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CHAPTER -1-                                                             Introduction and the Aim of Research 

INTRODUCTION  
 

The fuzzy set theory offers one distinguished approach to describing and dealing with 

uncertain knowledge and data, which sets the main basis of approximate reasoning [65], [130]. 

Compared with the other principal techniques in approximate reasoning, the main advantage of 

fuzzy sets is that they can conserve interoperability and clarity during the reasoning process due 

to the use of linguistic terms in fuzzy logic [86], [87], [88], [89], [131]. The fuzzy set theory 

allows for the addition of vague human assessments in computing problems. Also, it presents 

an effective means for conflict resolution of multiple criteria and better assessment of options. 

Fuzzy sets have become an increasingly familiar methodology for the modeling of various kinds 

of common sense reasoning, especially when dealing with nonlinear, uncertain, vague, partially 

true and complex systems, such as information processing [132], [133], [134], mechanical 

control [87], [135], [136], classification tasks [137], [138], natural language processing [139], 

[140], expert systems [141], [142], image recognition [143], [144], diagnosis [145], [146], [147] 

and intelligent decision support systems [148], [149], [150]. 

In a fuzzy inference system, the reasoning techniques are implemented by the execution of 

fuzzy If-Then rules, which is called a fuzzy rule base. If a fuzzy inference system has a large 

number of rules that used to cover all possible input antecedents, then its rule base is called 

"dense" fuzzy-rule base [36], [37]. In this situation, the inference process is relatively 

straightforward, and any classical inference approach, such as the compositional rule of 

inference (CRI) [65], [71], can be used to infer the results. In contrast, if fuzzy rule bases do 

not cover all possible input antecedents, then the fuzzy-rule base is called "a sparse fuzzy-rule 

base". In this situation, the inference process is more complex, and a more intuitive approach 

such as a Fuzzy Rule Interpolation (FRI) [3], [16], [25], [78], [91], [92] can use to infer the 

conclusion in case a sparse fuzzy rule base. In both cases, the rule base and its rules rest prime 

importance and affect the fuzzy inference system’s accuracy. 

FRI approaches are considerably useful for reasoning in case a sparse rule base. The FRI 

inference systems are based on an interpolation concept that can generate a conclusion from 

existing rules. The FRI methods can divide into two groups. The first group produces the 

approximated conclusion from the observation directly. The second group produces the 

approximated conclusion from the observation base on two steps, (the first step, they interpolate 

a new rule that antecedent part at least overlaps the observation, the estimated conclusion 

determined in the second step based on the similarity between the observation and the 

antecedent part of the new rule). Because the FRI methods were developed independently and 

proposed theoretically, most of the FRI methods have no practical application; it has been 

developed a toolbox that includes a set of fuzzy interpolation methods under the Matlab 

environment. Besides that, a collection of conditions suggested to be a baseline to compare and 

evaluate the performance of existing and upcoming FRI methods; still, most of the FRI methods 
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not fulfilled some of the suggested conditions which could be useful important for the FRI 

concept. Because there is no common dataset that is suitable for comparing between FRI 

methods (e.g., benchmarks examples), all these reasons are leading us to the main aim of the 

research. 

1.1. The Aim of Research 

This research is divided into three goals: 

 To introduce a brief description of the refreshed and extended version of the original FRI 

Toolbox under the MATLAB environment, to present the extension of the FRI toolbox 

under the OCTAVE environment, different examples used to prove the validity of both of 

FRI toolboxes.  

 Several conditions and criteria have been suggested for the fuzzy interpolation concept to 

enable researchers to evaluate and compare FRI methods; therefore, this research aimed to 

generate the initial benchmark system (benchmark examples) related to the fuzzy set of the 

conclusion that must preserve a Piecewise Linearity (PWL) and must produce Convex and 

Normal Fuzzy (CNF). Hence, these benchmark examples could use to be a baseline for 

testing other FRI methods against situations that are not satisfied with the linearity and 

normality conditions for Kóczy - Hirota (KH)-FRI method.  

 To develop a new method for fuzzy inference, which is based on the Incircle of a triangular 

fuzzy number. This approach is suitable in case sparse fuzzy rule bases. It can handle the 

problems in some exists FRI methods and to be satisfied with most of the FRI properties  

(such as normality, linearity, multi antecedent variables, approximation capability, 

extrapolation, Etc.).   

1.2. Dissertation Guide 

In this subsection, we outline the structure of the remainder of the dissertation. 

Chapter 2: We provide a background introduction to Fuzzy Logic, Fuzzy Inference 

Systems (FISs), Compositional Rule of Inference (CRI), Fuzzy Inference Methods, Fuzzy 

Rule Interpolation (FRI), and properties of the fuzzy rule interpolation concept. 

Chapter 3: In the first part, we provide a comprehensive review of typical FRI methods 

developed in the last two decades. Johanyák et al. [24] developed one trial for setting up a 

common FRI toolbox framework in 2006 in the MATLAB FRI Toolbox for systematically 

evaluating the performance of each method provided, and each method is then tested and 

compared accordingly. In the second part, we focus on the use of the Fuzzy Rule Interpolation 

(FRI) methods to support GNU/OCTAVE program. The OCTAVE Fuzzy Rule Interpolation 

(OCTFRI) toolbox is an open-source toolbox for OCTAVE that provides a large subset of the 

functionality MATLAB compatible. The OCTFRI toolbox includes functions that enable the 

user to evaluate Fuzzy Inference Systems (FISs) from the command line and OCTAVE scripts , 
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read/write FISs, and OBS to/from files, and produce a graphical output of both the membership 

functions and the FIS outputs. 

Chapter 4: We introduce fuzzy interpolative reasoning method called "Incircle-FRI" for a 

sparse fuzzy rule-based system based on the Incircle of a triangular fuzzy number. The 

suggested method defined for triangular CNF fuzzy sets for a single antecedent universe and 

two surrounding rules from the rule-base. The chapter also extends the suggested "Incircle-FRI" 

to trapezoidal-shaped fuzzy set by decomposing their shapes into two triangulars. The generated 

conclusion is also a CNF fuzzy set. The performance of the suggested method is evaluated 

based on arbitrary examples and a comprehensive comparison to other current FRI methods. 

Chapter 5: We present the extensions of the proposed Incircle-FRI method; firstly, applying 

to a Hexagonal shaped fuzzy set by decomposing its shape into multiple triangulars. Secondly, 

to apply with multiple fuzzy rules and multiple antecedent fuzzy interpolative reasoning, 

thirdly, to be suitable in the extrapolation by modification of the weight derivation and the 

introduction of the shifting process. All the conclusions of the extensions are producing CNF 

fuzzy sets. The extensions Incircle-FRI method’s performance is evaluated based on arbitrary 

examples and a comprehensive comparison to some current FRI methods. 

Chapter 6: Some several properties and criteria have been suggested for unifying the 

standard requirements of the FRI methods have to satisfy. One of the most common properties  

is the demand for Convex and Normal (CNF) and Piecewise Linear (PWL) fuzzy conclusion. 

The KH-FRI method is the one, which cannot fulfill these properties. Therefore, this chapter 

aims:  

To introduce a survey study using different arbitrary examples to compare FRI methods (KH, 

KH Stabilized, MACI, IMUL, CRF, VKK, GM, FRIPOC, LESFRI, and SCALEMOVE). 

Where a set of features were used for this comparing: (No. of Dimensions, Type of Membership 

Functions, and No. of Membership Functions for the antecedent and consequent). These 

arbitrary examples classified the FRI methods based on the criteria of the "normality" and 

"linearity" properties, to highlight some basic problematic properties of the KH Fuzzy Rule 

Interpolation method with Convex and Normal Fuzzy (CNF) and Piecewise Linearity (PWL) 

properties.  

To set up a brief benchmark, which is suitable to be a baseline for testing other FRI methods 

against cases that the KH-FRI is not satisfied with CNF and PWL properties. All benchmark 

examples in this chapter constructed using functions implemented by the MATLAB FRI 

Toolbox, which provides an easy-to-use framework to compare the conclusions of different FRI 

methods. The CNF benchmark examples used to compare the KHstabilized, MACI, VKK, and 

CRF methods. The PWL benchmark examples applied to the KHstab, VKK, FRIPOC, and 

VEIN-FRI methods. In comparison, the results of the proposed Incircle-FRI method also 

appearing in the benchmarks. 

Chapter 7: We summarize the key contributions of the dissertation and the main scientific 

results of the research.   
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CHAPTER -2-                                                                                            General Background 

2. Fuzzy Systems and Fuzzy Rule Interpolation Background 
 

This chapter provides a short background of fuzzy logic, fuzzy inference systems, fuzzy 

knowledge base, compositional rule of inference, Mamdani and Sugeno inference methods, and 

fuzzy rule interpolation. It also presents an overview of the properties and criteria of the fuzzy 

rule interpolation concept. 

2.1. Fuzzy Logic 

Fuzzy logic is a mathematical approach to problem-solving; it performs exceptionally in 

producing exact results from imprecise or incomplete data. A fuzzy set is different from a crisp 

set in that it allows its elements to have a degree of membership [64]. The essence of a fuzzy 

set is its membership function, which defines the relationship between a value in the set’s 

domain and its degree of membership. According to the original idea of Zadeh [65], the 

membership of an element x to a fuzzy set A, denoted as µA(x), can vary from "0" (full non-

membership) to "1" (full membership), i.e., it can assume all values in the interval [0,1]. The 

value of µA(x) describes a degree of membership of x in A. Clearly, a fuzzy set is a generalization 

of the concept of a classical set, which the membership function can only take two values "0" 

and "1". Fig. 1 describes the difference between the fuzzy set and the crisp set.  

 

 

Fig. 1. The Fuzzy Set and Crisp Set 

In general, a fuzzy system is any system whose variables (or, at least, some of them) range 

over states that are fuzzy numbers rather than real numbers. These fuzzy numbers may represent 

linguistic terms such as "very small", "medium", and so on, as interpreted in a particular context, 

in this case, the variables are called linguistic variables. The main goal to use the linguist ic 

variables rather than numbers is that linguistic characterizations are, in general, less specific 
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than numerical ones, but much closer to the way that humans formulate and use their 

knowledge.  

An example of a linguistic variable, as shown in Fig. 2 its name "Height", which captures 

the meaning of the associated base a variable that expresses the Height by real numbers (for 

example in the interval [0,1]), linguistic values (fuzzy values) of the linguistic variable are 

{Very Low, Low, Medium, High, Very High}. Each of these linguistic terms assigned one of the 

triangular-shaped fuzzy numbers by a semantic rule, as shown in Fig. 2, it is clear that a crucial 

aspect that will determine the validity of a paradigm of Computing with Words (CW), which 

refers to a collection of human knowledge expressed in natural language that used to determine 

correct membership functions for the fuzzy values. 
 

 

Fig. 2. The Linguistic Variable “Height”[151] 

2.2.  Fuzzy Inference Systems (FIS) 

The inference is the process to determine the logical conclusions from assumptions known, 

considered to be true, or partially true. When the conclusions are determined based on fuzzy 

linguistic variables using fuzzy set operators (AND, OR, NOT), then the process is called 

approximate reasoning (fuzzy inference). Fuzzy inference is more efficient and useful for those 

systems, where a system cannot determine in precise mathematical models due to uncertainties, 

unpredicted dynamics, and other unknown aspects.  

Fuzzy Inference Systems (FIS) have been frequently utilized for real-world problems, 

because of their ability to simulate the human mind’s to summarize data and focus on decision-

relevant information. The main idea of a typical fuzzy inference system is illustrated in Fig. 3,  

where the standard FIS consists of four interconnected processes [72]. There are two primary 

components of the fuzzy inference system: a knowledge base and inference mechanism. The 

FIS crisp input and output, needs two additional blocks; fuzzification and defuzzification. 

Fuzzification serves to transform a crisp input into a fuzzy value, while defuzzification serves 

to transform a fuzzy output set into a crisp single value. Therefore, the basic structure of a fuzzy 

inference system consists of the following components: 
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• Fuzzifier: Which converts the crisp input to a linguistic variable using the membership 

functions stored in the fuzzy knowledge base. 

• Knowledge Base : Consists of the set of "Rule Base", "Linguistic Terms (Fuzzy 

Membership Functions)", and "Inference Parameters", as shown in Fig. 4. 

• Inference system: Which performs the inference procedure upon the rules and given facts 

to derive an inferred output or conclusion. 

• Defuzzifier: Which converts the fuzzy output of the inference system to a crisp using 

membership functions analogous to the ones used by the fuzzifier.  

 

 

Fig. 3. The Fuzzy Inference System 

 
 

 
Fig. 4. The Fuzzy Knowledge Base 

The main part of FIS is the fuzzy rule-based, which is used to represent domain knowledge 

that is joined with membership functions, in which each rule could be thought of as a subsystem. 

Rules themselves do nothing unless inputs are applied to them. Fuzzy rules or fuzzy conditiona l 

statements are expressions of the form IF A THEN B, where A and B are labels of fuzzy sets 

[65], which described by appropriate membership functions, also "If part" is called the 

antecedent and "Then part" is called the consequent. Fuzzy IF-THEN rules are often employed 
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to capture the imprecise forms of reasoning, which play an essential role in the human ability 

to make decisions in an environment of vagueness. 

The antecedent describes to what degree the rule uses, while the consequent assigns a fuzzy 

function to each of one or more output variables [67], [68], [69]. Fuzzy "If-Then" rules present 

a simple way to formulate and take human type knowledge because they expressed using 

linguistic terms. A collection of fuzzy rules base can be obtained from subject matter experts or 

extracted from data through a rule deducing process.  

There are two main methods to construct a rule base for a given problem. The first is by 

directly translating expert knowledge into rules, and fuzzy inference systems with such rule 

bases are usually called fuzzy expert systems [1]. Because rules are fuzzy representations of 

expert knowledge, rule bases offer high semantic interpretability and good generalization 

capability. However, it is difficult for complex systems to build a rule base, which has led to an 

alternative approach for rule-based construction. This approach is data-driven, and fuzzy rules 

are obtained from data using machine learning techniques rather than direct expert knowledge 

[119], [104], in contrast, rule bases built in this way lack comprehensibility and transparency. 

The fuzzy rule base generated in either of the above two ways, several fuzzy inference 

mechanisms can be used to derive the conclusion from a given observation. The most important 

model is the compositional rule of inference (CRI), which is introduced in the following 

subsection. 

2.3. Compositional Rule of Inference (CRI) 

In approximate reasoning, two inference rules are of major significance: the compositiona l 

rule of inference and the generalized modus ponens. The first rule uses a fuzzy relation to 

represent the connection between two fuzzy propositions explicitly, the second uses an if-then 

rule that implicitly represents a fuzzy relation. (see example in [66]). 

The inference compositional rule (CRI) was first proposed by Zadeh [71] to solve the fuzzy 

modus ponens (FMP) and fuzzy modus tollens (FMT) models. Later Dubois and Prade [124] 

introduced two approaches to present the inference of a set of parallel rules for solving the local 

inference approach, known as IRI, and the global inference approach, known as CRI.  

Many of researches have been conducted on CRI and IRI.  Such as the "aggregation 

operator" [125], two methods presented to deal with aggregation operator issues as follows: 
 

• Composition Rule-based Inference (CRI) (the First Aggregate Then Infer (FATI)), 

where first a combination of all rules from the knowledge base is constructed, and then 

inference using the supremum-star composition is conducted. 

• Individual Rule-based Inference (IRI) (first infer then aggregate: FITA), in which the 

first step involves inference using the supremum-star composition for each of the rules 

individually and then, a combination of inference results is performed. 
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Researches tried to find an operator for CRI and IRI aggregation. Assilian [126] used the 

max-min method. A "min" operator is selected as a conjunction in the rule premise and the 

implication function while a "max" operator is used for aggregation. Dubois [127] used a "min" 

operator for aggregation in decision-making. To reduce the computational time, the authors 

[128], [129] replaced a MISO fuzzy rule with an equivalent collection of SISO rules with two 

kinds of aggregation operators.   

According to differences between the compositional rule of inference and the generalized 

modus ponens. Zadeh presented with the treatment of the if-then rule, called the fuzzy 

conditional statement:  

 

If X is A Then Y is B, and the if ... then ... else rule, if X is A Then Y is B Else Z is C.  
 

Zadeh introduces the idea by two statements as follows: 
 

Observation: x is A* 

Rule : If x is A Then y is B 

Consequence : y is B* 

 

The meaning of the second statement should be defined as a fuzzy relation R. With this 

relation, Zadeh introduces the compositional rule of inference: 

if R is a fuzzy relation from X to Y, and A* is a fuzzy subset of X, then the fuzzy subset B* 

of Y, induced by A* is given by the composition of R and A*, that means, 

 

B*: A* 𝑜 R = A* 𝑜 (A → B) (2.1) 
 

Where 𝑜  is the composition operator (see Fig. 5), in this case, one should take the 

cylindrical extension (denoted by (ce)) of A*, take the intersection with R, and project the result 

onto Y-axis.  When R is built up from A* and B* with the rule 
 

R = ce(A*) ∪ B , i.e., 𝜇𝑅(x,y) = max(1- 𝜇𝐴(x), 𝜇𝐵(y)) (2.2) 
 

The compositional rule of inference always requires an explicit relation, for example in 
  

Observation:   x is tall  

Relation:  y is a bit shorter than x, 

Conclusion:   y is more or less tall; 
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Fig. 5. Compositional Rule of Inference Example 

In [70], Zadeh proposes the following way to handle the compositional rule of inference. 

When the inference scheme is: 
 

X1 is A, 

X1 R X2, 

:. X2 is B; 
 

where A and B are fuzzy sets representing the meaning of A and B and R is a fuzzy relation 

defining the meaning of R, and A is defined on X, and R on X × Y, then: 
 

𝐵 = 𝑃𝑟𝑜𝑗 (𝐴 ∘  𝑅) 𝑜𝑛 𝑌,    i.e., 𝜇𝐵(𝑌) = 𝑚𝑎𝑥
𝑥

𝑚𝑖𝑛(𝜇𝐴(𝑥), 𝜇𝑅(𝑥, 𝑦)) (2.3) 

 

For more details about this relation, see examples in [66] (pages 84 and 85). 

Fuzzy inference is the process of formulating the mapping from a given input to an output 

using fuzzy logic. The mapping then provides a basis from which decisions can be made or 

patterns discerned. The process of fuzzy inference involves all of the pieces described so far, 

i.e., membership functions, fuzzy logic operators, and if-then rules. A number of existing fuzzy 

reasoning methods based on CRI have been proposed in the literature [36], [120]. In particular, 

the first successful practical approach was Mamdani inference [1], [121], which is also 

commonly implemented fuzzy methodology in physical control systems at present [122], [123]. 

It was originally proposed as an attempt to control a steam engine and boiler combination by 

synthesizing a set of linguistic control rules obtained from experienced human operators. 

Mamdani inference implements CRI using minimum as the t-norm operator due to its 

simplicity. Another approach is called Takagi–Sugeno–Kang (TSK) inference [2], [73], which 

is introduced in the next subsection. 



10 | P a g e  

 

2.4. Mamdani and Takagi-Sugeno-Kang Fuzzy Inference Methods 

The main difference between the traditional Mamdani inference method and the TSK 

inference method is the way of the output produced from the fuzzy inputs [100]. While the 

Mamdani system uses the technique of defuzzification of a fuzzy output, the TSK system uses 

a weighted average to compute the crisp output. The power expressive and interpretability of 

Mamdani output reduced in the TSK systems since the consequents of the rules are not fuzzy 

[74], [76], [93]. However, TSK has better processing time since the weighted average replaces 

the time-consuming defuzzification process. Due to the interpretable and intuitive nature of the 

rule base, Mamdani inference systems widely used in particular for decision support 

applications [75]. 

The example in [1] explains the working with a model of the fuzzy system,  where a simple 

two inputs x and y (antecedents) and a single output z (consequent) is described by a linguist ic 

If-Then rule to describe Mamdani inference method and TSK inference method forms as: 
 

Mamdani inference method: 

Rule1: IF X is A1 OR Y is B1 THEN Z is C1 

Rule2: IF X is A2 AND Y is B2 THEN Z is C2 

TSK inference method: 

Rule1: IF X is A1 OR Y is B1 THEN Z = f (x, y) 

Rule2: IF X is A2 AND Y is B2 THEN Z = f (x, y) 

 

Where X and Y are the antecedent variables, Z is consequent variable, respectively, A and B are 

fuzzy sets in the antecedent part, C is a fuzzy set in the consequent part, f (x, y) is a crisp function 

in the consequent part. 

Some of the most popular Mamdani defuzzification techniques are usually a variation of the 

max criterion method. These include the Smallest of Maxima (SOM), Largest of Maxima 

(LOM), and the Mean of Maxima (MOM). These methods select the smallest, largest, and mean 

output value for inputs whose membership value reaches maximum. MOM is one of the most 

popular methods; it calculates the final output "Z" by averaging the set of output values that 

have the highest possible degree "M" using the formula given in Eq.(2.4) [101]. 
 

.,
1

Mx
l

Z i

l

i

xi 


 (2.4) 

 

Two other commonly used defuzzification techniques are the Center of Gravity (COG) / 
centroid and Center of Area (COA) / bisector method. 

The COG / centroid method determines the crisp output by calculating the center of gravity 

of the possibility distribution of the output. For continuous values, the output "Z" calculated 
using Eq.(2.5) [101]. 
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where Z is the output variable, and 𝜇𝐴(𝑧) is the membership function of the aggregated fuzzy 

set A with respect to z. 
The COA is similar to the COG method. However, it calculates the position under the curve 

where the areas of both sides are equal. The COA can calculate using Eq.(2.6) [101]. 
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Authors in [102] presented a detailed analysis of various defuzzification techniques , 
including COG and MOM. They concluded that COG yields better results. For this reason, the 
COG/centroid defuzzification technique used in this work. 

The output membership function for the Mamdani scheduler made of triangular 
membership functions, shown in Fig. 6. It consists of 5 fuzzy values, namely: Very Low (VL), 
Low (L), Medium (M), High (H), and Very High (VH). 
 

 
Fig. 6. Mamdani Consequent Values 

Sugeno FIS uses the weighted average to compute the crisp output, and thus the complex 

iteration process used by Mamdani is bypassed. The Sugeno FIS does not have an output 

membership function. The output for Sugeno FIS is shown in Fig. 7, and it is a constant value. 

It consists of five output points, which are the same as the number of membership functions for 

the Mamdani output (Very Low (VL), Low (L), Medium (M), High (H), and Very High (VH)). 

The Sugeno FIS is a less computationally complex algorithm than the Mamdani equivalent. The 

interpretability and the expressive power of the Mamdani FIS are lost in the Sugeno FIS because 

the rules’ consequence is not fuzzy [101]. It means that the output will be a constant rather than 

a fuzzy set when the rules are evaluated. Thus, the impact of this on the system performance 

will be evaluated. 
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Fig. 7. Sugeno Consequent Values 

2.5. Fuzzy Rule Interpolation (FRI) 

In most fuzzy inference systems, the completeness of the fuzzy rule base is required to 

generate meaningful output when classical fuzzy inference methods are applied; this 

emphasizes the need for a complete rule base for the fuzzy inference, which covers all possible 

inputs. Regardless of how a rule base constructed, be it by human experts or by an automated 

agent, often incomplete or sparse rule bases are generated.  

A complete rule base is especially impracticable in a multidimensional environment, where 

the number of rules increases exponentially [38], which is based on the input variables and the 

fuzzy linguistic labels associated with each variable increase. In this situation, the classical 

fuzzy reasoning techniques cannot generate an acceptable output for such cases; the following 

example can explain this: Suppose in the assumed sparse fuzzy rule-bases there are only two 

rules, which given below: 
 

An example related to the density fuzzy rule bases: 
 

If X is A1 then Y is B1 

If X is A2 then Y is B2 

If X is A3 then Y is B3 

Observation: X is A1 
---------------------------------- 

Conclusion: Y = (B1) 

In another way, using Eq.(2.7): 
 

 

(2.7) 

 

An example related to the sparsity fuzzy rule bases: 
 

If X is A1 then Y is B1 

If X is A3 then Y is B3 

Observation: X is A2 
---------------------------------- 

Conclusion: Y = (??) 
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In another way, using Eq.(2.8): 
 

 

(2.8) 

 

Where Xi is the ith input universe, Aik is the k th set of the partition of Xi and supp is the 

support. 

