

Thesis. I1:

| introduced an extension of the "Incircle-FRI" to be able to handle multiple fuzzy rules having
multiple fuzzy antecedents. | used a modification weightestimate and included a shifttechnique
to ensure to interpolate the consequent fuzzy result to be more logical and also to enable the
capability for extrapolation. I conclude that the extensions of the “Incircle-FRI" always
produce CNF conclusion, for all the handled antecedents and consequents configuration of the
original method even if the fuzzy rule-base is sparse. Therefore, the Incircle-FRI method is a
suitable approach to be implemented as an inference system with these extensions.
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Thesis. IV:

| introduced the initial benchmark system (set of benchmark examples) for the most
important properties of the FRI concept (CNF and PWL properties), constructing benchmarks
are based on analyzing all cases of the core, boundary, and slopes conditions of the
antecedents, consequents, and observation fuzzy sets. The KH-FRI CNF and PWL Benchmark
are suitable for highlighting some problematic points of the KH-FRI and other FRI methods
that originated from the KH-FRI. Therefore, CNF and PWL Benchmarks are suitable for
evaluating and comparing FRI methods, where the KH-FRI is not satisfied with CNF and PWL
properties.
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APPENDIX A

Appendix A.1

The Antecedent and Observation Related to Example TR1
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Fig.100. A Comparisonof Fuzzy Interpolative Reasoning Results of Example TR1 for Several FRI Methods.
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Appendix A.2

The Antecedent and Observation Related to Example TR2
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Fig.101. A ComparisonofFuzzy Interpolative Reasoning Results of Example TR2 for Several FRI Methods.
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Appendix A.3

The Antecedent and Observation Related to Example TR3
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Fig.102. A Comparisonof Fuzzy Interpolative Reasoning Results of Example TR3 for Several FRI Methods.
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Appendix A.4

The Antecedent and Observation Related to Example TP1
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Fig.103. AComparisonof Fuzzy Interpolative Reasoning Results of Example TP1 for Several FRI Methods.
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Appendix A.5

The Antecedent and Observation Related to Example TP2
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Fig. 104. A Comparisonof Fuzzy Interpolative Reasoning Results of Example TP2 for Several FRI Methods.
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Appendix A.6

The Antecedent and Observation Related to Example TP3
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Fig. 105. A Comparisonof Fuzzy Interpolative Reasoning Results of Example TP3 for Several FRI Methods.
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Appendix A.7

The Antecedent and Observation Related to Example HEX1
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Fig.106. A ComparisonofFuzzy Interpolative Reasoning Results of Example HEX1 for Several FRI Methods.
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Appendix A.9

The Antecedent and Observation Related to Example MultiA2
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Appendix A.10

The Antecedent and Observation Related to Example Extl
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The Antecedent and Observation Related to Example Ext2
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APPENDIXB

A Publications Arising from the Dissertation

A few publications have been generated from the research carried out within the PhD
project. Below list the resultant publications that are in close relevance to the dissertation,
including all the papers already published.

[32]. M. Alzubi, Z. C. Johanyak, and S. Kovacs, “Fuzzy Rule Interpolation Methods and FRI
Toolbox”, Journal Scopus Indexed [Q3].

[35].M. Alzubi and S. Kovacs, “Investigating the piecewise linearity and
benchmark related to KOCZY-HIROTA fuzzy linear interpolation ”, Journal Scopus Indexed

[Q3].

[94]. M. Alzubi and S. Kovacs, “Some Considerations and a Benchmark Related to the CNF Property
of the Koczy-Hirota Fuzzy Rule Interpolation ”, Journal Scopus Indexed [Q2].

[98]. Maen Alzubi, Mohammad Almseidin, Szilveszter Kovacs, and Mohd Aagib Lone, “Fuzzy Rule
Interpolation Toolbox for the GNU Open-Source OCTAVE ”, Conference[IEEE].

[99]. M. Alzubi and S. Kovacs, “Interpolative Fuzzy Reasoning Method Based on the Incircle of a
Generalized Triangular Fuzzy Number ”, Journal Scopus Indexed [Q1].
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