A straightforward solution to handle incomplete or sparse fuzzy rule bases and to infer 

reasonable output is by the application of FRI methods. FRI techniques initially presented to 

generate a conclusion in case sparse fuzzy rule bases, which encouraged to extend the usage of 

fuzzy inference mechanisms for sparse fuzzy rule-based systems [24]. 

Interpolation is a mathematical term for finding new data points within the range of a 

discrete set of known data points. Fuzzy rule interpolation (FRI) performs interpolative 

approximate reasoning by the existing closest fuzzy rules, where there is no matching of fuzzy 

rules. Generally, these FRI methods are capable of performing two types of inference operation: 

fuzzy interpolation and fuzzy extrapolation depending on the location of selected closest rules, 

as shown in Fig. 8. If the given input observation lies among the selected closest rules, then 

fuzzy interpolation operation is performed; otherwise, if the given input observation lies to one 

side of all selected closest rules, then extrapolation is performed. A comprehensive overview 

of FRI techniques will be presented later in chapter 3. 

 

Fig. 8. The General Illustration of Fuzzy Interpolation [51] 

There are several fuzzy rule interpolation methods (e.g., [3]-[6], [14], [22], [25], [39], [42], 

[48], [49],[50],[51], [52].) available in the literature. Most of the methods infer directly the 

conclusions based on observation, such as linear interpolation method [3], [16], [25], [92], 

Extension KH central point based interpolation method [4], Conservation of the Relative 
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Fuzziness interpolation method (CRF) [7], Improved Multidimensional modified α-Cut 

interpolation method (IMUL) [8], improving the possible abnormal conclusion in KH linear 

interpolation [5], the modified α-Cut based interpolation method [6], and an interpolative 

reasoning method based on the slopes of fuzzy triangular sets [42]. 

In contrast, some of the FRI need two steps to calculate conclusions. These methods 

construct an approximated fuzzy rule based on certain similarity principles and then give the 

conclusion by approximate transformation, such as Generalized Methodology based 

interpolation method (GM) [9], Polar Cuts based interpolation method (POC) [10], LEast 

Squares method based interpolation method (LES) [11] Vague Environment based two-step 

interpolation method (VE) [63].  Scale and Move transformation based interpolation method 

(ScaleMove) [22], [85]. The Fuzzy Interpolation in the Vague Environment (FIVE) method 

[60], [61], [62]. The areas of fuzzy sets interpolation method [52]. 

2.6. Properties of the Fuzzy Rule Interpolation Concept 

While Fuzzy Rule Interpolation (FRI) offers a flexible solution for the problem of sparse 

fuzzy rule-based inference, there are many aims require careful consideration in devising such 

systems, which would make the evaluation and comparison of the different techniques based 

on the same fundamentals possible. 

 However, according to the existing literature (e.g., [5], [6], [9], [43], [77]) different criteria 

and properties were defined, which put together considering different points of view according 

to apply the FRI concept. In particular, it ensures that these methods should: produce the normal 

conclusion, maintain the piecewise linearity, to apply to different kinds of fuzzy sets, to be able 

to handle multidimensional environments and to minimize computational complexity [9], [14], 

[17], [41], [79], [80]-[83].  

Based on reviewing a wide range of fuzzy interpolation methods, a set of relevant 

performance evaluation criteria identified and generalized. However, not all such criteria need 

to fulfill in developing and applying the FRI methods mentioned. However, it expected that 

most of the criteria should be satisfied with a useful fuzzy rule interpolation technique with 

other problem-specific parameters. Therefore, as a step towards the unification, several 

properties presented to be a baseline to compare and evaluate FRI methods. In the following , 

we introduce essential FRI properties: 

2.6.1. Avoidance of abnormal conclusion [6], [9], [43] 

A fuzzy rule interpolation method should produce valid conclusion fuzzy sets; this means 

that the resultant membership value must be a function of the consequent domain in the range 

of [0, 1], i.e., the membership function of the conclusion should not be deformed, only one 

membership function value could address to one element of the conclusion. In the case of the 

α–cut based FRI methods, this condition can be described according to [6] by the following 

constraints.  
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Let Xj (j = 1,...,n) be input dimensions and Y output space, denoting the Cartesian product 

of input dimensions by X = X1 × X2 × … ×Xn. A fuzzy IF–THEN rule is given as Ri: if Ai1 ∧ Ai2 

∧··· ∧ Ain then Bi. Where antecedents Aij∈ F(Xj), consequents Bi∈ F(Y), and F(Z) denote the 

entirety of all fuzzy subsets of Z. We denote the (n-dimensional) Cartesian product of 

antecedents Aij, (j = 1,...,n) of rule Ri by A(i). Therefore, fuzzy set A ∈ F(Z) is valid if its 

membership function is valid. 𝛼-cuts characterize the validity of the fuzzy set as follows:  
 

∀α, α1 < α2 ∈ (0,1]: inf{Aα} ≤ sup{Aα} and 

 inf{Aα1} ≤ inf{Aα2} and 

sup{Aα2} ≤ sup{Aα1} 

(2.9) 

 

where "inf"  and "sup" are the lower and upper endpoints of the actual α-cut of the fuzzy set. 
Mapping validity: For each A∗ ∈ F(X) with a valid fuzzy membership function, the 

conclusion generated by mapping I, B∗ = I(A∗) ∈ F(Y) should also be a valid fuzzy set. 
 

 
Fig. 9. The Example Describes Property (2.6.1) with Invalid Conclusion 

For more details, related to this point see (Chapter 6 - Subsection 6.2 demonstrated all 

notations of CNF condition with examples) 

2.6.2. The continuity of the mapping between the antecedent and consequent fuzzy sets 
[9], [43] 

This property interpreted as “the more similar observation to an antecedent, the more 

similar conclusion should be to the corresponding consequent of the given antecedent” in [78].  

Let SZ: F(Z) × F(Z) → R denote the similarity function defined in the fuzzy sets of Z. Then, for 

A*, A1, A2 ∈ F(X), if Sx(A*, Ai1) ≥ Sx(A*, Ai2) then Sy(I(A*), Bi1) ≥ Sy(A*, Bi2), where Rij: Aij → Bij 

(j=1,2) are two rules of rule base R. 

Many researchers only consider the extreme case of this condition when the observation 

coincides with a rule antecedent referred to as compatibility with the rule base [9], [43], [82] 

(see condition 2.6.3). In logic, this property is called Modus Ponens (MP). Note that it is also 

called continuity of the model characterized by the fuzzy relation of the rule base [103].  
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Fig. 10. The Example Describes Property (2.6.2) with Mapping Between the Antecedent and Consequent 

2.6.3.Compatibility condition of the observation with rule -bases 

This condition follows compatibility with the rule base and based on the modus ponens in 

logic; this means the condition on the validity of the modus ponens, namely if an observation 

coincides with the antecedent part of a rule, the conclusion produced by the method should 

correspond to the consequent part of that rule. 

 
Fig. 11. The Example Describes Property (2.6.3) with Compatibility with Rule-Bases 

2.6.4. Preservation condition of the observation between adjacent two rule -based [43] 

A fuzzy rule interpolation method should keep the neighboring quality of the interpolated 

result; this implies that if the observation surrounded by the antecedent sets of two adjacent 

rules, then inferred the consequent sets of those rules must surround conclusion. If the 

antecedents of the two given rules are A1 and A2 and their consequents are B1 and B2, the 

observed rule antecedent A* should lie between A1 and A2 such that the inferred conclusion by 

interpolation method should fall between the two rules consequents B1 and B2.  

In linear interpolation, if (A1j ≺ A∗
j ≺ A2j) for all j=1, …, n, then (B1 ≺ I(A*) ≺ B2), where 

(Rj: Aj→Bj) (j= 1,2) are two riles of rule base R and ≺ is a partial order operator. 

 
Fig. 12. The Example Describes Property (2.6.4) with Preservation In-Between 

2.6.5. The fuzziness of the approximated result.  

There are two opposite approaches in the literature related to this topic [77].  

 Observation (A∗) is a singleton, then conclusion I(A∗) should be a singleton and,  
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 All BI, where (I) denotes the indices of rules that contribute to the calculation of 

conclusion I(A∗), and observation A∗ are singleton, then I(A∗) should be a singleton.  

Thus, the crisp conclusion can be expected if all the consequents of the rules taken into 

consideration during the interpolation are singleton shaped, i.e., the knowledge base produces 

certain information from fuzzy input data. 
 

 
Fig. 13. The Example Describes Property (2.6.5) with Fuzziness of the Approximated Result for the First 

Approach 

 
Fig. 14. The Example Describes Property (2.6.5) with Fuzziness of the Approximated Result for the second 

Approach 

2.6.6. Approximation capability. [17] 

The estimated rule should approximate the possibly highest degree the relationship between 

the antecedent and consequent universes. If the number of the measurement (knot) points tends 

to infinite, the result should converge to the approximated function independently from the knot 

points’ position. This condition means the stability between the observation shape and 

conclusion shape, which must be identical. 

 

Fig. 15. The Example Describes Property (2.6.6) with the Approximation Capability 

2.6.7. Preservation of Piecewise Linearity (PWL). 

If the fuzzy sets of the rules taken into consideration are piecewise linear, the approximated 

sets should conserve this feature. This means that a piecewise linear conclusion should be 

inferred from piecewise linear rules and observations [9], [14], [17], [41], [79], [80], [81], [82], 
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[83]. Strictly speaking, there must not be any further interpolation other than computing with 

the odd points only [84], [85]. For more details about this condition (Chapter 6 - Subsection 6.3 

demonstrated all notations of PWL condition with examples) 

2.6.8. The investigating condition for multidimensional of rule -bases. 

Applicability in multidimensional input space: Mapping I must be applicable to arbitrary 

finite dimensions of input space.  

Let R = {Ri| i = 1,...,r} be a rule base with multidimensional rules of form Eq.(2.10). We call 

mapping I: F(X) → F(Y) rule interpolation, if it assigns to each observation A∗ ∈ F(X) an 

(interpolating) conclusion I(A∗) = B∗ ∈ F(Y). 

Ri: If (Ai1 ∧ Ai2 ∧··· ∧ Ain) Then (Bi )  (2.10) 

 

Where antecedents Aij ∈ F(Xj), consequents Bi ∈ F(Y), and F(Z) denote the entirety of all 

fuzzy subsets of Z. We denote the (n-dimensional) Cartesian product of antecedents Aij, (j = 

1,...,n) of rule Ri by A(i). 

In other words, mapping (I) must apply to arbitrary finite dimensions of input space. FRI 

toolbox was initially motivated in attempts to reduce complexity, which is meaningful only in 

the case of many input dimensions, so the FRI toolbox working only with a one-dimensiona l 

rule base has limited applicability. Therefore, a fuzzy rule interpolation method should be able 

to deal with different kinds of membership functions with different rules. Simply it means that 

the method should work when the antecedents’ fuzzy sets and the consequents of the different 

fuzzy rules have different kinds of membership functions. 

 
Fig. 16. The Example Describes Property (2.6.8) with the Multidimensional of Rule-Bases 

2.6.9. Applicability without any constraint regarding the shape of the fuzzy sets.  

This condition can be lightened practically to polygons since piecewise linear sets are most 

frequently encountered in the applications.  
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Mapping I must apply to an arbitrary rule base and observation, without constraints regarding 

fuzzy set shape. 

 
Fig. 17. The Example Describes Property (2.6.9) with the Applicability of Rule-Bases 

2.6.10. Extrapolation capability of the method. 

A method with mapping I applies to extrapolation if it generates a conclusion when the 

observation located in an extrapolative position, which means: If observation A∗ located so that 

Ai1 and Ai2 exist such that (Ai1 ≺ A∗≺ Ai2), then FRI is applied based on rules Ri1 and Ri2 to 

obtain the conclusion. Otherwise, when all rule antecedents Ai (i = 1, ..., r) either precede or are 

preceded by A∗: 
 

∀i < ∈ [1, r]: If A∗ ≺ A1 or A1 ≺ A∗  (2.11) 

  

 
Fig. 18. The Example Describes Property (2.6.10) with the Extrapolation Property 

2.6.11. Applicability condition in case overlapping antecedent rule -bases. 

A fuzzy rule interpolation method should be able to support rules, where antecedents 

overlap with each other, this means that the method is operable on such a problem, in which 

two adjacent fuzzy rules have some common members or their intersection are empty. 

 
Fig. 19. The Example Describes Property (2.6.11) with the Overlapping Fuzzy Sets 

2.6.12. Preservation condition of Convexity and Normality. 

A fuzzy rule interpolation method should maintain the normality and convexity for any 

interpolative results; this means that if an observation is normal and convex and all the fuzzy 
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values in the rule-base are also normal and convex, then the interpolated conclusion should also 

be normal and convex. The normal condition is given below, which shows that at least one 

element membership function value must be equal to 1: (µA(x) = 1, ∃x ∈ X). The convexity 

condition is given below which dictates that membership function values must be increased or 

decreased monotonically on either side of the maximum point:  

µA(λx1 + (1 - λ)x2) ≥ min(µA(x1); µA(x2)) (2.12) 
 

where λ ∈ [0, 1], x1, x2 ∈ X.  

 
Fig. 20. The Example Describes Property (2.6.12) with the Convexity Fuzzy Sets 
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CHAPTER -3-                                                     Fuzzy Rule Interpolation and Toolboxes 

INTRODUCTION 

In this chapter, we provide a brief overview of the basic definitions of the complete and 

sparse fuzzy rule-base. We present an overview of the implemented Fuzzy Rule Interpolation 

(FRI) methods (KH, KHStabilized, MACI, IMUL, CRF, VKK, GM, FRIPOC, LESFRI, and 

SCALEMOVE). We introduce a brief description of the refreshed and extended version of the 

original FRI MATLAB Toolbox. We present the initial version of the FRI toolbox based on 

OCTAVE language, which is open-source software (free license) available under the General 

Public License (GPL). 
 

3.1. Preliminaries 
 

This subsection provides some basic definitions of the complete fuzzy rule base and sparse 

rules. It also introduces the description of the interpolative reasoning concept. 

3.1.1.  Dense and Sparse fuzzy rule bases 

Let us take into consideration the two numerical variables X and Y, which described on the 

universe R of real numbers, and F is a set in the fuzzy sets of R. We assume the fuzzy sets Ai in 

F are defined, 1 ≤ i ≤ n, such that: (A1≼ A2... ≼ Ai ≼ Ai+1... ≼ An), for a given order ≼ on F. We 

also suppose that we are given fuzzy sets Bi in F, 1 ≤ i ≤ n, which also ordered according to ≼. 

According to the definitions in [12], [13], the fuzzy functions could be described by the fuzzy 

relations between the fuzzy sets of the inputs Ai and outputs Bi. The fuzzy rule base could 

characterize and represent based on this relation. The classical reasoning methods, such as 

Mamdani and Sugeno [1], [2] follow that relation, which require defining all the fuzzy rule base 

relations between the inputs and outputs, also to define the overlapping between them to obtain 

the desired conclusion. Fig. 21 describes the complete fuzzy rule base for two dimensions’ 

antecedents and consequents, the observations (x1) and (x2) match the fuzzy rules 1, 2, 4, and 

5. Thus, the conclusion could be computed based on one of the classical fuzzy reasoning 

methods, like the Zadeh-Mamdani max-min Compositional Rule of Inference (CRI). 

Regarding the sparse rule-base (incomplete rule-bases) systems, the fuzzy rules are of the 

type: (Ri): “if X is Ai then Y is Bi”. The sparsity means, there is no overlapping between the 

observation and any of the fuzzy rules (do not cover the input space F), where there exist inputs 

A∗ such that (∃i / Ai ≼ A∗ ≼ Ai+1). A fuzzy interpolation method aims to provide a conclusion 

according to observation A∗ and two adjacent rules Ri and Ri+1 when (Ai ≼ A∗ ≼ Ai+1). 
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Fig. 21. Complete Fuzzy Rule Base 

Fig. 22 describes the issue (incomplete fuzzy rule base), where the observations x1.1 and x1.2 

refer to the first input (antecedent 1); the observations x2.1 and x2.2 refer to the second input 

(antecedent 2). These observations described two different types of issues in classical reasoning. 

The observations x1.1 and x2.1 do not match any rules of the rule-bases (missing rules), while, 

the observations x1.2 and x2.2 do not overlap with any fuzzy sets in the universe of discourse 

(gaps between fuzzy sets), there are no fuzzy values defined. Hence no overlapping rule can 

exist. 

 

 

Fig. 22. The Incomplete Fuzzy Rule Base (Sparse and no Overlapping Fuzzy Sets) 

3.1.2.  Fuzzy rule interpolation notations 

The fuzzy function definitions in [12], [13], the fuzzy space could be described by the 

mapping between antecedents and consequents fuzzy sets LX and LY via (f: LX → LY), this leads 
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to the main idea of the fuzzy rule interpolation methods, which is finding a suitable fuzzy 

interpolative function. These functions could produce a conclusion directly, even if the rule base 

is sparse, and there is no overlapping between the observation and any fuzzy rule base. Many 

of the Fuzzy Rule Interpolation (FRI) methods follow the notions in [3], [14], [15], which 

describe the relation between two fuzzy rule base and the observation, these fuzzy sets must be 

adjacent Convex and Normal (CNF) and partially ordered fuzzy sets, the ordering defined as 

(A1, is said to be “less than” A2), for all A1, A2 sets in a given fuzzy partition.  

The ordering of the fuzzy set A1 and A2, denoted by A1, A2, if ∀α ∈ [0,1], the following 

condition hold: (Inf(A1α) < Inf(A2α), Sup(A1α) < Sup(A2α)), where the "Inf" denotes the infimum 

and "Sup" refers to the supremum of the (A1α), (A2α) fuzzy sets.  

For simplicity, suppose that two fuzzy rules are given: 

 

If X is A1 then Y is B1 

If X is A2 then Y is B2 

 

Where A1 ⇒ B1 and A2 ⇒ B2 describe the fuzzy rules, rules in a given rule base arranged 

concerning a partial ordering among the convex and normal fuzzy sets (CNF sets) of the 

antecedents, consequent, and observation. For the above two rules, this means that: 

 

A1 ≺ A∗ ≺ A2 ∧ B1 ≺ B2  (3.1) 

 

Fig. 23 illustrates the simplest form to describe two flanking rules of the fuzzy sets, in which 

the shape of the membership functions remained restricted to trapezoidal, the figure shows the 

main points (variables) of the fuzzy sets to be applied for determining the conclusion in most 

FRI methods.  

A1 and A2 refer to the fuzzy sets of the antecedents, B1 and B2 denote the consequent fuzzy 

sets. A∗ denotes the new input (observation), B∗ refers to the conclusion. The characteristic 

points of the trapezoidal membership function could be defined by four values (LF, LC, RC, 

RF), the (LC and RC) refer to the left and the right core, the (LF and RF) refer the left and the 

right flank. (RA1, RA∗, RA2) denote the center points of the fuzzy sets in antecedents side, and 

similarly, the (RB1, RB∗, RB2) denote the center points of the fuzzy sets in consequents side, (fl, 

s2, r1) and (fu s1, r2) denote the left and the right fuzziness for each fuzzy set, (Ui, U’) denotes 

the distance between the center points of the fuzzy sets.  
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Fig. 23. Fuzzy Interpolation with Trapezoidal Fuzzy Sets (The Antecedent Part and Observation) and (The 

Consequent Part and Conclusion) [32] 

3.2. Fuzzy Rule Interpolation Methods 
 

Fuzzy rule interpolation methods classified into two groups. The first group obtains the 

conclusion in a single-step (directly), and the other group demands two-steps to compute the 

conclusion, using different algorithms in each step. This subsection presents an overview of 

some of the implemented FRI methods. 

3.2.1. KH interpolation method 

The first method proposed for FRI concept is called the KH (linear interpolation) method; 

this method published by Kóczy and Hirota [3]. Concerning the common general properties of 

the FRI methods suggested in [15], The KH rule interpolation method needs the following 

conditions to be satisfied: the fuzzy sets in both antecedents and consequents must be Convex 

and Normal (CNF) with bounded support, and at least a partial ordering must exist between 

fuzzy sets in the universes of discourse.  

The conclusion in KH interpolation method produced directly based on the α-cuts of the 

observation and the fuzzy rule-base, it can be calculated by the fundamental equation of the 

KH-FRI (Eq.(3.2)), which based on the lower and upper fuzzy distances between fuzzy sets 

[16]. The upper and lower endpoints could use to calculate the distance between the conclusion 
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and the consequent, which must be analogous to the upper and lower fuzzy distances between 

observation and antecedents. 

 

d(A*, A1):d(A*, A2) = d(B∗, B1):d(B∗, B2) (3.2) 

 

Where (d) refers to the Euclidean distance that could use between the fuzzy sets (A1, A2) and 

(B1, B2). 

The conclusion B∗ in this method could be calculated based on the lower and upper fuzzy 

distances between the fuzzy sets of the antecedents, consequent, and observation. Fig. 23 

illustrates the main points (core and flank) of the trapezoidal fuzzy sets that could be used to 

compute the conclusion B∗ as follows: 
 

The right (core) can be calculated by Eq.(3.3): 
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For the right (flank) can be calculated by Eq.(3.4): 
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The left (core) and the (flank) can be obtained similarly to the above Eq.(3.3) and Eq.(3.4).  
 

The KH method was developed for a single dimension and multi-dimensional antecedent 

universes as appearing in the previous equations. The most significant advantage of the KH 

interpolation is its simplicity and its low computational complexity. However, the disadvantage 
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of this method is abnormality conclusion could be appeared, it can be seen in some cases such 

as the cases in [17], [18], where the lower (left) end of the α-cut interval has a higher value than 

its upper (right) endpoint. 

3.2.2.  The KH Stabilized interpolation method 

Many studies modified of the original KH method to improve the abnormal in conclusion, 

and to take more than two rules throughout the determination of the conclusion; the extended 

method was developed to handle and decrease the abnormality of the original KH method is 

called KH Stabilized, which was proposed by Tikk, .et.al. [5]. 

This method takes into account all flanking rules of observation in the calculation of the 

conclusion to the extent to the inverse of the distance of antecedents and observation. The 

universal approximation property holds if the distance function is raised to the power of the 

input's dimension.  

The authors of [5] propose using formulas to calculate the upper and lower endpoints of α- 

cuts of the approximated consequence which contain the distance on the (nth) power as shown 

via Eq.(3.5) and Eq.(3.6): 

 










m

i
i

N

L

m

i
i

N

L

i

AAd

AAd

B

B

1 *

1 *
*

),(

1

),(

)inf(

min







  (3.5) 

 










m

i
i

N

U

m

i
i

N

U

i

AAd

AAd

B

B

1 *

1 *
*

),(

1

),(

)sup(

max







  (3.6) 

 

The simplest of the KH Stabilized method is the linear interpolation of two rule-bases for the 

area between their antecedents. This method can also be applied if the observation position is 

located between two closest rules or hits outside rule-bases. 

3.2.3.  VKK interpolation method 

VKK method was proposed by Vas, Kalmar, and Kóczy [4]. The main idea of VKK method 

is based on the center point and width ratio, the conclusion could be calculated by the center 

point and width ratio between the antecedent, consequent, and observation fuzzy sets.  
 

The center point of the conclusion can be obtained by Eq.(3.7), Eq.(3.8) and Eq.(3.9): 
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The width ratio of the conclusion can be calculated by Eq.(3.10), Eq.(3.11) and Eq.(3.12): 

 

*

21

*

),(
)(

WAAAd

RightWidthLfetWidth
BWidth

ii 






 (3.10) 

)/(),( 112

*

iii WABWidthAAdLeftWidth    (3.11) 

)/(),( 22

*

1 iii WABWidthAAdRightWidth    (3.12) 

 

where  

)inf()sup()(  AAAWidth   

 

The (d(Ai1α, A∗
α), d(A∗

α, Ai2α) and d(Ai1α, Ai2α))) refer to the distance between antecedents 

fuzzy sets, the geometric average of the width values represented by (WA1i), (WA2i), and (WA∗) 

between the antecedents and observation.  

The disadvantage of this method is the abnormal can appear in some cases. Nevertheless, the 

VKK method has a low complexity compared to the KH method due to the calculation of the 

conclusion directly through the center and the width of the fuzzy sets. It is also simple and used 

in several applications without complications. 

3.2.4.  MACI interpolation method 

Another method of the FRI called the Modified α-Cut based Interpolation (MACI) method 

was proposed by Tikk and Baranyi [6]. The main idea of this method is based on the vector’s 

description of the fuzzy sets for eliminating the abnormal problem in conclusion. The fuzzy set 

in this method could be described by two vectors space; it can represent the Left and the Right 

flank of the α-cut levels, where the abnormal consequent set is excluded. 

The characteristic points are represented in vector description, which can be represented by 

the piecewise linear shape of the fuzzy sets, (a−1 and a0) describe the left flank, and (a0 and a2) 

represent the right flank; also a0 refers to the reference point of the fuzzy set, the Cartesian axes 

can be represented by Z0, Z1 as shown in Fig. 24. 
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Fig. 24. The Vectors Description Input and Output Fuzzy Sets [6] 

The conclusion in this method could be determined by the transformation of the current 

characteristic points to a new Cartesian to calculate the conclusion, then transforming back to 

the original Cartesian to show the result that could be computed by the following Eq.(3.13), 

Eq.(3.14) and Eq.(3.15): 

The new Cartesian can be calculated by the vector form: 

 

b = [
0b , 

1b ] and 'b  = [ '

0b , '

1b ] (3.13) 

'

0b  = 
0b . 2  and '

1b  = 
0b  - 

1b  (3.14) 
 

The matrix can represent vector description as: 

b’ = bT (3.15) 
 

where 

T = 








 11

02
 

 

The MACI method concentrates on the characteristic points of the fuzzy set (A1, A∗, and A2) 

and the consequents (B1 and B2). It can be described by vectors that involve computing the 

center point of the conclusion RB∗ as shown in Fig. 23. The conclusion could be calculated by 

Eq.(3.16) as follows: 

 

RB*=(1- core).RB1 +  core.RB2 (3.16) 
 

where 



29 | P a g e  

 














k

i ii

k

i ii

core

RARA

RARA

1

2

12

2

1 1

*

)(

)(
  

 

Where, RA∗, RA1, and RA2 denote the reference point of the observation and antecedents 

fuzzy sets. After computing the conclusion could be transformed back to the original Cartesian 

by the vector, applying Eq.(3.17), Eq.(3.18) and Eq.(3.19): 
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For more details of MACI function can be found in [19], [20]. The main advantage of the 

MACI method; the conclusion is always producing a convex and normal fuzzy set, and it can 

also apply multi-dimensional antecedents [6]. However, the disadvantage of this method (in 

some instances) does not keep a piecewise linearity of the membership functions. 

3.2.5.  CRF interpolation method 

This method was proposed to modify the fuzziness term and to improve α-cut levels. The 

main idea of this method was introduced in [21], which was called GK method; also, the 

modified version of the GK called the KHG method was published by Kóczy, Hirota, and 

Gedeon in [7]. The current modified version is called the Conservation Relative Fuzziness 

(CRF), which follows the fundamental Equation (FEFRI) (Eq.(3.2)). CRF method aims to 

obtain the conclusion based on determining the core and fuzziness of antecedents, consequents , 

and observation fuzzy sets, the core c∗ could be described by (A1c∗, A2c∗, A∗c∗) and (B1c∗, B2c∗) 

as shown in Fig. 23, using the distances between the antecedents and observation (d(A∗, A1) 

and d(A2, A∗)), and between the consequents fuzzy sets d(B1, B2).  

Besides, the fuzziness of the conclusion could be determined by calculating variables (A1fU, 

A∗fL) that must have the same fuzziness of the (B1fU, B∗fL), similarly, the fuzziness between 

(A∗fU, A2fL) and (B∗fU, B2fL) as shown in Fig. 23.  
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The core of the conclusion C∗ can be calculated by Eq.(3.20): 
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Where c∗ denotes the core of the observation, and d1 denotes the distance between A1 and A2 

which can be calculated as follows: 
 

d1= (A1, A2) = A2c* - A1c* 

d1= (B1, B2) = B2c* - B1c* 
 

The general fundamental Eq.(3.2) can be applied to determine the distance between the 

current fuzzy sets through Eq.(3.21): 
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So, Eq.(3.22) and Eq.(3.23) can be used to calculate the core of the conclusion using distance 

as follows: 
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The distance between the fuzzy sets (e.g., antecedent fuzzy sets A1, A2) can be computed as the 

following Eq.(3.24) : 
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The fuzziness of the conclusion can be determined by the left and the right flanks using the  

current fuzzy sets as follows by Eq.(3.25) and Eq.(3.26): 
 

fU

fU

fLfL
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B
AB

1

1**   (3.25) 

fL
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B
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2

2**   (3.26) 

 

Equations in [7] could be used to compute (A∗fL, A∗fU, A1fU, A2fL, B1fU, B2fL), which based 

on the calculation of the (inf) and (sup) of the current fuzzy sets. The previous Eq.(3.20) - 
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Eq.(3.26) of the CRF method were introduced to be applied by single-dimensional input, and 

also, it can apply in multi-dimensional input using the expression in [7]. 

The advantage of the CRF method is that the flanks used to define the conclusion, the CRF 

method can be applied as arbitrarily on fuzzy set shapes. Additionally, the observation position 

must be surrounding two rule-based to get a conclusion. 

3.2.6.  IMUL interpolation method 

This method was proposed by Wong, Gedeon, and Tikk [8], the IMUL introduced to avoid 

the abnormal conclusion and improve the multidimensional α-cut (levels). IMUL method was 

presented to combine the features of the MACI method [6] and Conservation of Relative 

Fuzziness (CRF) method [7]. 

The IMUL method applied the vector description; it can describe the characteristics points 

of the fuzzy sets through advantageous the transformation feature of the MACI method and 

representing the fuzziness of the input and output by the CRF method. As shown in Fig. 23, the 

conclusion could be calculated between the characteristic points of the antecedent fuzzy sets, 

which are neighboring to the observation.   

The conclusion in the IMUL method is based on calculating the reference point (RB∗) and 

the left / right core (LCB∗, RCB∗); the reference point could be computed by Eq.(3.16). The left 

and right core can be calculated through the following Eq.(3.27) and Eq.(3.28): 
 

The right core: 
 

RCB*= (1- right).RCB1 +  right.RCB2+ ( core - right).(RB2 + RB1) (3.27) 

where  
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The left core: 
 

LCB*= (1- left).LCB1 +   left.LCB2+ ( core -  left).(RB2 + RB1) (3.28) 

  
 

where  
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The conclusion flanks (LFB∗, RFB∗) can be computed by following Eq.(3.29): 
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The left flank: 
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The LFB∗ denotes the left flank fuzziness of conclusion B∗, and the LCB∗ refers to the left 

core; the right flank can be calculated in the same way. The variables (r, s, u, s’, u’) are used to 

determine the fuzziness between the fuzzy sets and to calculate the conclusion flank ([8], [19]). 

One of the benefits of using the IMUL method is that the conclusion can be obtained by 

computing core and fuzziness focusing on the information of the consequents (outputs) and the 

information of the antecedents’ fuzzy sets that are given correct results. Moreover, the IMUL 

method can be applied on a single dimension and also in multi-dimensional inputs space (see 

the examples in [8]).  

3.2.7.  GM interpolation method 

The first method in the second group of the interpolation methods that demanded two-steps 

to get the conclusion is called the General Method (GM) method. The GM was published by 

Baranyi et al. [9], two algorithms could be used to determine the conclusion in this method. The 

first one is based on the fuzzy relation. The second one is based on the semantics of the relations. 

The GM method adopts the characterization of the position fuzzy sets to determine the reference 

points (core). Thus, the distance between the observation and antecedents fuzzy sets can be 

calculated based on the reference points via Eq.(3.30) instead of using the interpolating α-cut 

levels. 
 

d(A1,A2) = | RP(A2) – RP(A1) | (3.30) 
 

Where A1 and A2 are the fuzzy sets, the reference point is RP, and d denotes the distance of 

the sets. The conclusion (interpolated) can be obtained by applying the following primary two 

steps: 

The first step is to generate a new interpolated rule Ri: Ai → Bi, which is between rules R1 

and R2 via Eq.(3.31), the position of the new rule is the same position of the observation, so to 

produce the new rule will be used each fuzzy set of the antecedents, which must be identical 

with the reference point of the observation fuzzy set in the corresponding dimension. 

 
 

),( 21 RRfR ionInterpolati   (3.31) 

 

This step divided into three stages: 

1. In the first stage, a set interpolation technique, will help to determine the antecedent set 

shapes of the interpolated rule.  
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2. In the second stage, the reference point of the conclusion could be calculated by the 

reference points of the observation and the consequent sets, taking into consideration the 

adjacent rule bases, for example, using the fundamental equation of the fuzzy rule 

interpolation (FEFRI) (Eq.(3.2)). 

3. In the third stage, the shapes of the consequent sets could be determined by the 

interpolated rule using the same set interpolation technique as (stage 1), as shown in Fig. 

25. 

Many techniques were proposed for this step of the set interpolation technique (e.g., SCM, 

FPL, Etc.). The Solid Cutting Technique (SCM) is introduced for this step, the main idea of this 

technique is that all the associated sets are rotated by 90° about a vertical axis passed through 

their reference point. By connecting the similar points of antecedents and consequents, two 

solids can be constructed: one in the input and one in the output dimension (Fig. 25), where the 

solid was created in an input dimension.  

 

 

Fig. 25. The Main Steps of the GM Method [9] 

The second step in the GM method is the new rule could be specified as a part of the extended 

rule of the approximate conclusion, as a conclusion of the inference method is defined by 

determining this rule. In many instances, there is no identical similarity between the rule and 

the observation part, for this purpose, many techniques are used to handle the mismatch by 

either the Transformation of the Fuzzy Relation (TFR) technique or by Fixed Point Law (FPL).  

 

This step could be divided into two stages: 

The first stage, the TFR technique could be applied, where the interrelation function [9] is 

generated between the observation (A∗) and the antecedent (Ai) set, there is mapping between 

observation (A∗) and antecedent (Ai) by the endpoints of the support and reference point (RP), 

as shown in Fig. 26, the interrelation area can be represented by the endpoints of the support 

sets. The purpose of the first phase is to improve the proportion of the area of interrelation 



34 | P a g e  

 

mapping between (Ai and Bi) sets; it can correspond with the support of the observation and the 

horizontal side of the square. Hence, the support of the conversion set (At) is the same support 

of the (A∗), the membership in both cases (At, A∗) is the same as its interrelated point in the 

Antecedents part. 

 

 

Fig. 26. The Interrelation Functions [9] 

The second stage, the Fixed Point Law (FPL) technique can be used, where an interrelation 

function is created between observation (A∗) and the transformed antecedents sets (At), it is also 

used to calculate the difference between the membership values for each interrelated point set, 

this difference can be applied to determine the approximate conclusion from the transformed 

consequent sets (Bt) that will take into consideration the interrelation between transformed (At) 

and transformed (Bt) [9]. 

The main advantage of this method (GM) is to avoid the abnormal fuzzy conclusion; there 

is no restriction to CNF sets and preserving normality; it preserves linearity and is compatible 

with the rule base, finally, it investigates the monotonicity and the continuity. 

3.2.8.   FRIPOC interpolation method 

This method was proposed by Johanyák and Kovács [10], which is called Fuzzy Rule 

Interpolation based on Polar Cuts (FRIPOC), FRIPOC method is based on the reasoning method 

by the concept of the linguistic term shifting and polar cut, it is appropriate in case of sparse 

and dense rule bases. The general formula can be described to show the reference point, which 

is specified to calculate the interpolated of the antecedents RP(Ai
j) and the consequent RP(Bi

l) 

sets, which could be calculated by Eq.(3.32). 
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This method is based on the position of the fuzzy sets, which is characterized by a reference 

point during the calculations; the reference point RP(Bi
l) can be determined by several 

techniques Fig. 27, the reference point of this technique determined by Eq.(3.33) and Eq.(3.34). 

The FRIPOC method mostly follows the GM method [9], where the conclusion can be done by 
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applying two steps: the first step is to define the new rule based on the position of the 

antecedents part that describes the observation in each dimension, this means the reference point 

of the observation and antecedents set are identical. 

 

 

Fig. 27. Choices for the Reference Point and the Associated Set Distances [10] 
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Where RP(Bi
l) is the RP of the consequent sets, sj denotes to weight attached to the rule, l 

refers to the number of dimensions, (N) denotes the number of the rules, (j) refers to the actual 

rule, RAi and RAj denote the antecedent rule [10]. 

The new rule determined by two steps: The first step is described by three stages as follows: 

1) the fuzzy sets of the antecedents are estimated using the set interpolation technique Fuzzy 

SEt interpolAtion Technique bases on Polar cut (FEAT-p) that is independently in each 

antecedent dimension, the main purpose of this technique is that the whole sets of the partition 

are shifted horizontally into the reference point of the observation, i.e., their reference points 

are identical with the interpolation point. 2) the new fuzzy set is determined based on the polar 

cut, where the fuzzy set can be specified using the polar distance of each polar cut level as a 

weighted mean of the similar polar distances of the forecasted identified sets. 3) the fuzzy set 

will determine the consequent by FEAT-p technique in the same way as (first stage). Thus, the 

new fuzzy set can be calculated by following the formula shown in Eq.(3.35). 
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The second step in the FRIPOC method defines the conclusion by exciting the new rule 

based on the Single Rule Reasoning based on polar cuts (SURE-p) technique [10]. The 

reference point of the interpolated conclusion and the consequent set are identical to the new 

rule in the current dimension. Fig. 28 describes the distance of the polar that can be calculated 

based on each polar level; the conclusion can compute by the modified consequents of the 

interpolated rule using the average differences, the technique of correction and control could be 

used to guarantee the efficacy of the new fuzzy set. 

 

 

Fig. 28. Polar Distances Utilized for the Estimation of the Relative Difference [11] 

The main benefits of the FRIPOC method are comprehensibility, the ability to applicability 

in subnormal cases, and can be applied if there are no rules surrounding the observation  

(extrapolation). 

3.2.9.  LESFRI interpolation method 

This method follows the GM method by computing the conclusion based on two steps; this 

method is called LEast Squares based Fuzzy Rule Interpolation (LESFRI), which was proposed 

by Johanyák and Kovács [11]. 

The main idea of LESFRI method is the conservation of the weighted average differences 

measured on the antecedent part, where these modifications could be applied on the consequent 

side, in which the results usually could be as a set of characteristic points that will not fit with 

the default shape type of the partition. Therefore, the LESFRI method could be used in order to 

find the breakpoints of a satisfactory conclusion.  

 

The LESFRI method is based on two-step: 

The first step aims to define the interpolation point of the new fuzzy set, which can be 

achieved by three stages as follows [11]: 

1. The FEAT-LS technique is used to calculate the antecedent sets for each dimension, where 

this technique aims to generate a new fuzzy set based on the interpolation points of the 
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fuzzy partitions; thus, all the sets of the partition are shifted horizontally in order to reach 

the coincidence between their reference points and the interpolation point by Eq.(3.36). 
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2. The position of the consequent fuzzy sets can be determined for each consequent 

dimension of the new rule by utilizing a crisp interpolation method by Eq.(3.37). 
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3. The characteristic points of the new fuzzy sets shapes are defined by the weighted least 

squares by taking into consideration the similar characteristic points of the overlapped 

sets, which could be used to estimate the conclusion using the observation and the new 

rule. 
 

The second step aims to produce the conclusion based on the new rule because the points of 

the rule do not fit ideally with the observation in each input dimension. The SURE-LS method 

(as a single rule reasoning method) was proposed for this purpose based on the α-cut approach. 

Consequently, all the current antecedent dimensions and consequent fuzzy sets could be 

described by the breakpoint α-levels to calculate the conclusion, it must be done independently 

to the left and right flanks of the fuzzy sets. Additionally, the weighted average of the distances 

between the endpoints α-cuts of the rule antecedent and the observation set could be calculated 

to each side for each level. The advantages of this method are its capability to produce new 

linguistic terms that fit into the regularity of the original partitions, and its low computational 

complexity, where it can be applied in case of the interpolation and extrapolation. 

3.2.10. Scale and Move interpolation method 

The scale and move transformation-based method was produced by Huang and Shen [22]; it 

follows the interpolation concept to handle the sparse fuzzy rule-bases. The scale and move 

method provides the capabilities to work with different fuzzy membership functions types such 

as (Triangular, Trapezoidal). 

The scale and move method is based on the Centre of Gravity (COG) of the membership 

functions, as shown in Fig. 29. It creates a new central rule via two neighboring rule-bases that 

are surrounding the observation. 
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Fig. 29. Representative Value of a Triangular and Trapezoid Fuzzy Sets [22] 

This ScaleMove method takes two-steps to obtain the conclusion, the first step is to produce 

a new central rule (A` → B`) is produced within the existing surrounding rule between 

observation (A∗: A1 → B1, A2 → B2) by applying Eq.(3.38): 
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Where d(Rep(A1); Rep(A2)) represents the distance between two fuzzy sets A1 and A2. 

Rep(A1) refers to the center of gravity for A1 [22]. 
 

The new rule-base ( 'A  → 'B ) can be calculated by Eq.(3.39) and Eq.(3.40): 
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The degree of similarity between 'A  and A∗ is set, it is natural to require the consequent 

part 'B and B∗, which achieve the same similarity degree as follows: 

 

The more similar X to 'A ; the more similar Y to 'B  
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The second step is to calculate the 'A  similarity degree between fuzzy sets ( 'A  and A∗) that 

transform ( 'B to B∗) with the desired degree of similarity by the scale and move transformation. 

 The Scale transformation aims to change the support value of the membership function while 

keeping its representative value and shape; the Move transformation aims to transfer the support 

of the membership function with the keep of its representative. 

The advantages of scale and move method that it can handle multiple antecedent variables 

with simple computation. It guarantees the normality and convexity of the conclusion fuzzy set. 

It offers the capability to handle the extrapolation issue directly [23]. It preserves the piecewise 

linearity for interpolations involving arbitrary polygonal fuzzy sets, and it uses various 

definitions for representative values. 

 

3.3. Applications of Fuzzy Interpolation 
 

Fuzzy interpolation systems have been successfully applied to many real-world problems. In 

the following, we present most of the fuzzy interpolation applications.  

3.3.1. FRI with Truck backer-upper control  

Backing a trailer truck to a loading dock is a challenging task for all yet the most skilled 

truck drivers. Because of the difficulties, this challenge has been utilized as a control benchmark 

problem with various solutions proposed [104], [105], [106]. For example, an artificial neural 

network has been applied to this problem, but a large amount of training data is required. An 

adaptive fuzzy control system was also suggested for this problem, but the creation of the rule 

base is computationally expensive. Another solution combines empirical knowledge and data. 

A combined fuzzy rule base is generated by joining the previously generated rules and linguist ic 

rules.  

Fuzzy interpolation system has also been applied to the trailer truck backer-upper problem 

[107] to further reduce system complexity. The problem can be formally formulated as θ=f(x, 

y,∅). Variables x and y represent the coordinate values corresponding to horizontal and vertical 

axes; ∅ refers to the azimuth angle between the truck’s onward direction and the horizontal axis; 

and θ is the steering angle of the truck. Given that enough clearance is present between the truck 

and loading lock in most cases, variable y can be safely omitted and hence results in a simplif ied 

formula to θ=f(x, ∅). By evenly partitioning each variable domain into three fuzzy sets, nine 

(i.e., 3*3) fuzzy rules were generated using FISMAT [108] and each of which is denoted as IF 

x is A AND ∅ is B THEN θ is C, where A, B and C are three fuzzy values. Noting that domain 

partitions appear to be symmetrical in some sense, the three rules that are flanked by other rule 

pairs were removed from the rule base resulting a more compact rule base with only six fuzzy 

rules. 
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3.3.2.  FRI with Heating system control 

Reducing domestic energy waste contributes to realizing the legal binding purpose in the UK 

that CO2 emissions need to be reduced by at least 34% below base year (1990) levels by 2020. 

Space heating consumes about 60% of the home energy consumption, and the home Electricity 

Survey has reported it from GOV.UK, that 23% of homeowners leave the heating on while 

going out. To reduce the waste of heating unoccupied homes, several of sensor-based and 

programmable controllers for the central heating system have been developed, which can 

successfully switch off the home heating systems when a property is unoccupied. Nevertheless, 

these systems cannot automatically preheat the homes before occupants return without hand-

operated inputs or leaving the heating on uselessly for a longer time, which has limited the wide 

application of such devices. 

To address this limitation, the authors in [109] presented a smart home heating controller, 

which can control the heating system to preheat the property before home users going home. 

The controller is developed by adapting fuzzy rule interpolation, supported by location 

information through portable devices. The system first predicts the time before home users go 

home; then the time to preheat home is approximated. If the predicted time to going home is 

not greater than the time to preheat home, the heating system will be turned on. As shown in 

the demonstrative example in [109], the proposed system can automatically present a solution 

to preheat the home when there is a need, but not leaving the heating system on all the time 

resulting in energy loss. The work can be further improved despite its hopeful results. Pre-

defined rule base with no learning capability may not be perfectly suitable for all users’ 

situations, which may be solved by allowing dynamic and adaptive rule base generation based 

on users personal data.  It is possible that the home heating system does not switch on when the 

user comes back or the heating system has been switched on too early, as the proposed system 

does not have any error correction function to solve such issues. Adaptive fuzzy interpolation 

approach could be used to track the error back and modify the faulty part when incorrect results 

are generated. 

3.3.3. FRI as a model for student result prediction 

The author in [110] introduced reports on the creation of a fuzzy model that can predict the 

exam results of students based on their previous university achievements. This type of 

prediction can never tell precisely the exam results in advance because the previous academic 

life of the students does not fully determine in advance the exam results. Nevertheless, an 

excellent sufficient estimation can present great help for the university timetable and resource 

allocation planning. In the case of this project, the root means squared error expressed in 

percentage of the output range was less than 13% at the end of the tuning process in the case of 

all datasets that give an adequate level of information for planning the number of student groups 

and laboratory classes in the next semester in the case of the ASP.Net Programming course that 
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follows the examined Visual Programming course. The developed fuzzy model contains only 

28 rules mainly because not all the value combinations of the 9 input variables could have 

experimented in practice. Accordingly, a fuzzy rule interpolation-based inference technique had 

to be adapted. The results of this project proved that the presented approach is suitable for higher 

education applications for the prediction of students’ exam results in their third or higher years 

of studies. 

3.3.4. FRI with SNMP-MIB for Emerging Network Abnormality 

The authors in [111] presented the benefits of the FRI in the Intrusion Detection Systems 

(IDS) application area, for the design and implementation of the detection mechanism for 

Distributed Denial of Service (DDOS) attacks. The FRI-IDS application’s performance was 

compared to other common classification algorithms (support vector machine, neural network, 

random forest, and decision tree) used for detecting DDOS attacks on the same open-source 

test-bed environment. According to the results, the overall detection rate of the FRI-IDS is in 

pair with other methods. Consequently, the FRI inference system could be a suitable approach 

to be implemented as a detection mechanism for IDS; as it effectively decreases the false 

positive rate value. 

3.3.5. FRI with Face Detection and Expression Recognition 

In [112], an expression recognition system utilizing the Fuzzy Rule Interpolation (FRI) 

technique to classify and recognize 7 categories of facial expression was developed. The 

experimentation result proves that FRI technique is a promising method and can perform better. 

The technique offers important tools that will enable expression recognition and the ability to 

make a conclusion in situations where there is a missing or sparse rule in the rule base. Face 

detection and expression recognition from facial images is a useful area of research that has its 

application in computer vision, human-computer interaction, robotics and security systems. The 

study aimed to classify facial expression by first detecting a face (using the Viola-Jones 

Algorithm), extracting the features from the detected face with LBP and recognizing the 

expression using a fuzzy rule interpolation technique. The seven different facial expressions 

from different image subjects were obtained from the Extended Cohn Kanade dataset and 

analyzed.  

3.3.6. FRI with Detecting Slow Port Scan 

The authors in [113] introduced a novel strategy for detecting port scan attacks. The proposed 

strategy was designed and constructed using a fuzzy rule interpolation. The FRI-based detection 

strategy’s inference engine was performed using Fuzzy Rule Interpolation based on the Polar 

Cuts (FRIPOC) method. The sparse fuzzy rules were generated based on expert knowledge, the 

range values of the input parameters during the experiments’ four phases, and the relationship 
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between the input parameters and the number of attacker clients. The conducted experiments 

reflect the proposed FRI based detection strategy’s ability to effectively detect the very slow 

and slow port scans based solely on the sparse fuzzy rules. The FRI-based detection strategy’s 

output responses were compared with SNORT, and the results reflected that the proposed 

detection approach was successful in detecting the very slow port scan attack in instances where 

the SNORT did not render any alert. Moreover, the FRI-based detection approach presented 

additional information, such as the level of port scan attack, instead of a binary alert.  

3.3.7. FRI with Intrusion Detection Mechanism 

The authors in [114] investigated the capabilities to use the FRI methods in the IDS 

application area. This investigation is practiced by implementing the FRI-IDS model as a 

detection mechanism for DDOS attack. The FRI-IDS model was constructed using the sparse 

fuzzy model identification. The fuzzy rules of FRI-IDS model were generated and optimized 

using RBE-DSS method. According to the example in [114], using an open-source DDOS 

dataset, the results of FRI-IDS model were compared with other literature’s results, which they 

applied different algorithms to detect the DDOS attacks using the same testbed environment. 

The implemented experiments have demonstrated that the FRI-IDS model obtained an accepted 

detection rate. It has reduced effectively the false positive rate value, which decreased a large 

amount of IDS alerts.  

Additionally, the FRI-IDS model can serve the interpolated conclusions even in case if some 

observations are not covered directly by fuzzy rules. Consequently, the FRI-IDS model could 

be a suitable approach for detecting intrusions if it is implemented as a detection mechanism. It 

is characterized by offering the capability to present the detection level of intrusion and permits 

the attack alert generation in case of a lack of information and definition of an existing 

knowledge base.  

The authors in [115] presented a data-driven network intrusion detection system by applying 

the recently proposed TSKinterpolation approach. The experiment results using the benchmark 

data set KDD-99 described that the proposed system is able to generate security alerts for known 

attack types successfully, and to detect the unknown types of treats with success thanks to its 

good generalization capability. This work can be enhanced by employing the recently proposed 

rule base generation approach to generate a sparse rule base directly from very complex training 

data sets, and rule base adaptation approach to allow the rule base to be adapted and enhanced 

along with the operation of the IDS system. Also, the proposed work is developed using 

TSKinterpolation, and it is worthwhile to investigate how the proposed system may be 

developed by employing other fuzzy interpolation approaches with Mamdani-style rules bases.   

3.3.8. FRI with behaviour-based control structures 

The authors in [116] introduced an interpolation based fuzzy reasoning method, which could 

be implemented to be simple and quick enough to fit the requirements of behaviour-based 
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control structures in real-time direct fuzzy logic control systems. The suggested approximate 

fuzzy reasoning method based on KH interpolation in the vague environment of the fuzzy rule 

base gives an efficient way of designing direct fuzzy logic control applications. The lack of 

fuzziness in the conclusion is a disadvantage of the proposed method, but it does not influence 

in common applications where the next step after the fuzzy reasoning is the defuzzification. To 

prove the efficiency of the interpolation-based fuzzy reasoning in behaviour-based control, a 

fuzzy behaviour-based control structure based on the fusion of different known behaviors in the 

function of their actual necessities approximated by a fuzzy automaton is also introduced in this 

paper briefly.  

 The implementation of interpolation-based fuzzy reasoning methods in behaviour-based 

control structures simplifies the task of fuzzy rule base creation. Since the rule base of a fuzzy 

interpolation-based controller, is not necessarily complete, it could contain the most significant 

fuzzy rules only without risking the chance of having no conclusion for some of the 

observations. In other words, during the construction of the fuzzy rule base, it is enough to 

concentrate on the cardinal actions; the “filling” rules (rules could be deduced from the others) 

could be deliberately omitted. Thus, compared to the classical h z y compositional rule of 

inference, the number of the fuzzy rules needed to be handled during the design process could 

be dramatically reduced.  

3.3.9. FRI with Hotels Location Selection 

The authors in [117] presented a hierarchical fuzzy decision model for selecting tourist hotel 

location. it has addressed the applicability and usefulness of the proposed BFRI approach for 

hotel location selection assessment and decision-making support. Fuzzy reasoning based HLS 

assessment systems offers significant potential for providing decision-making support in hotel 

location selection. 

Systematic analysis of a hotel location selection assessment framework has been given. A 

four-layered analytical process with a detailed description for HLC is considered. It presents 

such an integrated approach capable of dealing with dynamic and insufficient information in 

the HLC process. In particular, the hierarchical system implementing the proposed technique 

can predict the ideal solution on different segments of focused attention and help identify hidden 

variables that may be useful during the decision support process (by performing reverse 

inference). 

3.3.10.FRI with Detection of IoT-botnet attacks 

The authors in [118] introduced a novel approach for detecting IoT-Botnet attacks within the 

IoT smart environments by adapting the LEast Squares based Fuzzy Rule Interpolation 

(LESFRI) method. The proposed approach was designed and implemented using a sparse fuzzy 

model identification (RBE-DSS). The proposed approach eliminates the need for creating a 

complete fuzzy rule base to detect the IoT-Botnet attack. Therefore, one of the distinctive 
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advantages of the proposed approach, its ability to generate the required IDS alert even in case 

if the attack knowledge-base is incomplete. Furthermore, the proposed approach effectively 

smoothes the boundary between normal and attack traffics because of its fuzzy-nature. The Rule 

Base Extension using the Default Set Shapes (RBE-DSS) method generated the sparse attack 

rule-base. The proposed approach was tested and evaluated using a recent open-source 

benchmark IoT dataset. The experiments applied on an IoT-Botnet attack benchmark dataset 

were demonstrated, that the proposed approach could achieve an acceptable detection rate. 

Moreover, it was able to detect the IoT-Botnet attack in cases successfully not covered directly 

by any of the fuzzy rule antecedents.  

 

3.4. Fuzzy Rule Interpolation Toolboxes 
 

The goal of this subsection are: Firstly, to introduce a brief description of the refreshed and 

extended version of the MATLAB FRI Toolbox. Secondly, to present the initial version of the 

FRI toolbox under the OCTAVE environment. 

3.4.1. Fuzzy Rule Interpolation MATLAB Toolbox 

The FRI toolbox was developed by Z.C. Johanyák, .et. al. [24] and implemented in the 

MATLAB environment. The main goal of the FRI toolbox is to unify different fuzzy 

interpolation methods. The general structure of the FRI toolbox presented in Fig. 30 , following 

this structure, the FRI toolbox could be run and evaluated the current FRI methods.    

 

Fig. 30. The General Structure of FRI Toolbox 
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The current version of the  FRI toolbox is available to download in [26]; it includes the 

following methods (KH, KH Stabilized, MACI, IMUL, CRF, VKK, GM, FRIPOC, LESFRI, 

and SCALE MOVE). The package of FRI toolbox contains software with a graphical user 

interface providing easy-to-use access, as shown in Fig. 31.  
 

 

Fig. 31. The Main Panel of the FRI MATLAB Toolbox [24] 

In the FRI toolbox, the Fuzzy Inference System (FIS) and OBServation (OBS) structure were 

different from the classical inference system. Fig. 32 presents an example of FIS within the FRI 

toolbox. It worths mentioning that the fuzzy sets have to be convex and normal [3], [25]. 

 

 

Fig. 32. The New Parameters of the Membership Functions That Are Used by the File System in FRI Toolbox 

 

Where the (trimf), (trapmf), and (singlmf) denote the triangular, trapezoidal, and singleton 

shapes of the fuzzy sets, respectively, the A1;1, A2;1 and B1;1 refer to labels of the fuzzy sets of 

antecedents and consequent parts. The values [10 20 30], [4.5 5 5.5 6] and [0.46] denote the 

characteristic points (params) of the fuzzy sets in the universe of the discourse, where the 

triangular shape takes three values [a0, a1, a2], the trapezoidal shape represents by four values 

[a0, a1, a2, a3], and singleton shape describes by one value [a0]. 
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 The new parameter in FIS general structure is called (paramsy), the characteristic points of 

the fuzzy sets in case of piecewise linear membership functions as (triangular, trapezoidal, and 

singleton) could be represented based on α-cut levels. The lower level will take the value 0 and 

the upper level will take the value 1. For example, the new parameter of the trapezoidal shape 

can be represented based on the characteristic points [a0, a1, a2, a3], where the points [a0, a3] 

refer to the level 0 (lower level) and the points [a1 and a2] refer to the level 1 (upper level). Fig. 

32 describes the new parameter for the trapezoidal membership function (trapmf) represented 

by [0 1 1 0]. 

3.4.1.1. Fuzzy rule interpolation Matlab toolbox and related work 

In the following, we present some relevant works related to the use of the implementat ion 

of the FRI toolbox. 

In [31], the fundamental concepts of a Fuzzy Rule Interpolation-based (FRI) RL method 

called FRIQ-learning were discussed with benchmarks. The interpolation within the 

knowledge-based allows the removal of less important, unnecessary information, while still 

keeping the system functional. A Fuzzy Rule Interpolation-based (FRI) RL method called 

FRIQ-learning is a method that possesses this feature. FRIQ learning is also suitable for 

knowledge extraction. The FIVE FRI method was used by handling the antecedent and 

consequent fuzzy partitions of the fuzzy rule-base as scaling functions (weighting factors), 

which turns the fuzzy interpolation to scaled crisp interpolation. The implementation of the 

FIVE FRI also appears in the FRI Toolbox [26]. 

The authors in [32] give a brief introduction to the FRI methods and description of the 

refreshed and extended version of the original fuzzy rule interpolation MATLAB Toolbox. The 

methods used in the FRI toolbox (KH, KH Stabilized, MACI, IMUL, CRF, VKK, GM, 

FRIPOC, LESFRI, and SCALEMOVE) were tested to compare them according to the 

abnormality and linearity criteria, based on different numerical benchmark examples.  

The authors in [33] introduced the benefits of the FRI in the Intrusion Detection Systems 

(IDS) application area, for the design and implementation of the detection mechanism for 

Distributed Denial of Service (DDOS) attacks. The performance of the FRI-IDS application 

was compared to other common classification algorithms (support vector machine, neural 

network, random forest, and decision tree) used for detecting DDOS attacks on the same open-

source test-bed environment. According to the results, the overall detection rate of the FRI-IDS 

is in pair with other methods. Consequently, the FRI inference system could be a suitable 

approach to be implemented as a detection mechanism for IDS; as it effectively decreases the 

false positive rate value.  

In [34], authors introduced a detection approach for defining abnormality using the Fuzzy 

Rule Interpolation (FRI) methods with Simple Network Management Protocol (SNMP) 

Management Information Base (MIB) parameters. The implemented experiments were 
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performed using Matlab and the Fuzzy Rule Interpolation Toolbox (FRIT) [24]. The FIVE 

method was chosen as the inference reasoning of the proposed detection approach.  

Authors in [35], analyzed equations and notations related to piecewise linearity property 

(PWL), which is aimed to highlight the problematic properties of the KH-FRI method to prove 

its efficiency with piecewise linearity condition. The study presented the benchmark examples 

to be served as a baseline for testing other FRI methods against situations in which the linearity 

condition for KH-FRI is not fulfilled. In the study, the FRI Toolbox was used to test the 

benchmark examples for different FRI methods. 

3.4.2. Fuzzy Rule Interpolation OCTAVE Toolbox 

Fuzzy Rule Interpolation (FRI) systems have been successfully implemented for many real-

world applications. The FRI is also able to work with sparse rule bases that may not cover 

specific observations. For this reason, the current FRI MATLAB toolbox is implementing the 

fuzzy inference systems "type-1". Currently, there is a deficiency of the FRI toolbox available 

for creating other types of fuzzy systems and other programming languages.  

The FRI Toolbox is a set of FRI functions, which run under the MATLAB environment. It 

is easy to use and beneficial tool for demonstration and research purpose. However, the FRI 

MATLAB is restricted in terms of its availability (MATLAB needs to license fees) and its user 

base. These constraints, limit the appropriation practicable of the current MATLAB FRI 

toolbox. For this purpose, a new developer framework based on OCTAVE environment [29], 

[30], which includes FRI methods. 

The FRI toolbox based on openly available OCTAVE language will be presented. As 

regarded, OCTAVE language gives the advantage of being openly available, and it is accessible 

to user from a broad variety of backgrounds. Moreover, the high-level mathematical languages 

such as OCTAVE and MATLAB, they provide built-in primitives for representing and 

manipulating vectors and matrices, which can be used to represent and manipulate fuzzy sets 

directly. Meanwhile, these languages provide large built-in graphical abilities for 2D and 3D 

plotting, which can be utilized to represent fuzzy sets.  

3.4.2.1. General description 

The OCTAVE toolbox is aimed to generally give at least the same set of features as it exists 

in the MATLAB FRI Toolbox being an open-source toolbox, it is hoped that in the overall 

feature richness and functionality of the toolbox will be increased in time through the open-

access contribution. 

The OCTFRI toolbox is the initial version of FRI techniques based on OCTAVE language, 

it includes FRI functions to evaluate FISs and OBSs files from the command line and OCTAVE 

scripts, it is executed by read FISs and OBS files and produce a graphical output of both the 

membership functions and the FIS output. The current version supports twelve FRI methods 
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(KH, KHstabilized, MACI, IMUL, CRF, FIVE, VKK, GM, FRIPOC, LESFRI, VEIN, and 

ScaleMove (note that ScaleMove style inference is currently supported only in the OCTFRI 

Toolbox)). Nevertheless, the number of included techniques is still growing.  

The toolbox is available for download under General Public License (GNU) from the 

website [26], [27],  [28]. As part of describing the FRI inference systems functionality, a wide 

variety of forms of membership functions are supported similar to those currently provided by 

MATLAB, such as singleton (singlmf), triangle (trimf), trapezoid (trapmf), polygon (polymf).  

Currently, the number of rules is not restricted, there are some restrictions to use FRI toolbox, 

only convex and normal fuzzy sets are allowed. Fig. 33 describes the general structure of the 

OCTFRI toolbox that could be used to run the OCTFRI toolbox and evaluate the current FRI 

methods. 

 

 

Fig. 33. The General Structure of the OCTAVE FRI Toolbox 

3.4.2.2.  Parameters of the FRI methods by OCTFRI toolbox 

The FRI methods parameters could be defined by the main file of the OCTFRI toolbox 

"OCTFRI.m". Regarding the KH, VKK and KHstabilized methods which use two types of 

parameters, the first parameter is "breakpoints" (0 or 1), which is considered as a default 

parameter and denoted the α levels defined by the breakpoints [0, 1], the second one is 

"userdefined", which the user specifies the number of α levels that will be distributed uniformly 

in the interval [0,1], for example: 
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params.InterpolationType=’KH’; 

params.AlphaLevels.Type=’breakpoints’; 

or params.AlphaLevels.Type=’userdefined’; 

  

In case MACI and IMUL methods that used RPtype (corecentre) parameter, which refer to 

the type of the reference point of the fuzzy set, e.g., params.InterpolationType=’MACI’; 

params.RPtype=’corecentre’. For FRIPOC and LESFRI methods share the same parameters, in 

which the FEAT-p technique can take all fuzzy sets that belong to the partition with different 

weight values. The type of the weighting factor and its parameters can also be set by the user, 

e.g., 

params.InterpolationType=’FRIPOC’; 

params.NumOfPoints=501; 

params.RPtype=’corecentre’; 

params.NumOfpCuts=61; 

params.SetInterpolationWeight.p=2; 

params.ConsequentPositionWeight.p=2; 

 

Most of FRI methods calculate multidimensional distances in the Minkowski sense. The 

parameter w of the formula can also be set by the user, where the default value is 2. The default 

values of the FRI methods parameters are sufficient to show the desired conclusion. 

3.4.2.3.  Usage of the OCTFRI toolbox and loading a FIS and OBS 

The package of OCTFRI toolbox can be used from a graphical interface or from the 

command line. The current version of the OCTFRI is simple and easy to use, which contains 

all buttons of FRI methods, loading data files, and interpolation testing, as shown in Fig. 34. 

OCTFRI toolbox can be begun by typing "OCTFRI.m" in the command line. The location 

of FIS and OBS data should be provided, which can be executed by the standard file open 

dialogue box as shown in Fig. 35. 

3.4.2.4. Evaluation of FIS and OBS data files 

The OCTFRI toolbox included twelve functions of the FRI methods, as presented in Fig. 

34 and six different examples of "FIS" and "OBS" files. In the following, two of FIS and OBS 

files selected to evaluate only eight of FRI methods. The inference process starts by loading the 

FIS and OBS data and select one of the FRI methods; then, the conclusion B∗ could be shown 

by pressing on the interpolation button (see Fig. 34). The input and output universes will be 

shown in two separate windows, including the same number of diagrams as the dimension of 

the input and output.  
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Fig. 34. The Main Screen of the OCTFRI-TB 

  

Fig. 35. Location of FIS and OBS Data files 

 Example "OCT1": Evaluation of the KH, KHSTAB, VKK and the ScaleMove FRI 

methods 

Example "OCT1" applies FIS1 and OBS1 data files stored in an OCTFRI folder including 

one input dimension, one output dimension, and only two fuzzy rules, as shown in Fig. 36. The 

membership functions of the input and output universes are triangular fuzzy sets. Example 

"OCT1" is tested on the KH, the KH Stabilized, the VKK, and the ScaleMove) methods, as 

described in Fig. 37 and Fig. 38. 

 
 

 Example "OCT2": Evaluation the MACI, CRF, IMUL and GM FRI methods  

Example  "OCT2" applies the FIS2 and OBS2 data files stored in OCTFRI folder including 

two input dimensions, one output dimension, and only four fuzzy rules, as shown in Fig. 39. 

The membership functions of the input and output universes are triangular fuzzy sets. Example 

"OCT2" is tested on the MACI, the CRF, the IMUL, and the GM) methods, as described in Fig. 

40 and Fig. 41. 
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Fig. 36. A FIS1 and OBS1 Stored in a File 

 

Fig. 37. Antecedent Partitions and Observations for the Example "OCT1" 

 

Fig. 38. The Consequent Partitions and Approximate Conclusions of The FRI Methods for the Example "OCT1" 
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Fig. 39. A FIS2 and OBS2 Stored in a File 

 

Fig. 40. Antecedent Partitions and Observations for the Example "OCT2" 

 

Fig. 41. The Consequent Partitions and Approximate Conclusions of the FRI Methods for the Example "OCT2" 
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SUMMARY 
This chapter provided some basic definitions of the complete and sparse fuzzy rule-base. 

The majority of the current FRI approaches were classified into two groups: one-step FRI and 

two-step FRI. Each group has been presented with a representative approach, as well as its 

extensions and improvements in detail, therefore, the chapter presented a survey of twelve 

different FRI approaches (KH, KH Stabilized, MACI, IMUL, CRF, VKK, GM, FRIPOC, 

LESFRI, and SCALEMOVE). The chapter also presented the refreshed and extended version 

of the original FRI MATLAB, which has been utilized effectively for the task of representing 

and handling fuzzy rule interpolation mechanisms. Finally, this chapter presented the initial 

version of the FRI toolbox based on OCTAVE language, which is open-source software (free 

license) available under the (GPL), it is compatible with MATLAB through packages and 

syntax. 

 

The results introduced in this chapter are published in [32], [98].  
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CHAPTER -4-                                            A New Fuzzy Rule Interpolation "Incircle-

FRI" 

4. INTERPOLATIVE FUZZY REASONING METHOD BASED ON THE 

INCIRCLE OF A GENERALIZED TRIANGULAR FUZZY NUMBER  

In this chapter, we will present a new fuzzy interpolation technique, which is called 

"Incircle-FRI", it can represent the reference point and the fuzziness sides of a triangular fuzzy 

number by its Incircle (Inscribed circle) properties. The proposed Incircle-FRI follows 

geometrical considerations for performing fuzzy interpolation, it takes care of producing 

Convex and Normal Fuzzy set (CNF) for all rules and observation configurations by presenting 

the main equations that prove the CNF property of the Incircle-FRI for all fuzzy rules and 

observation. To demonstrate the performance of the suggested FRI method, we present some 

numerical examples to compare the results of the Incircle-FRI with existing FRI methods (KH-

FRI [3], [25], [39], KHstabilized-FRI [5], VKK-FRI [4], HCL-FRI [42], HTY-FRI [53], CCL-

FRI [52], and to HS-FRI [22]) that will be discussed briefly in the chapter. 

4.1.  Background of fuzzy rule interpolative techniques and fuzzy numbers 

In this subsection, we will present some basic concepts related to the fuzzy numbers and 

the suggested Incircle concept of the triangular fuzzy number. 

4.1.1. Fuzzy numbers 

A fuzzy set A defined on a universe of discourse X, which holds total ordering, is a fuzzy 

number, i.e., a CNF set; if it is normal, its height equals to one and convex. It has a membership 

grade of any elements between two other elements greater than or equal to the minimum 

membership degree of these two boundary elements. A convex fuzzy set can be defined by ∀x, 

y ∈ U, ∀λ ∈ [0, 1]: (µA (λ.x + (1 − λ.y)) ≥ min (µA (x), µA(y))). The support of a fuzzy set A is the 

set of all elements in the universe of discourse X with a membership degree µA(x) is greater 

than zero. (Supp(A): x ∈ U, µA(x) > 0). 

The height of a fuzzy set is the maximum membership degree of all the elements of the 

universe, and it can be defined by (Height(A): max(x)∈ U(µA(x))). A fuzzy set is said to be 

normal if at least one element of the universe has a membership degree equal to 1, (∃x ∈ U, 

µA(x): Height(A) = 1). The α-cut and the strong α-cut of a fuzzy set is the crisp subset of the 

universe in which the membership degrees are greater (strong α-cut), or greater, or equal (α-

cut) than a specified α value. The α-cut can be represented by (Aα: x ∈ U, µA(x) ≥ α), α ∈ [0, 1] 

and (Aα: x ∈ U, µA(x) > α), α ∈ [0, 1]. The kernel of a fuzzy set is the crisp subset of the universe 

where the membership degrees are equal to 1. (Kernel(A): x ∈ U, µA(x) = 1). 

In case of a convex fuzzy set A on Rn, all of its α–cuts Aα are convex sets for all α ∈ (0, 1], 

i.e., its α–cuts are intervals. 
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In most cases, particular types of fuzzy numbers, such as trapezoidal and triangular could 

be used for real-life applications. A fuzzy number A is called a generalized trapezoidal fuzzy 

number if its membership function is given as follows: 
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where, 0 < H ≤ 1. The generalized trapezoidal fuzzy number A is denoted by A = (a1, a2, 

a3, a4; H) and has the shape of a trapezoid. A triangular fuzzy number is a particular case of 

generalized trapezoidal fuzzy number, having triangle-shaped membership function. Precisely, 

A = (a1, a2, a3, a4; H) called a triangular fuzzy number if a2 = a3 as shown in Fig. 42. 
 

 

Fig. 42. Generalized Trapezoidal and Triangular Fuzzy Numbers 

4.1.2. The Incircle of a Triangular fuzzy number 

The Incircle of a triangular fuzzy number can be considered as an Incircle of a triangle. The 

Incircle of a triangle is that circle which touches all three main sides (AB, BC, and AC) of the 

triangle, and the points of tangency of the Incircle of ∆ABC (i.e., TA, TB, TC) with its sides, as 

shown in Fig. 43. 
 

 

Fig. 43. The Incircle CIR(I) with Gergonne Point GP in a Triangle ABC 
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By following the Ceva s̀ theorem directly (see theorem 1), we can define all properties of 

the incircle triangular fuzzy number, where cevians of particular importance in the general 

triangle (medians, angle bisectors, Etc.) are synchronous. Moreover, the fact that two tangents 

to a circle from a point outside the circle are equal.  

Furthermore, the common point of a triangle ABC called a particular point of the triangle, 

it could be defined as the point of intersection of the cevians ATA, BTB, and CTC. Therefore, 

this point "P" will be later called the Gergonne Point (GP) of the triangle [54] as a reference 

point, which is the concurrence point for the cevians from the vertices to the points of tangency 

on the opposite sides of the triangle, as shown in Fig. 44. 
 

Theorem 1. The three cevians joining the vertices of a triangle to the point of tangency of 

the opposite sides with the Incircle are concurrent [55]. 
 

Using Ceva’s theorem, we directly get the following result: the given the existence of a 

triangle with vertices A, B, and C. The Trilinear Coordinates (TCs) of point P, which related to 

triangle ABC are three ordered numbers. Each corresponding to the distance from P to one of 

the sideline. TCs are generally referred via (α:β:γ), as shown in Fig. 44. 

 

 

Fig. 44. Trilinear Coordinates (TCs) αβγ of Point P 

If point P has TCs (α:β:γ), then the Cartesian Coordinates of P are calculated by Eq.(4.2): 
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TCs of the GP is given by Eq.(4.3): 
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Based on the properties of the Incircle triangular fuzzy number, some notations for the fuzzy 

rules and the observation fuzzy sets could be determined. It will be used to perform the 

approximate conclusion. The "center" of the triangle could be denoted by the Gergonne point 

(GP), which later will be named by "Reference Point". 

The main sides of the triangular indicated by SD1, SD2, and SD3. The lengths of tangents of 

the triangle can be determined by PS1, PS2, and PS3, as shown in Fig. 45. These sides PS1, PS2, 

and PS3 will be referred to as "fuzziness sides". 

 
 

 

Fig. 45. Triangular Fuzzy Number Notations 

Assuming that the triangular fuzzy set A= (a1, a2, a3; H), we get a triangle with the 

coordinates of vertices A=(a1,0), B= (a2, H) and C= (a3,0) with H. If H is equal to 1, then the 

fuzzy number is normal. The trapezoidal fuzzy set can be represented by two triangular fuzzy 

numbers AL= (a1, a2, Mp; H) and AR= (Mp, a3, a4; H), where Mp denotes the mid-point of the 

trapezoidal fuzzy set.  

Some notations are required for calculating the approximating conclusion of the proposed 

Incircle-FRI is presented. Let us have a single-dimensional antecedent space and two adjacent 
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fuzzy rules to the observation (like in the original KH-FRI) represented by triangular fuzzy sets 

as follows: 

Incircle_Notation 1:  The main sides of the triangular fuzzy set A, SD1(a1a2), SD2(a2a3), SD3(a1a3) 

can be calculated by Eq.(4.4), where H denotes the height of the fuzzy set A. 
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(4.4) 

 

Incircle_Notation 2: Applying Eq.(4.3) and Eq.(4.4), we can find the TCs and GP of a triangle 

fuzzy set A, which has vertices a1, a2, and a3 as. 
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Incircle_Notation 3: Using Eq.(4.2), the Cartesian Coordinates ),( AAX  of the reference point 

GP for triangle fuzzy set A can be calculated as follows. 
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Regarding the height property of the fuzzy set, a fuzzy set A is normal if there is at least 

one element on the universe of discourse that has a membership degree equal to 1, (∃x ∈ U, 

µA(x): Height(A) = 1). 
 

Incircle_Notation 4: The left and right fuzziness lengths of the antecedent, consequent, and 

observation fuzzy sets could be determined by the fuzziness sides PS1, PS2, and PS3, which can 

be calculated as follows. 
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(4.7) 

4.2.  A new fuzzy interpolative reasoning method based on Incircle of Triangular 

fuzzy number 

In this subsection, a new fuzzy interpolative reasoning method will be presented for sparse 

fuzzy rule-based systems, which is based on the Incircle of the triangular fuzzy set of the fuzzy 

rules and observation. The representative values of the approximating conclusion fuzzy set will 

be determined by the reference points (GPx), left fuzziness (PS1), and right fuzziness (PS3). In 

the following, the proposed Incircle-FRI will be discussed in detail. 

4.2.1. Single antecedent variable with Triangular fuzzy sets 

The triangular membership function is a particular case of the fuzzy sets that vastly used in 

fuzzy rule-based systems because of their simplicity. A triangular membership function 

describes by vertices (a1, a2, a3; H), where a1 refers to the left side of the support, a2 denotes 

the reference point, and a3 refers to the right side of the support, and H denotes the height of 

the fuzzy set. 

Fig. 46 illustrates the suggested reference point of the fuzzy set indicated by (GPX.A) of 

fuzzy set A, the main left, right and base sides of triangle ABC indicated by SD1, SD2, and SD3, 

respectively, and the fuzziness sides, where PS1 refers to the left fuzziness, and PS3 refers to 

the right fuzziness.  
 

 

Fig. 46. The Main Incircle_Notations of the Triangular Fuzzy Number Represented by GPx, SD1, 

SD2, SD3, PS1, PS2 and PS3 
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For simplicity, in the initial version of the suggested reasoning method, the two adjacent 

fuzzy rules A1 ⇒ B1 and A2 ⇒ B2 to the observation will be taken into consideration from the 

rule-base only. A1, A2, B1, and B2 denote the fuzzy sets of the antecedents and consequents, 

respectively. We assume that the observation fuzzy set A∗ occurs between the fuzzy sets A1 and 

A2. The conclusion B∗ fuzzy set denotes the fuzzy interpolative reasoning result, as shown in 

Fig. 47. The standard scheme of the fuzzy interpolative reasoning of the two fuzzy-rules and 

observation using triangular fuzzy sets can be defined as follows: 
 

Rule1: If X is A1 then Y is B1 

Rule2: If X is A2 then Y is B2 

Observation: X is A∗. 

——————————– 

Conclusion: Y = (B∗) 

 

where Rule1 and Rule2 are two adjacent fuzzy rules by Ai = (ai,1, ai,2, ai,3), Bi = (bi,1, bi,2, bi,3), 

where (1 ≤ i ≤ 2), the observation A∗ = (a1, a2, a3), and B∗ = (b1, b2, b3). 

 

 
 

Fig. 47. Fuzzy Interpolative Reasoning Using Triangular Membership Functions 

The fuzzy interpolative reasoning method "Incircle-FRI" related to single triangular fuzzy set 

could be determined, we need to compute the reference point and fuzziness sides by Eq.(4.4) - 

Eq.(4.7), then applying the following steps: 
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Step 1: The two closest fuzzy rules [56] must be determined to perform interpolative for single 

antecedent fuzzy rules (m), Rule1, Rule2, ..., and Rulem, which are the nearest to the observation 

(Ai ≼ A*≼ Ai+1) as shown in Fig. 47. The closest fuzzy rules can be determined by the distances 

using Eq.(4.8). 
 

).,.(),( ** AGPAGPdAAdD xixi   (4.8) 

 

Where d refers to the distance between antecedents and observation fuzzy sets values, which is 

based on their reference points (GPx). 
 

Step 2: Suppose the two adjacent fuzzy rules A1 and A2 are the left and right antecedent fuzzy 

sets to the observation fuzzy set A∗. Therefore, according to [56], the weight between the 

adjacent triangular fuzzy rules, Rulei, and observation A∗ can be determined as follows. 
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GPX refers to the reference point of the fuzzy sets; it could be calculated by Eq.(4.6). Wi 

denotes the weight of Rulei, which is used to perform interpolation between two surrounding 

rules to the observation using Eq.(4.7).  (0 ≤ Wi ≤ 1),(1 ≤ i ≤ m), where i = 1, 2 represents the 

individual fuzzy rules as given in Fig. 47 holding the property of (W1 + W2 = 1). 

 

Step 3: The reference point (GPX) of the fuzzy interpolative reasoning result B∗ could be 

calculated based on the reference points of the consequents fuzzy sets and weights, shown by 

Eq.(4.10). 
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 (4.10) 

 

The required reference points GPX.B1 and GPX.B2 can be calculated by Eq.(4.6), W1 and 

W2 could be computed by Eq.(4.9). 

 

Step 4: The fuzziness sides of the B∗ fuzzy set could be calculated by Eq.(4.11), which is based 

on the calculated fuzziness sides of the fuzzy adjacent rule bases and observation. 
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Where M ∈ [PS1, PS3], PS1 refers to the left fuzziness side and PS3 denotes the right 

fuzziness side of the triangular fuzzy set. If one of the antecedents fuzzy sets A1 and A2, the left 

PS1 or right PS3 are great than zero, the top part of Eq.(4.11) is implemented to conclude the 

left and right fuzziness sides PS1 and PS3 of the fuzzy set B∗. Otherwise, if both antecedents 

fuzzy sets A1 and A2 are found, the left PS1 and right PS3 are zero. I.e., in case of singleton fuzzy 

sets, the bottom part of Eq.(4.11) could be used.  
 

Step 5: Now, based on the results of steps 3 and 4, the representative values of the conclusion 

B∗ fuzzy set will be determined. The reference point is determined by Eq.(4.10). The left 

fuzziness [GPX.B* - B*
(PS1)] and the right fuzziness side [GPX. B* + B*

(PS3)] are defined by 

Eq.(4.11). Finally, the fuzzy interpolative reasoning conclusion B∗ for the triangular fuzzy set 

can be collected as. 
 

*

)3(

**

3

**

2

*

)1(

**

1

.

.

.

psx

x

psx

BBGPB

BGPB

BBGPB







 
(4.12) 

 

Because (B*
1 ≤ B*

2  ≤ B*
3), we can see that the proposed method can preserve the convexity 

of the fuzzy interpolative reasoning result with the triangular fuzzy set.  We can see that the 

value of the left fuzziness side is smaller than or equal to the value of the reference point (GPX), 

which also is smaller than or equal to the value of the right fuzziness side.  

 

In general, the result of the proposed "Incircle-FRI" is satisfied with logically consistent 

properties and concerning the ratios of fuzziness sides based on the two-fuzzy-rules 

interpolative reasoning technique, which obtained by Eq.(4.11). The top equation of Eq.(4.11) 

is used to infer the fuzziness sides of the interpolated conclusion fuzzy set B∗ if there exists a 

fuzzy rule whose fuzziness of the antecedent part is larger than zero. Otherwise, the bottom 

equation of Eq.(4.11) is used when the fuzziness sides of the antecedent part of the given fuzzy 

rules are zero. That means the larger the fuzziness of the membership function of a fuzzy set is 

the more fuzziness the fuzzy set has. The fuzzy interpolative reasoning (Incircle-FRI) result 

inferred by Eq.(4.11) satisfies the logically consistent properties for the ratios of fuzziness sides 

based on the two-fuzzy-rules interpolative reasoning technique, the ratio fuzziness sides 
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RF.PSm (A, B) of the consequence fuzzy sets B to antecedent fuzzy set A is computed in [52] 

as follows. 
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m   (4.13) 

 

Where RF.PSm(A) > 0, m ∈ the left RF.PS1 and right RF.PS3 fuzziness sides of the 

antecedent fuzzy set and the consequence fuzzy set of a fuzzy rule, respectively. RF.PS1(A, B) 

refers to the ratio fuzziness of the left fuzziness side B to the left fuzziness side A, RF.PS3(A, 

B) refers to the ratio fuzziness of the right fuzziness side B to the right fuzziness side A. For 

example; we can see that RF.PS1(A1, B1) = 1/2, RF.PS1(A2, B2) = 2, and RF.PS3(A1, B1) = 

RF.PS3(A2, B2) = 1.  

The ratio of fuzziness sides RF.PSm(A, B) shown in Eq.(4.13), it does not consider the 

situation that the antecedent fuzzy sets have vertical slopes at their left side or right side (i.e., 

PS1(A) = 0 or PS3(A) = 0). Thus, if there are two fuzzy rules A1 ⇒ B1, A2 ⇒ B2, and observation 

A∗, as shown in Fig. 48.  

 

 

Fig. 48. Fuzzy interpolative reasoning results for the gradual observations 

Suppose two neighboring fuzzy rules A1→B1, A2→B2, and one observation A∗, where A∗ hits 

between A1 and A2. The fuzzy interpolative reasoning result B∗ obtained by Eq.(4.11) satisfies 

the following two of the logically consistent properties. 

 

Property 1: Min (RF.PSm(A1, B1), RF.PSm(A2, B2)) ≤ RF.PSm (A∗, B∗) ≤ Max (RF.PSm(A1,  

B1), RF.PSm(A2, B2)), where m ∈ [ps1, ps3]. Then RF.PSm (A∗, B∗) can be 

calculated by Eq.(4.14) as follows. 
 

)),(.2()),(.)21((),(. 2211

** BAPSRFWBAPSRFWBAPSRF mmm   (4.14) 

 

Where the weight Wi between antecedents and observation could be defined by Eq.(4.9). 
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Property 2: If RF.PSm (A1, B1) = RF.PSm(A2, B2) = K, then RF.PSm (A∗, B∗) = K, where K ≥0 

and m ∈ [PS1, PS3]. Min (RF.PSm (A1, B1), RF.PSm(A2, B2)) = Max (RF.PSm(A1, 

B1), RF.PSm(A2, B2)) = K and RF.PSm (A∗, B∗) = K. 

 

It is evident that, Property 1 and Property 2 are logically consistent concerning the left and 

right ratios of fuzziness sides (RF.PS1 and RF.PS3) based on the two fuzzy rules. Based on 

Eq.(4.11), the weight Wi of RF.PSm(Ai, Bi) contributing to RF.PSm(A∗, B∗) is determined by 

the distance of the reference points between Ai and A∗. The closer the reference point of A∗ to 

the reference point of Ai, the larger weight of RF.PSm (Ai, Bi), where i = 1, 2 and m ∈ PS1, PS3. 

4.2.2. Single antecedent variable with Trapezoidal fuzzy sets 

The Incircle concept of triangular fuzzy numbers can be extended to trapezoidal fuzzy set. 

A trapezoidal fuzzy set can be represented through two triangular fuzzy sets AL= (a1, a2, Mp; 

H) and AR= (Mp, a3, a4; H). Thus, the Incircle_Notations in Eq.(4.4), Eq.(4.6), and Eq.(4.7) 

will be used to calculate AL (or TRL) and AR (or TRR) separately. 

Fig. 49 describes the left and right reference points of the trapezoidal fuzzy set that are 

denoted by GPX.AL and GPX.AR. The main sides of the left triangle AL are described by SDL1, 

SDL2, and SDL3, respectively. Furthermore, the fuzziness sides of AL can be described by the 

left PS1AL and the right PS3AL.  

For the right triangle AR, the main sides are described by SDR1, SDR2, and SDR3. Besides, 

the fuzziness sides of AR can be represented by the left PS1AR and the right PS3AR. Therefore, 

GPX.AL, GPX.AR, PS1AL, PS3AR, and Mp will be used to describe the left fuzziness and the 

right fuzziness of the trapezoidal membership function to determine the conclusion. 
 

 

Fig. 49. The Main Incircle_Notations of the Trapezoidal Fuzzy Number Represented by Two Triangular Fuzzy 

Sets AL and AR Notations. 

An example of the suggested fuzzy interpolative reasoning using trapezoidal fuzzy sets is 

shown in Fig. 50. 

To interpolate the proposed Incircle fuzzy interpolative reasoning method with trapezoidal 

fuzzy sets (represented by two AL and AR triangular fuzzy sets), we need to find all 
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Incircle_Notations in Eq.(4.4) - Eq.(4.7) for each triangular (AL, AR), then applying the 

following steps: 

 

Step 1: The two closest fuzzy rules [56] must be determined to perform interpolative for single 

antecedent fuzzy rules (m), Rule1, Rule2, ..., and Rulem, which are nearest to the observation (Ai 

≼ A* ≼Ai+1) as shown in Fig. 50. The closest fuzzy rules determined using the average of two 

reference points GPx.AL and GPx.AR of the trapezoidal fuzzy sets via (AVG.GPX=(GPX.AL 

and GPX.AR)/2). Then, distances can be computed using Eq.(4.15). 

 

 

Fig. 50. Fuzzy Interpolative Reasoning Using Trapezoidal Membership Functions 

 

)..,..(),( ** AGPAVGAGPAVGdAAdD xixi   (4.15) 
 

Step 2: Supposing that two adjacent fuzzy rules A1 and A2 are the left and the right antecedent 

fuzzy sets to the observation fuzzy set A∗. Hence, the weight of trapezoidal fuzzy sets can be 

determined for each triangular (the left and right) by Eq.(4.16). 
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WLi and WRi denote the weight of Rulei of the left and right triangulars fuzzy sets, (0 ≤ 

WLi ≤ 1), (0 ≤ WRi ≤ 1). Moreover, i = 1, 2, represents the individual fuzzy rules, as given in 

Fig. 50 holding the property of (WL1 + WL2 = 1) and (WR1 + WR2 = 1). 
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Step 3: The two reference points GPX.AL and GPX AR of the fuzzy interpolative reasoning 

result B∗ could be calculated for left and right triangular by Eq.(4.17). 
 





2

1

*
2

1

* ..,..
i

ixix

i

ixix BRGPWRRBGPBLGPWLLBGP  (4.17) 

 

Step 4: The fuzziness sides of the B∗ fuzzy set can be calculated for the left triangular by 

Eq.(4.18) and for the right triangular by Eq.(4.19). 
 

 

(4.18) 

 

 

(4.19) 

 

M ∈ [PS1, PS3], PS1 refers to the left fuzziness side, and PS3 denotes the right fuzziness side 

for the two triangles fuzzy sets AL and AR. The top part of Eq.(4.18) and Eq.(4.19) is performed 

to conclude the left fuzziness side PS1 and the right fuzziness side PS3 of the fuzziness of B∗ 

fuzzy set. If one of the antecedents A1 and A2 fuzzy sets exits, PS1 or PS3 is bigger than zero, if 

both PS1 or PS3 of A1 and A2 fuzzy sets are zero, the bottom part of Eq.(4.18) and Eq.(4.19) 

could be used.   
 

Step 5: Based on the results of step 3 and 4, the reference points (GPX.BL∗ and GPX.BR∗), the 

fuzziness sides (PS1 and PS3) could be used to determine the conclusion B∗ of the trapezoidal 

fuzzy set, which based on the following cases 
 

1. In case  the results of the left and right B*TRL and B* TRR triangulars fuzzy sets have the 

same values; then the conclusion can be determined as follows. 
 

B∗ = [GPX.BL∗, GPX.BL∗, GPX.BR∗, GPX.BR∗] (4.20) 

   

2. In case  the result of the left triangular B*TRL has the same values, and the right triangular 

B*TRR has the same values too, but both left and right values are not the same. The 

conclusion values could be defined by GPx1x2 = (GPX.BL∗ + GPX.BR∗)/2 as follows. 
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B∗ = [GPx1x2, GPx1x2, GPx1x2, GPx1x2] (4.21) 

 

3. In case  the left has the same values, we will use B*L, but in case the right has the same 

values, we will use B*R, then the conclusion can be determined as follows. 
 

BL∗ = [GPx.B*L, GPx.B*L, GPx.B*R, GPx.B*R+B*R(ps3)]  

  BR∗ = [GPx.B*L-B*L(ps1), GPx.B*L, GPx.B*R, GPx.B*R] 
(4.22) 

 

4. In case , all values result from the left and the right triangles are different. The conclusion 

can be determined as follows. 
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Because (B*
1 ≤ B*

2 ≤ B*
3 ≤ B*

4), we can see that the proposed method can preserve the 
convexity of the fuzzy interpolative reasoning result with a trapezoidal fuzzy set.  We can see 
that the value of the left point (B*

1) is smaller than or equal to the values of the reference point 

(GPX.B*L and GPX.B*R), which are also smaller than or equal to the value of the right point 
(B*

4). Regarding the main point (MP) of the trapezoidal fuzzy set can be calculated by MP.B*= 
AVG.GPX.B1+ ( ((AVG.GPX.A*- AVG.GPX.A1) × ( AVG.GPX.B2- AVG.GPX.B1) ) / ( AVG.GPX.A2- 
AVG.GPX.A1)). 

4.3. The validation of the Incircle-FRI to Normality and Convexity (CNF) 

condition 

The proposed Incircle-FRI method developed related to the representation of the reference 

point and fuzziness sides of a triangular fuzzy number by its Incircle properties, this follows 

geometrical considerations for performing fuzzy interpolation, which leads to producing 

Convex and Normal Fuzzy set (CNF) for all the fuzzy rule bases and observation configurations. 

In order to ensure that (Inf(A1α) ≤ Inf(A2α) ≤ Sup(A1α) ≤ Sup(A2α)), the coordinate of the 

conclusion B* should be satisfying with (b*
1 ≤ b*

2 ≤ b*
3 ≤ b*

4). 

In the following, we will study all CNF_Notations that used to prove the normality and 

convexity of the Incircle-FRI method according to the core and fuzziness sides conditions as 

follows: 

 If the fuzzy sets of the antecedent and the consequent have a uniform core and boundary 

lengths, then the conclusion fuzzy set is always normal if and only if the following conditions  

of the Left Fuzziness Side (LFS.PS1) length of the observation by Eq.(4.24) and Eq.(4.25) 

hold. 
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  If LFS(A∗) ≠ 0 
 

LFS(PS1)1 ≤ LFS(PS1)2 (4.24) 
 

where 
 

LFS(PS1)1 = LFS_diff(B1B2) × (LFS(A) − LFS(A*)), 

LFS(PS1)2 = LFS(B) × (LFS_diff(A*A1) + LFS_diff(A2A*) +2× LFS(A*)) 
 

  If LFS (A∗) = 0 
 

LFS(PS1)1  ≤  LFS(PS1)2 (4.25) 
 

where 
 

LFS(PS1)1 = LFS_diff(B1B2) × (LFS(A) − LFS(A*)), 

LFS(PS1)2 = LFS(B) × LFS_diff(A1A2) 
 

And, 
 

LFS(PS1)(A) = (LFS(PS1)(A1) + LFS(PS1)(A2))/2, and 
LFS(PS1)(B) = (LFS(PS1)(B1) + LFS(PS1)(B2))/2. 

 

For Core (CoreL and CoreR) and Right Fuzziness Side (RFS(PS3)) lengths, similar equations 

to the left fuzziness side (LFS(PS1)) length could be constructed. 
 

According to Eq.(4.26), Eq.(4.27), and Eq.(4.28), the core and fuzziness sides lengths (Left 

and Right) of the conclusion can be determined. For verifying the normality of the Left 

Fuzziness Side (LFS(PS1)) length of the conclusion, Eq.(4.26) could be applied: 
 

LFS(PS1)1 ≤  LFS(PS1)2 (4.26) 
 

where 
 

LFS(PS1)1 = LFS_diff(B1B2) × (((LFS(A1) + LFS_diff(A*A1)) × (LFS(A2) 

+ LFS_diff(A2A*))) – ((LFS(A*) + LFS_diff(A*A1))× (LFS(A*)  

+ LFS_diff(A2A*)))) 

 

LFS(PS1)2 = ((LFS(A1) + LFS_diff(A*A1)) × (LFS_diff(A*A1) + LFS(A*)) 

× LFS(B2)) + ((LFS(A2) + LFS_diff(A2A*)) × (LFS_diff(A2A*)  

+ LFS(A*)) × LFS(B1)) 
 

The Core length of the conclusion can be determined by Eq.(4.27) as follows: 
 

For the left core CoreL(GP) of TRL. 
 

CoreL(GP)1 ≤ CoreL(GP)2 (4.27) 
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where 
 

CoreL(GP)1 = CoreL_diff(B1B2) × (((CoreL(A1) + CoreL_diff(A*A1)) × (CoreL(A2) 

+ CoreL_diff(A2A*))) – ((CoreL (A*) + CoreL_diff(A*A1))× (CoreL (A*) 

+ CoreL_diff(A2A*)))) 
 

CoreL(GP)2 = ((CoreL(A1) + CoreL_diff(A*A1)) × (CoreL_diff(A*A1) + CoreL(A*)) 

× CoreL(B2)) + ((CoreL(A2) + CoreL_diff(A2A*)) × (CoreL_diff(A2A*) 

+ CoreL(A*)) × CoreL(B1)) 
 

For the right core length ("CoreR(GP)") can be calculated as the same equations and parameters 

of the left core TRL "CoreL(GP)" as presented above. 

For Right Fuzziness Side (RFS(PS3)) length of the conclusion can be determined by the 

following Eq.(4.28). 
 

RFS(PS3)1 ≤  RFS(PS3)2 (4.28) 
 

where 
 

RFS(PS3)1 = RFS_diff(B1B2) × (((RFS(A1) + RFS_diff(A*A1)) × (RFS(A2) 

+ RFS_diff(A2A*))) – ((RFS(A*) + RFS_diff(A*A1))× (RFS(A*)  

+ RFS_diff(A2A*)))) 

 

RFS(PS3)2 =((RFS(A1) + RFS_diff(A*A1)) × (RFS_diff(A*A1) + RFS(A*)) 

× RFS(B2)) + ((RFS(A2) + RFS_diff(A2A*)) × (RFS_diff(A2A*) 

+ RFS(A*)) × RFS(B1)) 
 

The parameters of the core, left, and right lengths of the previous equations can be defined as 

follows: 
  

LFS = TRLPS1(Fs) 

CoreL = TRLGPX (Fs)  

CoreR = TRRGPX (Fs) 

RFS = TRRPS3(Fs) 
 

FS belongs to fuzzy rules and observation (Ai, A*, and Bi), and TRL and TRR refer to the left and 

right triangular in case the membership function is trapezoidal. 

 

LFS_diff(A*A1) = TRLPS1(A*) - TRLPS1(A1) 

CoreL_diff(A*A1) = Core_TRLL(A*) - Core_TRLL(A1) 

CoreR_diff(A*A1) = Core_TRRR(A*) - Core_TRRR(A1) 

RFS_diff(A*A1) = TRRPS3(A*) - TRRPS3(A1) 

 

In the same way, we can calculate the left, right and core between (A2A*, B1B2, A2A1),  



70 | P a g e  

 

Moreover, from another point of view, the length ratio of the distance between the fuzzy sets 

of the antecedent with observation (Ai, A*), and consequent (Bi). Eq.(4.29), Eq.(4.30), and 

Eq.(4.31) could also be used to check the normality (validity) of the conclusion, which can be 

defined as follows: 

 

For the length ratio of the left fuzziness side (LFS(PS1)): 
 

LFS.Ratio1= LFS(B) / LFS(A) 

LFS.Ratio2= LFS(A) / (LFS(A*A1) + LFS(A2A*)) 
(4.29) 

where 
 

LFS (A) = TRLPS1(A2) – TRLPS1(A1) 

LFS(B) = TRLPS1(B2) – TRLPS1(B1) 

LFS(A*A1) = TRLPS1(A*) – TRLPS1(A1) 

LFS(A2A*) = TRLPS1(A2) – TRLPS1(A*) 
 

For the length ratio of the Left Core of TRL (CoreL.Ratio):  
 

CoreL.Ratio1= CoreL(B) / CoreL(A) 

CoreL.Ratio2= CoreL(A) / (CoreL(A*A1) + CoreL(A2A*)) 
(4.30) 

where 
 

CoreL(A) = CoreL(A2) - CoreL(A1) 

CoreL(B) = CoreL(B2) - CoreL(B1) 

CoreL(A*A1) = CoreL(A*) - CoreL(A1) 

CoreL(A2A*) = CoreL(A2) - CoreL(A*) 
 

The Right Core of TRR (CoreR.Ratio), it can be calculated at the same (CoreL.Ratio). 
 

For the length ratio of the right fuzziness side (RFS(PS3)): 
 

RFS.Ratio1= RFS(B) / RFS(A) 

RFS.Ratio2= RFS(A) / (RFS(A*A1) + RFS(A2A*)) 
(4.31) 

 

where 
 

RFS (A) = TRRPS3(A2) – TRRPS3(A1) 

RFS(B) = TRRPS3(B2) – TRRPS3(B1) 

RFS(A*A1) = TRRPS3(A*) – TRRPS3(A1) 

RFS(A2A*) = TRRPS3(A2) – TRRPS3(A*) 

4.4. Comparison of the proposed method with some other FRI methods 

This subsection discusses the performance of the proposed "Incircle-FRI" method, some 

numerical examples in [22], [52], [57], [58], [59] will be compared with the results of KH-FRI 
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[3], [25], [39], KHstabilized-FRI [5], VKK-FRI [4], CCL-FRI [52], HS-FRI [22], HTY-FRI 

[53], and HCL-FRI [42]. The KH-FRI, the KHstabilized-FRI, and the VKK-FRI methods were 

tested using the Matlab FRI toolbox [24], [26]. Also, we present a comparison summary of the 

selected FRI methods with Incircle-FRI based on five evaluation criteria (i.e., "CNF property", 

"different membership functions", which mean there is no restriction the shape of the fuzzy 

sets, "different kinds membership functions of the antecedents and the consequents fuzzy 

rules", "the Approximation capability of the fuzziness and core between the observation and 

conclusion", and "logically consistent with respect to the ratios of fuzziness sides (see property 

1 and property 2)"). 

Example TR1 [22], [52], [57], [58], [59]:  

 All the rule antecedents, consequents, and the observation are triangular fuzzy sets.  

 Observation A∗ = [7, 8, 9]. 

Table 1 describes all the attribute values and the results of fuzzy interpolative reasoning 

methods, therefore, we conclude the following:  

 The conclusion fuzzy set of the proposed Incircle-FRI is represented by triangular 

membership function as B∗ = (GPX.B∗-PS1, GPX.B∗, GPX.B∗+PS3).  

 Based on Eq.(4.6), Eq.(4.9), and Eq.(4.10), the reference point value was calculated by 

the fuzzy interpolation of the fuzzy sets A1, A2, B1, and B2. Where GPX.B∗ = 5.42.  

 Also, based on Eq.(4.7), Eq.(4.9), and Eq.(4.11), we obtain the left fuzziness PS1 = 0.472 

and the right fuzziness PS3 = 1.737.  

 The proposed Incircle-FRI gets the interpolated consequence as a triangular fuzzy set B∗ = 

[4.95 5.42 7.16].  

 Fig. 100 (see Appendix A.1) describes the results of various FRI methods, in which, the 

KH [3], [25], [39], KHstabilized [5], and VKK [4] FRI methods generated an abnormal 

(non-convex) fuzzy sets. While the FRI methods CCL [52], HS [22], HTY [53], HCL [42], 

and the proposed Incircle-FRI have CNF conclusion.  

 

Based on Eq.(4.13) and Eq.(4.14) and Table 1, the logically consistent properties and the 

respect to ratios of the fuzziness two adjacent rules (A1 ⇒ B1) and (A2 ⇒ B2), we conclude the 

following: 

 The left ratio fuzziness RF.PS1 (A1, B1) = 0.4 and the ratio RF.PS1 (A2, B2) = 0.5, and the 

left ratio fuzziness RF.PS1 (A∗, B∗) of the proposed Incircle-FRI, CCL FRI, the HCL FRI, 

the HTY-FRI and HS-FRI methods are 0.44, 0.44, 0.22, 0.66 and 0.43,  

Therefore, the proposed Incircle-FRI, CCL FRI, and HS-FRI satisfy property 1, where 

MIN (RF.PS1 (A1, B1), RF.PS1 (A2, B2)) = 0.4 ≤ RF.PS1 (A∗, B∗) = [Incircle(0.44), 

CCL(0.44), HS(0.43)] ≤ MAX (RF.PS1 (A1, B1), RF.PS1 (A2, B2))= 0.5.  

 The right ratio fuzziness of rules (A1 ⇒ B1 and A2 ⇒ B2) RF.PS3 (A1, B1) = RF.PS3 (A2, B2) 

= 2, and the right ratio fuzziness RF.PS3 (A∗, B∗) of the proposed Incircle-FRI, CCL FRI, 
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the HCL FRI, the HTY FRI, HS FRI, KHstabilized-FRI, and KH-FRI methods are 2, 2, 

0.8, 0.88, 1.12, 2, and 2, respectively.  

We can see that only RF.PS3 (A∗, B∗) of the proposed Incircle-FRI, CCL FRI, 

KHstabilized-FRI, and KH-FRI satisfy Property 2, where MIN (RF.PS3 (A1, B1), RF.PS3 

(A2, B2)) = MAX (RF.PS3 (A1, B1), RF.PS3 (A2, B2)) = RF.PS3 (A∗, B∗) = 2.  

Based on the above, the fuzzy interpolative reasoning result of the proposed Incircle-FRI is 

logically consistent in terms of Property 1 and property 2. 

 
Table 1. Fuzzy Interpolative Reasoning Results of Example TR1 

Attribute Values Methods 
Results of Fuzzy 

Interpolative reasoning 

A1=[0 5 6] 

A2=[11 13 14] 

B1=[0 2 4] 

B2=[10 11 13]  

A*=[7 8 9] 

KH-FRI [3],[25],[39] 

KHstabilized-FRI [5] 

VKK-FRI [4] 

CCL-FRI [52] 

HS-FRI [22] 

HTY-FRI [53] 

HCL-FRI [42] 

B∗=(6.36 5.38 7.38) 

B∗=(6.36 5.38 7.38) 

B∗=(6.15 5.38 7.84) 

B∗=(4.94 5.38 7.38) 

B∗=(5.83 6.26 7.38) 

B∗=(5.76 6.42 7.30) 

B∗=(6.36 6.58 7.38) 

The Incircle-FRI B∗=(4.95 5.42 7.16) 

 

Example TR2 [22], [52], [58]:  

 All the rule antecedents, consequents, and the observation are triangular fuzzy sets.  

 Observation A∗ = [8, 8, 8]. 

Table 2 and Fig. 101 (see Appendix A.2 

) give all attribute values and the results of fuzzy interpolative reasoning, we conclude the 

following:  

 In which the KH-FRI [3], [25], [39], the KHstabilized-FRI [5], and the VKK-FRI [4], once 

again generate a non-convex fuzzy conclusion. The HCL-FRI [42] produces a non-convex 

fuzzy set. Although it is a non-triangular fuzzy set, the FRI methods CCL-FRI [52], HS-

FRI [22], HTY-FRI [53], and proposed Incircle-FRI generate normal singleton conclusion.  

 By Eq.(4.10), the Incircle-FRI produces a singleton fuzzy set represented by the reference 

point GPx.B∗ =5.42. 

 By Eq.(4.11), the left fuzziness PS1=0 and the right fuzziness PS3=0. 

 The proposed Incircle-FRI gets the interpolated consequence as singleton fuzzy set B∗ = 

[5.42, 5.42, 5.42] based on Eq.(4.12). 

 In this example, the proposed Incircle-FRI performs better than the KH, KHstabilized, 

VKK, and HCL FRI.  

Based on Eq.(4.13) and Eq.(4.14) and Table 2, the left ratio fuzziness, and the right ratio 

fuzziness of this example have the same results in Example TR1 as follows: 
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 The results of the proposed Incircle-FRI, CCL-FRI satisfy property 1 for the left ratio 

fuzziness RF.PS1 (A∗, B∗), where MIN (RF.PS1 (A1, B1), RF.PS1 (A2, B2)) = 0.4 ≤ RF.PS1 

(A∗, B∗) = [Incircle (0.44), CCL (0.44)] ≤ MAX (RF.PS1 (A1, B1), RF.PS1 (A2, B2)) =0.5. 

  While the right ratio fuzziness RF.PS3 (A1, B1) = RF.PS3 (A2, B2) = 2, and the results of 

the right ratio fuzziness RF.PS3 (A∗, B∗) of the proposed Incircle-FRI and CCL-FRI satisfy 

Property 2, which are 2.  

Based on the above, the fuzzy interpolative reasoning result of the proposed Incircle-FRI is 

logically consistent in terms of Property 1 and Property 2 for the left and right ratio fuzziness, 

respectively. 
Table 2. Fuzzy Interpolative Reasoning Results of Example TR2 

Attribute Values Methods 
Results of Fuzzy 

Interpolative reasoning 

A1=[0 5 6] 

A2=[11 13 14] 

B1=[0 2 4] 

B2=[10 11 13]  

A*=[8 8 8] 

KH-FRI [3],[25],[39] 

KHstabilized-FRI [5] 

VKK-FRI [4] 

CCL-FRI [52] 

HS-FRI [22] 

HTY-FRI [53] 

HCL-FRI [42] 

B∗=(7.27 5.38 6.25) 

B∗=(7.27 5.38 6.25) 

B∗=(7.00 5.38 7.00) 

B∗=(5.38 5.38 5.38) 

B∗=(6.49 6.49 6.49) 

B∗=(6.49 6.49 6.49)  

B∗=(7.27 - 6.25) 

The Incircle-FRI B∗=(5.42 5.42 5.42) 

Note: the sign (-) indicates no clear evidence for the method to handle the case in the example 

 

Example TR3 [22], [52], [58]:  

 In this example, the antecedents of the fuzzy rules and observation are represented by 

singleton and triangular fuzzy sets.  

 Observation A∗ = [5, 6, 8].  

Table 3 and Fig. 102 (see Appendix A.3) describe all the results and attributes values of this 

example; therefore, we conclude the following: 

 The result of the proposed Incircle-FRI is computed using Eq.(4.6), Eq.(4.9), and 

Eq.(4.10), which produce a triangular fuzzy set, in which the value of the reference point 

GPX.B∗ is calculated based on the fuzzy interpolation of the fuzzy sets A1, A2, B1, and B2, 

where GPX.B∗ = 6.37.  

 According to Eq.(4.7), Eq.(4.9), and Eq.(4.11), the left fuzziness PS1 = 1.089, and the 

right fuzziness PS3 = 1.910 are determined.  

 Based on Eq.(4.12), the conclusion of the proposed Incircle-FRI is a CNF triangular fuzzy 

set B∗ = [5.28, 6.37, 8.28].  

 Meanwhile, the KH-FRI [3], [25], [39], the KHstabilized-FRI [5], the HCL-FRI [42], the 

CCL-FRI [52], the HS-FRI [22], and HTY-FRI [53] give a very reasonable conclusion. In 

contrast, in this case, the VKK-FRI [4] and the HTY-FRI [53] could not generate a usable 

conclusion. 
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Example TP1 [22], [52], [58]:  

 All the rule antecedents, consequents, and the observation are trapezoidal fuzzy sets.  

 Observation A∗ = [6, 6, 9, 10].  

Table 4 and Fig. 103 (see Appendix A.4) describe all the attribute values and the results of FRI 

methods, therefore, we conclude the following: 

 Based on Eq.(4.6), Eq.(4.16), and Eq.(4.17), the reference points values are calculated by 

the fuzzy interpolation of the fuzzy sets A1, A2, B1, and B2, where GPX.BL∗ = 4.54 and 

GPX.BR∗ = 7.47.  
 

Table 3. Fuzzy Interpolative Reasoning Results of Example TR3 

Attribute Values Methods 
Results of Fuzzy 

Interpolative reasoning 

A1=[3 3 3] 

A2=[12 12 12] 

B1=[4 4 4] 

B2=[10 11 13]  

A*=[5 6 8] 

KH-FRI [3],[25],[39] 

KHstabilized-FRI [5] 

VKK-FRI [4] 

CCL-FRI [52] 

HS-FRI [22] 

HTY-FRI [53] 

HCL-FRI [42] 

B∗=(5.33 6.33 9.00) 

B∗=(5.33 6.33 9.00) 

B∗=(- 0.00 -) 

B∗=(5.33 6.33 8.33) 

B∗=(5.71 6.28 8.16) 

B∗=(-) 

B∗=(5.33 6.55 9.00) 

The Incircle-FRI B∗=(5.28 6.37 8.28) 

Note: the sign (-) indicates no clear evidence for the method to handle the case in the example 

 

 Based on Eq.(4.7), Eq.(4.16), Eq.(4.18), and Eq.(4.19), we obtain the left fuzziness of the 

left triangular TRLPS1 = 0 and the right fuzziness the right triangular TRRPS3 = 1.05.  

 Consequently, the Incircle-FRI gets conclusion as trapezoidal fuzzy set B∗ = [4.54 4.54 

7.47 8.53, according to Eq.(4.22).  

 Fig. 103 (see Appendix A.4) shows the results of the FRI methods. The HCL-FRI [42] is 

unable to generate a conclusion in this case. The KH-FRI [3], [25], [39], the KHstabilized-

FRI [5], the VKK-FRI [4], and the HTY-FRI [53] generate an abnormal trapezoidal fuzzy 

set. In contrast, the CCL-FRI [52], the HS-FRI [22], and the proposed Incircle-FRI 

generate CNF trapezoidal fuzzy sets.  

Concerning ratios of the fuzziness of the two rules (A1 ⇒ B1) and (A2 ⇒ B2) obtained by 

Eq.(4.13) and Eq.(4.14), and Table 4, we can see that : 

 The left ratio fuzziness RF.PS1 (A1, B1) = 0.5, RF.PS1 (A2, B2) = 1, and the left ratio 

fuzziness RF.PS1 (A∗, B∗) of the proposed Incircle-FRI and CCL-FRI are 0.64 and 0.69. 

Therefore, the proposed Incircle-FRI and CCL-FRI methods satisfy property 1, where MIN 
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(RF.PS1 (A, B)) ≤ RF.PS1(A∗, B∗) ≤ MAX (RF.PS1(A, B)) is equal 0.5 ≤ [Incircle(0.64), 

CCL(0.69)] ≤ 1.  

 With the right ratio fuzziness, we can also see that the ratio RF.PS3 (A1, B1) = RF.PS3 (A2, 

B2) = 1, and RF.PS3 (A∗, B∗) of the proposed Incircle-FRI, HTY FRI, HS FRI, CCL FRI, 

KHstabilized-FRI, and KH-FRI methods are 1, 1.62, 0.71, 1, 1, and 1, respectively. We 

can see that the right ratio fuzziness RF.PS3 (A∗, B∗) of the proposed Incircle-FRI, CCL 

FRI, KHstabilized-FRI, and KH-FRI satisfy Property 2.  

Based on the above, the fuzzy interpolative reasoning results of the proposed method are 

logically consistent in terms of Property 1 and Property 2. 
 

Table 4. Fuzzy Interpolative Reasoning Results of Example TP1 

Attribute Values Methods 
Results of Fuzzy 

Interpolative reasoning 

A1=[0 4 5 6] 

A2=[11 12 13 14] 

B1=[0 2 3 4] 

B2=[10 11 12 13]  

A*=[6 6 9 10] 

KH-FRI [3], [25], [39] 

KHstabilized-FRI [5] 

VKK-FRI [4] 

CCL-FRI [52] 

HS-FRI [22] 

HTY-FRI [53] 

HCL-FRI [42] 

B∗=(5.45 4.25 7.50 8.5) 

B∗=(5.45 4.25 7.50 8.5) 

B∗=(5.32 4.38 7.38 8.68) 

B∗=(4.25 4.25 7.5 8.5) 

B∗=(5.23 5.23 7.61 8.32) 

B∗=(4.98 7.44 6.44 8.06) 

B∗=(-) 

The Incircle-FRI B∗=(4.54  4.54 7.47  8.53) 

Note: the sign (-) indicates no clear evidence for the method to handle the case in the example 

 

Example TP2 [52], [59]:  

 The rule antecedents and the observation are triangular fuzzy sets; the consequents are 

trapezoidal fuzzy sets.  

 Observation A∗ = [7, 8, 9]. 

Table 5 and Fig. 104 (see Appendix A.5) show all the results of the FRI methods and attributes 

values of this example, based on Eq.(4.6), Eq.(4.7), Eq.(4.16), Eq.(4.17), Eq.(4.18), and 

Eq.(4.19) the conclusion of the Incircle-FRI can be calculated by the fuzzy interpolation of the 

fuzzy sets A1, A2, B1, and B2; therefore, we conclude the following: 

 The reference points GPx.B∗
L = 5.331, GPx.B∗

R = 6.435, and MP.B* = 5.9. 

 The fuzziness values of the left triangular are TRLPS1 = 0.3233 and TRLPS3 = 0.0. 

 The fuzziness values of the right triangular are TRRPS1 = 0.0 and TRRPS3 = 0.898.  

 Therefore, the Incircle-FRI produced a trapezoidal fuzzy conclusion B∗ = [5.01 5.90 5.90 

7.33], which is calculated by Eq.(4.23).  

 In this case, the HCL-FRI is unable to generate any conclusion. The conclusion of the KH-

FRI [3], [25], [39], the KHstabilized-FRI [5], and the VKK-FRI [4] are not convex and 
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normal. The CCL-FRI [52], the HS-FRI [22], the HTY-FRI [53], and the Incircle-FRI 

generate CNF trapezoidal conclusion.  

Based on by Eq.(4.13) and Eq.(4.14), and Table 5, the ratios of fuzziness the two adjacent rules 

(A1 ⇒ B1, A2 ⇒ B2), and the ratios of fuzziness of the observation and conclusion (A∗ ⇒ B∗) of 

the FRI methods.  

 The left ratio fuzziness of RF.PS1 (A1, B1) = 0.4, RF.PS1 (A2, B2) = 0.5, and the left ratio 

fuzziness RF.PS1 (A∗, B∗) of the proposed Incircle-FRI, the HS FRI, the CCL FRI, and 

HTY-FRI are 0.44, 0.43, 0.44, and 0.33, respectively, therefore, the proposed Incircle-FRI, 

the HS FRI, and the CCL-FRI satisfy property 1, where MIN (RF.PS1 (A1, B1), RF.PS1 (A2, 

B2)) ≤ RF.PS1 (A∗, B∗) ≤ MAX (RF.PS1 (A1, B1), RF.PS1 (A2, B2)), which is equal 0.4 ≤ 

(0.44, 0.44, 0.43) ≤ 0.5.  

 In the right ratio fuzziness, we can also see that the ratio RF.PS3 (A1, B1) = RF.PS3 (A2, B2) 

= 1, and RF.PS3 (A∗, B∗) of the proposed Incircle-FRI, the HS FRI, the CCL FRI, HTY 

FRI, KHstabilized-FRI, and KH-FRI are 1, 0.67, 1, 0.21, 1, and 1. Therefore, the right ratio 

fuzziness RF.PS3 (A∗, B∗) of the proposed Incircle-FRI, CCL FRI, KHstabilized-FRI, and 

KH-FRI satisfy Property 2.  

Based on the above, the fuzzy interpolative reasoning results of the proposed method are 

logically consistent in terms of Property 1 and Property 2. 
 

Table 5. Fuzzy Interpolative Reasoning Results of Example TP2 

Attribute Values Methods 
Results of Fuzzy 

Interpolative reasoning 

A1=[0 5 6] 

A2=[11 13 14] 

B1=[0 2 3 4] 

B2=[10 11 12 13] 

A*=[7 8 9] 

KH-FRI [3], [25],[39] 

KHstabilized-FRI [5] 

VKK-FRI [4] 

CCL-FRI [52] 

HS-FRI [22] 

HTY-FRI [53] 

HCL-FRI [42] 

B∗=(6.36 5.38 6.38 7.38) 

B∗=(6.36 5.38 6.38 7.38) 

B∗=(6.16 5.38 6.38 7.84) 

B∗=(4.94 5.38 6.38 7.38) 

B∗=(5.93 6.36 6.80 7.47) 

B∗=(5.87 6.20 7.20 7.41) 

B∗=(-) 

The Incircle-FRI B∗=(5.01 5.90 5.90 7.33) 

Note: the sign (-) indicates no clear evidence for the method to handle the case in the example 

 

Example TP3 [52]:  

 The rule antecedents and the observation are trapezoidal fuzzy sets; the consequents are 

triangular fuzzy sets.  

 Observation A∗ = [6, 6, 9, 10].  

Table 6 and Fig. 105 (see Appendix A.6) show all the results of the FRI methods and attributes 

values to this example. The representative values of the proposed Incircle-FRI are determined 

by the fuzzy interpolation of the fuzzy sets A1, A2, B1, and B2 using Eq.(4.6), Eq.(4.7), 

Eq.(4.16), Eq.(4.17), Eq.(4.18), and Eq.(4.19). This case,  
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 The reference points GPx.B∗
L = 4.3748 and GPx.B∗

R = 6.6639. 

 The fuzziness values of the left triangular are TRLPS1 = 0 and TRLPS3 = 0. 

 The fuzziness values of the right triangular are TRRPS1 = 0 and TRRPS3 = 1.90.  

 The proposed Incircle-FRI produced a trapezoidal fuzzy conclusion B∗ = [4.37 4.37 6.66 

8.57] that is calculated according to Eq.(4.22).  

 The KH-FRI [3], [25], [39], the KHstabilized-FRI [5], and the HTY-FRI [53] cannot 

generate a convex and normal fuzzy conclusion. Meanwhile, the CCL-FRI [52], the HS-

FRI [22], and the VKK-FRI [4] have a CNF trapezoidal fuzzy conclusion.  

Based on Eq.(4.13) and Eq.(4.14), and Table 6, the left ratio fuzziness of the Rule1 (A1 ⇒ B1) 

RF.PS1 (A1, B1) = 0.5 and the ratio of the Rule2 (A2 ⇒ B2) RF.PS1 (A2, B2) = 1. Thus, we can 

see that: 

 The left ratio fuzziness RF.PS1 (A∗, B∗) of the proposed Incircle-FRI and CCL-FRI are 

0.64 and 0.69. Therefore, the proposed Incircle-FRI and CCL-FRI satisfy property 1, 

where MIN (RF.PS1 (A1, B1), RF.PS1 (A2, B2)) = 0.5 ≤ RF.PS1 (A*, B*) [Incircle (0.64), 

CCL (0.69)] ≤ MAX (RF.PS1 (A1, B1), RF.PS1 (A2, B2)) = 1.  

 For the right ratio fuzziness, the ratio RF.PS3 (A1, B1) = RF.PS3 (A2, B2) = 2, and the right 

ratio fuzziness RF.PS3 (A∗, B∗) of the proposed Incircle-FRI, CCL FRI, the HTY FRI, HS 

FRI, the VKK-FRI, the KHstabilized-FRI, and the KH-FRI methods are 2, 2, 2.8, 3.1, 3.3, 

2, and 2, respectively. We can see that only RF.PS3 (A∗, B∗) of the proposed Incircle-FRI, 

CCL FRI, the KHstabilized-FRI, and the KH-FRI satisfy Property 2, in which RF.PS3 (A1, 

B1) = RF.PS3 (A2, B2) = RF.PS3 (A∗, B∗) = 2.  

Based on the above, the fuzzy interpolative reasoning result of the proposed method is logically 

consistent in terms of Property 1 and Property 2. 

 
Table 6. Fuzzy Interpolative Reasoning Results of Example TP3 

Attribute Values Methods 
Results of Fuzzy 

Interpolative reasoning 

A1=[0 4 5 6] 

A2=[11 12 13 14] 

B1=[0 2 4] 

B2=[10 11 13] 

A*=[6 6 9 10] 

KH-FRI [3],[25],[39] 

KHstabilized-FRI [5] 

VKK-FRI [4] 

CCL-FRI [52] 

HS-FRI [22] 

HTY-FRI [53] 

HCL-FRI [42] 

B∗=(5.45 4.25 6.50 8.50) 

B∗=(5.45 4.25 6.50 8.50) 

B∗=(5.31 5.38 5.38 8.68) 

B∗=(5.38 5.38 5.38 7.38) 

B∗=(5.46 5.46 5.46 8.55) 

B∗=(5.07 7.26 5.26 8.15) 

B∗=(-) 

The Incircle-FRI B∗=(4.37  4.37  6.66  8.57) 

Note: the sign (-) indicates no clear evidence for the method to handle the case in the example 
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Table 7 presents a summary of evaluation for the proposed Incircle-FRI method compared with 

the current methods (i.e., KH-FRI [3], [25], [39], KHstabilized-FRI [5], VKK-FRI [4], CCL-

FRI [52], HS-FRI [22], HTY-FRI [53], and HCL-FRI [42]) according to the criteria (i.e., "CNF 

property", "different membership functions", which mean there is no restriction the shape of 

the fuzzy sets, "different kinds membership functions of the antecedents and the consequents 

fuzzy rules", "the Approximation capability of the fuzziness and core between the observation 

and conclusion", and "logically consistent with respect to the ratios of fuzziness sides (see 

property 1 and property 2)").  

 
Table 7. Description of the Evaluation Criteria of the Incircle-FRI Method with Existing Methods 

Criteria 

Methods 

KH 

FRI 

[1]-[3] 

KHstabilized-

FRI 

[5] 

VKK 

FRI 

[4] 

HCL 

FRI 

[12] 

HTY 

FRI 

[15] 

CCL 

FRI 

[14] 

HS 

FRI 

[13] 

Incircle

-FRI 

CNF property x x x - - √ √ √ 

Handle Different Membership 

Function 
√ √ √ x - √ √ √ 

The ANT and the CON 

membership functions can be 

different  

√ √ √ x - √ √ √ 

The Approximation capability of 

the fuzziness and core between 

observation and Conclusion 

x x x x x - - √ 

Logically consistent with respect 

to the ratios of fuzziness 
- - x x x √ - √ 

 

From Table 7 we can see that the Incircle-FRI methods satisfy with these five evaluation 

criteria, where the sign (√) indicates the technique is satisfied with all criteria for all selected 

examples, while a sign (-) shows the method has a problem in most examples, and the sign (x) 

indicates the technique does not satisfy with all examples. 

 

SUMMARY 
In this chapter, a new fuzzy interpolative reasoning method called "Incircle-FRI", is 

introduced, which is defined for triangular CNF fuzzy sets, for a single antecedent universe and 

two surrounding rules from the rule-base. The proposed "Incircle-FRI" is based on the incircle 

of a triangular fuzzy number, the Gergonne Point (GP) as a reference point of the triangular 

fuzzy set, and the "fuzziness sides", i.e., the distances of the endpoints of the support, and the 

core from the incircle InTouch points (noted by PS1, PS2, and PS3 in this chapter).  

The proposed method calculates the conclusion by holding the same rate of distances among 

the observation and the two rule antecedents, and the conclusion and the two corresponding 

rule consequents with the Gergonne Points (for the reference point of the conclusion), and with 

the "fuzziness sides" (for the shape of the conclusion). The chapter also extends the suggested 

"Incircle-FRI" to trapezoidal-shaped fuzzy sets by decomposing their shapes to multiple 
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triangular. The generated conclusions are always a CNF fuzzy set for triangular and trapezoidal 

fuzzy sets. The performance of the proposed "Incircle-FRI" is discussed based on numerical 

examples, and a comprehensive comparison to other FRI methods, namely with the (i.e., KH-

FRI [3], [25], [39], KHstabilized-FRI [5], VKK-FRI [4], CCL-FRI [52], HS-FRI [22], HTY-

FRI [53], and HCL-FRI [42]). From the experimental results and Table 7, we can see that the 

proposed method is considered one of the best current FRI methods. Consequently, the 

proposed method provides a useful method as a fuzzy interpolation in dispersed rules-based 

systems. 
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CHAPTER -5-                                          Extensions of the Proposed Incircle-FRI Method 

INTRODUCTION 

In this chapter, we will discuss the extensions of the Incircle-FRI for the hexagonal 

membership function, multidimensional antecedent variables, and extrapolation using the 

shifting ratio and modification of the weighting. Additionally, to prove the performance 

extensions of the "Incircle-FRI" method, some numerical examples will be used to compare 

Incircle-FRI with the existing FRI methods (to KH-FRI [3], [25], [39], KHstabilized-FRI [5], 

VKK-FRI [4], CCL-FRI [52], HS-FRI [22], HTY-FRI [53], HCL-FRI [42], MACI-FRI [6], 

IMUL-FRI [8], and CRF-FRI [7].  

5.1. Extensions of the Incircle-FRI Method  

Traditional fuzzy reasoning methods demand a complete fuzzy rule base to conclude a 

result, but due to incomplete data or lack of knowledge, complete rule bases are not always 

available. Besides, many interpolation methods presume that the two closest adjacent rules to 

the observation are available, and flank the observation for each attribute (but not necessarily 

in the same order). In practice, however, there may be a different number of the closest rules 

to a given observation, and the attribute values of these rules may lie just on one side of the 

observation. Some interpolation methods cannot handle cases where fuzzy sets with crisp 

borders are involved. These limitations inevitably restrict the potential application of some of 

the existing FRI techniques. Although fuzzy interpolation has been applied to control problems 

[95], [96], [97], relatively few application examples exist in the area of prediction and 

classification.  

The proposed "Incircle-FRI" introduced in (Chapter 4) can only handle triangular and 

trapezoidal fuzzy sets. In this chapter, the hexagonal membership functions will be discussed, 

and also to allow interpolation that requires multiple-antecedent rules. For this reason, we 

suggested a modification of the weight estimate and included a shift technique in order to 

ensure that the reference point (GP) of the observation and the reference point (GP) of the 

interpolated (intermediate) observation are mapped together. This weight calculation and shift 

technique ensure more reasonably to interpolate the consequent fuzzy result, and this will also 

enhance the capability for extrapolation. It is shown that exploiting the generality of these 

extensions, and extrapolation can be performed over multiple-antecedent rules in a 

straightforward manner.  

5.1.1. Extension of the Incircle-FRI to single antecedent with hexagonal fuzzy set 

The Incircle concept of a triangular fuzzy number can extend to hexagonal or any complex 

polygonal fuzzy membership functions. A hexagonal fuzzy set based on the Incircle-FRI can 

be represented by two triangular fuzzy sets AL= (a1, a2, a3) and AR= (a4, a5, a6). Fig. 51 

describes the hexagonal fuzzy set representative values, denoted by (a1, a2, a3, a4, a5, a6). a3 and 
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a4 denote the left and right reference points, respectively, a1 and a6 refer to the left and the right 

sides of the support points, respectively, a2 and a5 denote the intermediate points.  
 

 

 

Fig. 51. The Main Incircle_Notations of the Hexagonal Fuzzy Number Represented by Two Triangular Fuzzy 

Sets AL and AR Notations. 

Fig. 52 describes an example of the suggested Incircle fuzzy interpolative reasoning using 

the hexagonal fuzzy set. 

 

Fig. 52. Fuzzy Interpolative Reasoning using Hexagonal Membership Functions 

In the following, we will present the main steps that will be used to interpolate the proposed 

Incircle-FRI reasoning method in case the Hexagonal fuzzy sets, which represented by two AL 

and AR triangular fuzzy sets, Eq.(4.4), Eq.(4.6) and Eq.(4.7) could be used to calculate 

Incircle_Notations of AL and AR triangulars separately, then applying the following steps: 

 

Step 1: The two closest fuzzy rules [56] must be determined to perform interpolative for single 

antecedent fuzzy rules (m), Rule1, Rule2, ..., and Rulem, which are the nearest to the observation 
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A* as shown in Fig. 52. The closest fuzzy rules determined using the average of two reference 

points GPx.AL and GPx.AR of the hexagonal fuzzy set by AVG.GPX=(GPX.AL and GPX.AR)/2. 

Then, distances can be computed using Eq.(5.1). 
 

)..,..(),( ** AGPAVGAGPAVGdAAdD xixi   (5.1) 

 

Step 2: Supposing that two adjacent fuzzy rules A1 and A2 are the left and right antecedent fuzzy 

sets to the observation fuzzy set A∗. Hence, the weight of hexagonal fuzzy rules neighboring 

and observation can be determined for each triangular (the left and right) by Eq.(5.2). 
 

RAGPRAGP

ARGPRAGP
WR

LAGPLAGP

ALGPLAGP
WL

xx

ixx

i

xx

ixx

i

12

*

12

*

..

..
1,

..

..
1









  (5.2) 

 

Step 3: The two reference points GPX.AL and GPX.AR of the fuzzy interpolative reasoning 

result B∗  could be calculated for left and right triangular by Eq.(5.3). 
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Step 4: The fuzziness sides of the B∗ fuzzy set can be calculated for the left triangular by 

Eq.(5.4) and the right triangular by Eq.(5.5). 

 

 

(5.4) 

 

 

(5.5) 

Step 5: Based on the results of steps 3 and 4, the reference points of the conclusion (GPX.BL∗ 

and GPX.BR∗), and the fuzziness sides (PS1 and PS3) could be used to determine the conclusion 

B∗ of the hexagonal fuzzy set. Finally, the conclusion B∗ of the Incircle fuzzy interpolative 

reasoning for the hexagonal fuzzy set can be determined by Eq.(5.6). 
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Because (B*
1 ≤ B*

2 ≤ B*
3 ≤ B*

4 ≤ B*
5 ≤ B*

6), we can see that the proposed method can preserve 

the convexity of the fuzzy interpolative reasoning result with a hexagonal fuzzy set.  

5.1.2. Extension of the Incircle-FRI to multiple fuzzy rules and multiple antecedent 
variables. 

The case described in Chapter 4 concerns interpolation between two adjacent rules, each 

involving one antecedent variable; this means it is easily extendable to rules with multiple 

antecedent variables. Of course, the variables determined in both rules must be the same to 

make sense for interpolation. Therefore, in the following, Incircle-FRI with multiple fuzzy rules 

and multiple antecedent fuzzy interpolative reasoning will be discussed.  

The reasoning scheme below is an example with n number of rules and m number of 

antecedents.  

R1: If X1 is A11 and X2 is A12 ………  and Xm is A1m Then Y is B1; 

R2: If X1 is A21 and X2 is A22 ………  and Xm is A2m Then Y is B2; 

………………………………………………………………. 

Rn: If Xm is Anm and X2 is Anm ………  and Xm is Anm Then Y is Bn; 

Observation: If X1 is 𝐴1
∗  and X2 is 𝐴2

∗   ………  and Xm is 𝐴𝑛
∗ ; 

Conclusion:       Y is B* 

Let us assume that the observation 𝐴1
∗ is flanked by four rules with two antecedents rules 

on each side; namely A11 and A21 on the left, and A31 and A41 on the right of the first antecedent, 

and 𝐴2
∗  is flanked by four rules with two rules on each side; namely A12 and A22 on the left, and 

A32 and A42 on the right of the second antecedent. The four adjacent fuzzy rules are as follows, 

(A11∧A12 → B1, A21∧A22 → B2, A31∧A32 → B3, and A41∧ A42 → B4).  

An example of the Incircle-FRI reasoning using multiple fuzzy rules and multiple 

antecedents described by trapezoidal fuzzy sets is shown in Fig. 53.  

The multiple antecedent fuzzy sets Aij could be denoted by trapezoidal fuzzy set (aij1, aij2, 

aij3, aij4), which can be represented through two triangular fuzzy sets ALij= (aij1, aij2, aijMp; H) 

and ARij= (aijMp, aij3, aij4; H), the observation fuzzy set 𝐴𝑗
∗ is denoted by (𝑎1

∗, 𝑎2
∗¸ 𝑎3

∗, 𝑎4
∗) ((𝐴𝐿𝑗

∗= 

(𝑎1
∗, 𝑎2

∗, 𝑎𝑀𝑝
∗ ; H) and 𝐴𝑅𝑗

∗= (𝑎𝑀𝑝
∗ , 𝑎3

∗, 𝑎4
∗; H)), the consequent fuzzy set Bi is denoted by (bi1, 
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bi2, bi3, bi4) (BLi= (bi1, bi2, aijMp; H) and BRi= (aijMp, bi3, bi4; H)), where i= 1, 2, .., n and j = 1, 

2,…, m and the fuzzy interpolative reasoning result 𝐵∗ is denoted by (𝐵1
∗ , 𝐵2

∗  ̧ 𝐵3
∗ , 𝐵4

∗). 
 

 

Fig. 53. Fuzzy Interpolative Reasoning Using Trapezoidal Membership Functions 

To interpolate the proposed Incircle fuzzy interpolative reasoning method with multiple 

fuzzy rules and multiple antecedents using trapezoidal fuzzy sets (represented by two AL and 

AR triangular fuzzy sets), we need to find all Incircle_Notations in Eq.(4.4) - Eq.(4.7) for each 

triangular (AL, AR), then applying the following steps: 

 

Step 1: The two closest fuzzy rules [56] must be determined to perform interpolative for single 

antecedent fuzzy rules (m), Rule1, Rule2, ... , and Rulen, which are the nearest to the observation 

(Aij ≼ 𝐴𝑖
∗ ≼ Aij+1), as shown in Fig. 53. The closest fuzzy rules determined using the average of 

two reference points GPx.ALij and GPx.ARij of the trapezoidal fuzzy sets via (AVG.GPX.A = 

(GPX.ALij and GPX.ARij)/2). Then, distances can be computed using Eq.(5.7). 
 

)..,..(),(
**

ixijxiij AGPAVGAGPAVGdAAdD   (5.7) 
 

Step 2: The weight calculation between trapezoidal fuzzy rules neighboring and observation 

could be determined by Eq.(5.8) and Eq.(5.9). The reference point of the intermediate 

conclusion B` can be determined by Eq.(5.10). 
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where (s) ∈ [L, R] denote the weight of left and right of the Rulei, (0 ≤ WLij ≤ 1), (0 ≤ WRij 

≤ 1), and i = 1, 2, …, n, j = 1, 2, . . ., m, n denotes the number of rules and m denotes the 

number of antecedent variables. In the example given for illustration in this subsection, n = 4 

and m = 2 as shown in Fig. 53. Holding the property of (WL1j + WL2j = 1), (WR1j + WR2j = 1), 

and (W1 + W2 = 1). 
 

Step 3: The two reference points GPX.AL and GPX.AR of the fuzzy interpolative reasoning 

result B∗ could be calculated for left and right triangular by Eq.(5.11). 
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Step 4: The fuzziness sides of the B∗ fuzzy set can be calculated for the left triangular by 

Eq.(5.12) and for the right triangular by Eq.(5.13). 
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M ∈ [PS1, PS3], PS1 refers to the left fuzziness side and PS3 denotes the right fuzziness side 

for the two triangle fuzzy sets AL and AR. If PS1 or PS3 of A1 and A2 fuzzy sets are bigger than 

zero, then the top part of Eq.(5.12) and Eq.(5.13) could be used to conclude the left fuzziness 

side PS1 and the right fuzziness side PS3 of the fuzziness of B∗ fuzzy set, if both PS1 or PS3 of 

A1 and A2 fuzzy sets are zero, the bottom part of Eq.(5.12) and Eq.(5.13) could be used. 
 

Step 5: Based on the results of step 3 and 4, the reference points (GPX.BL∗ and GPX.BR∗), and 

the fuzziness sides (PS1 and PS3) could be used to determine the conclusion B∗ of the trapezoidal 

fuzzy set, which based on the following cases: 
 

1. In case  the results of the left and right B*TRL and B* TRR triangulars fuzzy sets have the 

same values; then, the conclusion can be determined by Eq.(5.14). 
 

B∗ = [GPX.BL∗, GPX.BL∗, GPX.BR∗, GPX.BR∗] (5.14) 

   

2. In case  the result of the left triangular B*TRL has the same values, and the right triangular 

B*TRR has the same values too, but both left and right values are not the same. The 

conclusion values could be defined by (GPx1x2 = (GPX.BL∗ + GPX.BR∗)/2) as follows. 
 

B∗ = [GPx1x2, GPx1x2, GPx1x2, GPx1x2] (5.15) 
 

3. In case  the left has the same values, we will use B*L, but in case the right has the same 

values, we will use B*R, then the conclusion can be determined by Eq.(5.16). 
 

BL∗ = [GPx.B*L, GPx.B*L, GPx.B*R, GPx.B*R+B*R(ps3)]  

  BR∗ = [GPx.B*L-B*L(ps1), GPx.B*L, GPx.B*R, GPx.B*R] 
(5.16) 

 

4. In case  all values result from the left and the right triangles are different. The conclusion 

can be determined by Eq.(5.17). 
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5.1.3.Extension of the Incircle-FRI to extrapolation using shift ratio and weight 

measurement 

The Incircle-FRI method is constructed to perform "Interpolation". Still, it cannot handle 

"Extrapolation" mainly due to two factors, which are the weight derivation and the lack of shift 
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in a fuzzy set. In the following, we will debate the modification in weight derivation and 

introduce the shifting process. 

5.1.3.1. Extended weight computation 

To extend the Incircle-FRI method to be usable in extrapolation, the weight computation 

must be extended. The weight computation, as defined Eq.(5.9) is suitable for two adjacent 

single antecedent fuzzy rules, but it is unsuitable for handling more rules and multiple 

antecedents. To solve this issue, in [57], extend weight computation is suggested for more rules. 

The weight computation not only for the closest rules but also gives adequate weights to 

furthest rules. 

Fig. 54 represents an example of the various antecedent fuzzy sets with different distances, 

dis(1)=4, dis(2)= 7, dis(3)=10, dis(4)=3, dis(5)=6, dis(6)=36, dis(7)=40. To explain that, let fuzzy 

set A2 be the observation, and the rest of the fuzzy sets be neighboring rules. Thus, the current 

implementation will take the distance between fuzzy set A1 and A4, which is dis(3) as the 

denominator for Eq.(5.8).  

 

 

Fig. 54. Fuzzy Sets Distance Measure 

The extended weight computation, an overall distance measure, was considered for the 

divisor as in given Eq.(5.18). The denominator of the equation sums up all distances between 

the observation and rules. Normalization on the weights must be performed to each antecedent 

domain, as presented in Eq.(5.19). This method holds the respective value of the weight, and 

it even shows that the farthest distance of rules does not influence the weight distribution. 
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For more details about the difference between the original and extended weight, in [57] a 

comparison between them was determined, for example, the weight assigned for furthest rule 

from the observation is higher compared to the original method, in the case of using four rules, 

the weight between A2A5 fuzzy sets is 0.036. While, in extended weight, weight is more shared 

towards the furthest rule, where A2A5 is 0.088.  

Let us take an extrapolation example (see Fig. 54), the fuzzy set A1 is the observation and 

fuzzy set A2, A3, and A4 are the three nearest rule. The distance between all fuzzy sets remains 

the same. In this example, the extreme rules distance is represented by dis(5). When computing 

the weight value for WA1A3 and WA1A4 using Eq.(5.9), the negative weight value will arise 

because the numerator is larger than the denominator. This problem can be resolved using 

Eq.(5.19) instead, which will also assist in establishing the extrapolation capability, which will 

be further discussed in the following. 

5.1.3.2. Extended Shift Ratio 

The reference point (GP) of the rule sets can be successfully applied to interpolate the 

consequent if the only two most adjacent rules are considered. By implementing the weights 

obtained from Eq.(4.9), an interpolated observation can be calculated at the same (GP) as the 

real observation. This guarantees that the fuzzy conclusion is interpolated the distance of (GP) 

of the observation and rules’ antecedent (see, e.g., in Fig. 47).  

Nevertheless, when more than two rules are included, the intermediate observation, GpA′, 

does not share the same (GP) as the observation, A∗, as shown in Fig. 55. GpA′ is derived from 

extended weight, where WA1A2 = 0.346, WA2A3 = 0.384, and WA2A4 = 0.269 with their reference 

point (GP) at e.g., A1 = 3, A2 = 8, A3 = 10, and A∗ = 5. 𝐺𝑝𝐴𝑗
,
 is determined by Eq.(5.20): 

 

,
1

ij

n

i

ijj GPAwAGP 


  (5.20) 

 

where i = 1, 2, . . ., n refer to the number of rules, j = 1, 2, . . ., m refer to the number of 

antecedents and 𝐺𝑝𝐴𝑗
,  . In the above example, GpA′ is computed, which is 5.648. A shift of 

GpA′ to GpA∗ is required to align the intermediate observation to be the same reference point 

(GP) of the original observation. 
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Fig. 55. Interpolation Involving Three Rules 

A shift ratio can be derived using the distance between (GP) of the observation and the 

intermediate fuzzy set. The shift ratio δA can be calculated by Eq.(5.21): 
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Where  
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The reference point (GP) of the last fuzzy rule in the antecedent is indicated by GPAnj, 

where j = 1, 2, . . ., m denotes the number of antecedents. Eq.(5.22) computes the shift ratio 

across an antecedent domain using (GP) distance between the observation and the intermediate 

rule concerning (GP) distance of the first and the last rule. As shown in Eq.(5.21) is the average 

of the result of Eq.(5.22) from all antecedents fuzzy sets.  

The reference point of the fuzzy conclusion, GPX.B∗, is next calculated by the shift ratio δA 

and the intermediate consequent from Eq.(5.10) as b′ using the following: 

 
 

)...(.. 1

* BGPxBGPxBGPxBGPx nA    (5.23) 

 

In our example (see Fig. 55), the reference point of the fuzzy conclusion GPX.B∗ is 4.615. 

This shift ratio implementation enables the possibility of extrapolation. Let us consider the 

same example, there are only two rules, A2 → B2 and A3 → B3, with observation A∗ to show an 

extrapolation example. Using Eq.(5.19), we get WA*A2= 0.60 and WA*A3= 0.40, GpA′ = 9.6 from 
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Eq.(5.20), and with Eq.(5.10) we have GPx.B′ = 8.20. The shift ratio δA is -1.512 computed 

from Eq.(5.21), the difference between consequents (B3 - B2) fuzzy sets is 3, and the 

extrapolated reference point is GPX.B∗ = 3.66 by Eq.(5.23).  

5.2. Experimental results 

In this subsection, several experiments and comparisons are conducted based on the 

extensions of the Incircle-FRI in comparison with different FRI methods. Firstly, we present 

one example, which aims to prove the performance of the Incircle-FRI with the hexagonal 

fuzzy set according to the results of the FRI methods (KH-FRI [3], [25], [39], KHstabilized-

FRI [5], VKK-FRI [4], CCL-FRI [52], HS-FRI [22], HTY-FRI [53], HCL-FRI [42]). Secondly, 

we present two different examples (using triangular and trapezoidal fuzzy sets) aim to prove 

the validity of the proposed method in case multi antecedent variables comparing to the results 

of the FRI methods (KH-FRI [3], [25], [39], KHstabilized-FRI [5], VKK-FRI [4], CCL-FRI 

[52], HS-FRI [22], HTY-FRI [53], HCL-FRI [42], MACI-FRI [6], IMUL-FRI [8], and CRF-

FRI [7]). Thirdly, we introduce two different examples (using single and multi-antecedents 

variables) to check the performance of the Incircle-FRI with extrapolation property with the 

FRI methods (KH-FRI [3], [25], [39], KHstabilized-FRI [5], VKK-FRI [4], HTY-FRI [53], 

HCL-FRI [42], MACI-FRI [6], IMUL-FRI [8], and CRF-FRI [7]). The KH-FRI, the 

KHstabilized-FRI, VKK-FRI, the MACI-FRI, the IMUL-FRI, and the CRF-FRI methods were 

tested by the Matlab FRI toolbox [24], [26]. 

5.2.1. Incircle-FRI with Hexagonal fuzzy set 

Example HEX1 [22], [58], [59]:  

 All the rule antecedents, consequents, and the observation are hexagonal fuzzy sets.  

 The observation describes by hexagonal fuzzy set A∗ = [6, 6.5, 7, 9, 10, 10.5].  

Table 8 and Fig. 106 (see Appendix A.7 

) show all the results of the FRI methods and attributes values to this example as follows: 

 The representative values of the Incircle-FRI are determined by the fuzzy interpolation of 

the fuzzy sets A*, A1, A2, B1, and B2 using Eq.(4.6), Eq.(4.7), Eq.(5.2), Eq.(5.3), Eq.(5.4), 

and Eq.(5.5) that produce a hexagonal fuzzy conclusion B∗ = [5.59 6.02 6.55 8.63 9.52 

10.13]. 

 By Eq.(5.3), we determined the reference points of the Left triangular GPx.B∗
L

 = 6.017 and 

Right triangular GPx.B∗
R

 = 9.52. 

 By Eq.(5.4) and Eq.(5.5), the Left and Right fuzziness sides of the left triangular value are 

calculated, where (TRLPS1 = 0.424, TRLPS3 = 0.531), the Left and Right fuzziness sides 

values of the right triangular are (TRRPS1 = 0.898, TRRPS3 = 0.601).  

 The results of the suggested methods the KH-FRI [3], [25], [39], the VKK-FRI [4], The 

CCL-FRI [52], and the HS-FRI [22] generate CNF hexagonal fuzzy conclusion. In 
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contrast, the KHstabilized-FRI [5] cannot produce a CNF conclusion, the HTY-FRI [53], 

and HCL-FRI [42] have no conclusion at all. 
 

Table 8. Fuzzy Interpolative Reasoning Results of Example HEX1 

Attribute Values Methods 
Results of Fuzzy  

Interpolative reasoning 

A1=[0 1 3 4 5 5.5] 

A2=[11 11.5 12 13 13.5 14] 

B1=[0 0.5 1 3 4 4.5] 

B2=[10.5 11 12 13 13.5 14]  

A*=[6 6.5 7 9 10 10.5] 

KH-FRI [3],[25],[39] 

KHstabilized-FRI [5] 

VKK-FRI [4] 

CCL-FRI [52] 

HS-FRI [22] 

HTY-FRI [53] 

HCL-FRI [42] 

B∗=(5.73 5.74 5.75 5.89 7.25 8.56) 

B∗=(5.73 5.87 6.00 5.89 7.25 8.56) 

B∗=(5.60 5.69 5.71 6.26 7.46 8.68) 

B∗=(5.2 5.4 5.7 8.6 9.7 10.2) 

B∗=(5.47 5.79 6.08 8.42 9.23 9.70) 

B∗=(-) 

B∗=(-) 

The Incircle-FRI B∗=(5.59 6.02 6.55 8.63 9.52 10.13) 

Note: the sign (-) indicates no clear evidence for the method to handle the case in the example 
 

5.2.2. Incircle-FRI with multiple fuzzy rules having multiple antecedents 

Example MultiA1 [52]:  

 The Incircle-FRI with multiple antecedent variables where the fuzzy rules are A11∧ A12 ⇒ 
B1, A21∧ A22 ⇒ B2, and the observations 𝐴1

∗ and 𝐴2
∗ are given to determine the 

consequence B∗. All the rule antecedents, consequents, and the observation are 
trapezoidal fuzzy sets. 

 Observation: A*
1= [6 7 9 11], A*

2= [6 8 10 12]. 

 By Eq.(5.20), we derive the intermediate observation of the first antecedent 𝐴1
,
 is (Left 

triangular AL. 𝐴1
,
=7.5 and Right triangular AR. 𝐴1

,
=7.28) and for the second antecedent 

𝐴2
,  is (Left triangular AL. 𝐴2

,
=9.32 and Right triangular AR. 𝐴2

,
=9.50). 

  Using the derived intermediate reference points (GP) 𝐴1
,
, and 𝐴2

,
 , the computed shift ratio 

from each antecedent domain are determined by Eq.(5.22), where 𝛿A1 is (for the AL= -

0.06 and AR=0.06) and 𝛿A2 is (for the AL= -0.04 and AR=0.04). The average shift ratio 

could be defined by Eq.(5.21) is 𝛿A1 ≈ 0 and 𝛿A2 ≈ 0.  

 Using Eq.(5.10), the intermediate fuzzy consequent reference point is computed, where 

the reference point of the left triangular (GPx.BL′ = 5.96) and the reference point of the 

right triangular (GPx.BR′ = 7.86).  

 Using Eq.(5.23) and the average of the shift ratios, we derive the reference points of the 

left triangular GPx.BL*= 5.96 and the reference point of the right triangular GPx.BR*= 

7.86. 

 According to Eq.(5.12) and Eq.(5.13), we can compute the left and right fuzziness sides 

of the triangles required to find both extreme points of the fuzzy consequent set. The Left 
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fuzziness side of the left triangular (AL.PS1) and the Right fuzziness side of the right 

triangular (AR.PS3) are (AL.PS1.B∗ = 1.2) and (AR.PS3.B∗= 2.0), respectively.  

 The fuzzy consequent result hence is formed as B∗ = (4.75 5.96 7.86 9.89).  

 The conditions and fuzzy interpolative reasoning results are shown in Table 9 and Fig. 

107 (see Appendix A.8). There is no obvious indication for the HCL-FRI [42] and the HTY-

FRI [53] to handle the fuzzy interpolation with multiple antecedent variables. From Fig. 

107 (see Appendix A.8), we can see that the KH method [3], [25], [39], KHstabilized-FRI 

[5], VKK-FRI [4], the HS-FRI [22], CCL-FRI [52], MACI-FRI [6], IMUL-FRI [8], and 

CRF-FRI [7], and the Incircle-FRI all generated convex and normal results. 
 

Table 9. Fuzzy Interpolative Reasoning Results of Example MultiA1 

Attribute Values Methods 
Results of Fuzzy  

Interpolative reasoning 

A11=[0 4 5 6] 

A12=[1 2 3 4] 

B1=[0 2 3 4] 

A21=[11 12 13 14] 

A22=[12 14 15 16] 

B2=[10 11 12 13] 

A*
1=[6 7 9 11] 

A*
2=[6 8 10 12] 

KH-FRI [3],[25],[39] 

KHstabilized-FRI [5] 

VKK-FRI [4] 

CCL-FRI [52] 

HS-FRI [22] 

HTY-FRI [53] 

HCL-FRI [42] 

MACI-FRI [6] 

IMUL-FRI [8] 

CRF-FRI [7] 

B∗=(5 6.15 8.0 9.88) 

B∗=(5 6.15 8.0 9.88) 

B∗=(4.9 6.11 8.12 9.88) 

B∗=(4.82 6.17 7.83 9.83) 

B∗=(4.37 5.55 7.48 9.33) 

B∗=(-) 

B∗=(-) 

B∗=(5.32 6.87 7.37 7.87 8.87) 

B∗=(4.3 6.6 7.6 10.68) 

B∗=(4.89 6.3 8.0 9.4) 

The Incircle-FRI B∗=(4.75 5.96 7.86 9.89) 

Note: the sign (-) indicates no clear evidence for the method to handle the case in the example 

 

Example MultiA2 [52], [57]:  

 Incircle-FRI with multiple antecedent variables where the fuzzy rules are A11∧ A12 ⇒ B1, 
A21∧ A22 ⇒ B2, A31∧ A32 ⇒ B3, and the observations 𝐴1

∗ and 𝐴2
∗ are given to determine the 

consequence B∗. All the rule antecedents, consequents, and the observation are 
trapezoidal fuzzy sets. 

 Observation: A*
1= [3.5 5 5 7], A*

2= [5 6 6 7]. 

 According to Eq.(5.20), we derive the intermediate observation of the first antecedent 𝐴1
,
is 

(AL 𝐴1
,
 =5.30 and AR 𝐴1

,
 =5.74) and for the second antecedent 𝐴2

,  is (AL 𝐴2
,
 =5.30 and AR 

𝐴2
,
 =5.74).  

 Using the derived intermediate reference points (GP), the computed shift ratio from each 

antecedent domain are determined by Eq.(5.22), where 𝛿A1 = (for the AL= -0.373 and 

AR= 0.0373) and 𝛿A2 = (for the AL= -0.0373 and AR=0.0373). The average shift ratio 

based on Eq.(5.21) is 𝛿A1 ≈ 0 and 𝛿A2 ≈ 0.  
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 Using Eq.(5.10), the intermediate fuzzy consequent reference point is computed where 

GPx.BL′ = 6.27 and GPx.BR′ = 6.27.  

 Using Eq.(5.23) and the average of the shift ratios, we derive the reference points of the 

left triangular GPx.BL*= 6.27 and the reference points of the right triangular GPx.BR*= 

6.27.   

 According to Eq.(5.12) and Eq.(5.13), we can compute the left and right fuzziness sides 

of the triangles that is required to find both extreme points of the fuzzy consequent set. The 

Left fuzziness side of the left triangular (AL.PS1) and the Right fuzziness side of the right 

triangular (AR.PS3) are (AL.PS1.B∗ = 1.54) and (AR.PS3.B∗ = 1.27), respectively. 

 The fuzzy consequent result hence is formed as B∗ = (4.73 6.27 6.27 7.55). 

 The fuzzy interpolative reasoning methods results are shown in Table 10 and Fig. 108 (see 
Appendix A.9 

 ), there is no obvious indication for the HCL-FRI [42] and the HTY-FRI [53] to handle the 
fuzzy interpolation with multiple antecedent variables. From Fig. 108 (see Appendix A.9 

 ), we can see that the KH method [3], [25], [39], KHstabilized-FRI [5], VKK-FRI [4], the 

HS-FRI [22], CCL-FRI [52], MACI-FRI [6], IMUL-FRI [8], and CRF-FRI [7], and the 

Incircle-FRI all generated convex and normal results. 
 

Table 10. Fuzzy Interpolative Reasoning Results of Example MultiA2 

Attribute Values 

Folder 1 
Methods 

Results of Fuzzy  

Interpolative reasoning 

A11=[0 1 1 3] 

A12=[1 2 2 3] 

B1=[0 2 2 3] 

A21=[8 9 9 10] 

A22=[7 9 9 10] 

B2=[9 10 10 11] 

A31=[11 13 13 14] 

A32=[11 12 12 13] 

B3=[12 13 13 14] 

A*
1=[3.5 5 5 7] 

A*
2=[5 6 6 7] 

KH-FRI [3],[25],[39] 

KHstabilized-FRI [5] 

VKK-FRI [4] 

CCL-FRI [52] 

HS-FRI [22] 

HTY-FRI [53] 

HCL-FRI [42] 

MACI-FRI [6] 

IMUL-FRI [8] 

CRF-FRI [7] 

 

B∗=(4.67 6.24 6.24 7.57) 

B∗=(6.21 7.66 7.66 8.9) 

B∗=(4.87 6.26 6.26 7.53) 

B∗=(4.79 6.22 6.22 7.54) 

B∗=(6.19 7.65 7.65 8.96) 

B∗=(-) 

B∗=(-) 

B∗=(5.23 6.57 6.57 7.57) 

B∗=(4.1 6.25 6.25 8.89) 

B∗=(5.39 6.25 6.25 7.25) 

The Incircle-FRI B∗=(4.73 6.27 6.27 7.55) 

Note: the sign (-) indicates no clear evidence for the method to handle the case in the example 
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5.2.3. Incircle-FRI with extrapolation  

Example Ext1:  

 The Incircle-FRI with multiple antecedent variables where the fuzzy rules are A1 ⇒ B1, A2 

⇒ B2, and the observation A* is given to determine the consequence B∗. All the rule 

antecedents, consequents, and the observation are triangular fuzzy sets (with single 
antecedent). 

 Observation: A*= [0 1 3]. 
Now, let us study the situation of the fuzzy extrapolation, where the problem exists when 

rules are chosen for interpolation, all rules appear on a single side of the observation. Fig. 109 
(see Appendix A.10 

) illustrates an example with both fuzzy rules appearing on the right side of the observation.  
 The (GpA′) of the intermediate fuzzy set is calculated using Eq.(5.20) as GpA′= 6.33.  

 By the derived (GpA′) of the fuzzy set, we can get shift ratio by Eq.(5.21), 𝛿A= -1.32.  

 By Eq.(5.10), the intermediate consequent’s (GPB′) is computed, where GPx.B′= 5.99, 

and using Eq.(5.23), the reference point (GP) of the shifted fuzzy consequent set GPx.B∗ 

= 5.99.  

 According to Eq.(4.11) , the left and right fuzziness sides are PS1(B∗) = 0.83 and PS3(B∗) 

= 1.28, respectively.  

 Using Eq.(4.12), we can derive the extrapolated fuzzy consequent result as B∗ = (5.16 5.99 

7.28).  

 The fuzzy interpolative reasoning methods results, which are shown in Table 11 and Fig. 

109 (see Appendix A.10 

 ), there is no obvious indication for the KH method [3], [25], [39], KHstabilized-FRI [5], 

VKK-FRI [4], HCL-FRI [42], HTY-FRI [53], MACI-FRI [6], IMUL-FRI [8], and CRF-

FRI [7] to handle the fuzzy interpolation with extrapolation. Fig. 109 (see Appendix A.10 

 ) shown that the KHstabilized-FRI [5] and the Incircle-FRI are generating a conclusion 

with convex and normal results. 

 
Table 11. Fuzzy Interpolative Reasoning Results of Example Ext1 

Attribute Values Methods 
Results of Fuzzy  

Interpolative reasoning 

A1=[3.5 5 7]; 

A2=[8 9 10] ; 

B1=[3 4 5]; 

B2=[9 10 11]; 

A_obs=[0 1 3]; 

 

 

KH-FRI [3], [25],[39] 

KHstabilized-FRI [5] 

VKK-FRI [4] 

HTY-FRI [53] 

HCL-FRI [42] 

MACI-FRI [6] 

IMUL-FRI [8] 

CRF-FRI [7] 

B∗=(-) 

B∗=(4.82 6 6 7.18) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

The Incircle-FRI B∗=(5.16 5.99 7.28) 
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Note: the sign (-) indicates no clear evidence for the method to handle the case in the example 

 

Example Ext2:  

 The Incircle-FRI with multiple antecedent variables where the fuzzy rules are A11 ∧ A12 ⇒ 

B1, A21 ∧ A22 ⇒ B2, and the observations 𝐴1
∗ and 𝐴2

∗ are given to determine the consequence 
B∗. All the rule antecedents, consequents, and the observation are triangular fuzzy sets 

(with multiple antecedents). 

 Observation: A*
1= [3.5 5 7], A*

2= [5 6 7]. 

 Now, let us consider the situation of the fuzzy extrapolation, where the problem exists 

when rules are chosen for interpolation, all rules appear on a single side of the observation. 
Fig. 110 (see  Appendix A.11 

 ) describes an example with both fuzzy rules appearing on the right side of the 
observations.  

 Using Eq.(5.20), the reference point (GpA′) of the intermediate fuzzy set is calculated as 

𝐴1
,
= 10.32 and 𝐴2

,
= 9.97.  

 Using Eq.(5.21) and the derived reference points of the intermediate fuzzy sets, we can 

get an average shift ratio, 𝛿A = -1.32.  

 By Eq.(5.10), the intermediate consequent’s (GPB′) is computed, where GPx.B′= 10.99, 

and using Eq.(5.23), the reference point (GP) of the shifted fuzzy consequent set GPx.B∗ 

= 7.02.  

 According to Eq.(4.11), the left and right triangle fuzziness sides are PS1(B∗) = 0.87 and 

PS3(B∗) = 1.42, respectively. 

  Using Eq.(4.12), we can derive the extrapolated fuzzy consequent result as B∗ = (6.15 

7.02 8.44).  

 The conditions and fuzzy interpolative reasoning results are shown in Table 12 and Fig. 

110 (see Appendix A.11 

 ). There is no obvious indication for the KH method [3], [25], [39], KHstabilized-FRI [5], 

VKK-FRI [4], HCL-FRI [42], HTY-FRI [53], MACI-FRI [6], IMUL-FRI [8], and CRF-

FRI [7] to handle the fuzzy interpolation with extrapolation. From Fig. 110 (see Appendix 

A.11 

 ), we can see that the KHstabilized-FRI [5] and the Incircle-FRI are generating a 

conclusion with convex and normal results. 
 

Table 12. Fuzzy Interpolative Reasoning Results of Example Ext2 

Attribute Values Methods 
Results of Fuzzy  

 Interpolative reasoning 
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A11=[8 9 10] 

A12=[7 9 10] 

B1=[9 10 11] 

A21=[11 13 14] 

A22=[11 12 13] 

B2=[12 13 14] 

A*
1=[3.5 5 7] 

A*
2=[5 6 7] 

KH-FRI [3],[25],[39] 

KHstabilized-FRI [5] 

VKK-FRI [4] 

HTY-FRI [53] 

HCL-FRI [42] 

MACI-FRI [6] 

IMUL-FRI [8] 

CRF-FRI [7] 

B∗=(-) 

B∗=(10 11 11.94) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

The Incircle-FRI B∗=(6.15 7.02 8.44) 

Note: the sign (-) indicates no clear evidence for the method to handle the case in the example 

SUMMARY 
Chapter 5 has presented some extensions of the proposed Incircle-FRI method introduced 

in chapter 4. The extensions include the following features: handling hexagonal membership 

functions and handling multiple fuzzy rules having multiple antecedents. Further, enabling the 

capability of extrapolation, for this reason, the original Incircle-FRI was extended with a 

modified general weight calculation and shift process, where the weight between the 

observation and the neighboring rules will be derived according to overall distance instead of 

using extreme (closest) rules distance of the original method. This weight computation is 

crucial for the implementation of the extrapolation capability. The shifting process creates an 

intermediate fuzzy rule using existing neighboring rules. A shift ratio is computed between this 

intermediate rule and the observation to shift the intermediate fuzzy consequence with the same 

ratio that ensures a more reasonable interpolated and extrapolated consequence fuzzy result.  

All results of the extensions Incircle-FRI method (Hexagonal fuzzy set, multidimensiona l 

antecedents, extrapolation capability) produce CNF fuzzy conclusion.  

Moreover, several experiments and comparisons were conducted, which were based on the 

extensions of the Incircle-FRI, aiming to prove the performance of the Incircle-FRI with 

different FRI methods. From the experimental results, we can see that the proposed method is 

considered one of the best current FRI methods. Consequently, the proposed method is a 

suitable approach to be implemented as an inference system.  
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Theses related to Chapter 4 and Chapter 5: 

 

Thesis. I: 

I introduced a new method for the fuzzy rule interpolation concept called " Incircle-FRI", which 

is based on the Incircle of a triangular fuzzy number, the Gergonne Point as a “reference point” 

of the inside circle of triangular fuzzy set, and the fuzziness sides of the triangular. The Incircle-

FRI conclusion is calculated by holding the same rate of the weights among the observation 

and the two rule antecedents, and the conclusion and the two corresponding rule consequents 

with the Gergonne Points (for the reference point of the conclusion), and with the "fuzziness 

sides" (for left and right fuzziness the shape of the conclusion). The " Incircle-FRI" is always 

generating a triangular CNF conclusion, if the antecedents and the consequents are triangular 

CNF sets, even if the fuzzy rule-base is sparse. I conclude that the proposed method is a suitable 

approach to be implemented as an inference system. 

 

Thesis. II: 

I introduced an extension of the "Incircle-FRI" to be able to handle trapezoidal and hexagonal 

fuzzy sets, which is by decomposing their membership function shapes into multiple triangulars, 

and multiple Incircle triangular fuzzy numbers with the Gergonne Points as re ference points. I 

conclude that the extended “Incircle-FRI" can generate a trapezoidal, or hexagonal CNF 

conclusion if the antecedents and the consequents are all trapezoidal, or all hexagonal CNF 

sets, even if the fuzzy rule-base is sparse. Therefore, the Incircle-FRI method is a suitable 

approach to be implemented as an inference system with trapezoidal and hexagonal fuzzy sets. 

 

Thesis. III: 

I introduced an extension of the "Incircle-FRI" to be able to handle multiple fuzzy rules having 

multiple fuzzy antecedents. I used a modification weight estimate and included a shift technique 

to ensure to interpolate the consequent fuzzy result to be more logical and also to enable the 

capability for extrapolation. I conclude that the extensions of the “Incircle-FRI" always 

produce CNF conclusion, for all the handled antecedents and consequents configuration of the 

original method even if the fuzzy rule-base is sparse. Therefore, the Incircle-FRI method is a 

suitable approach to be implemented as an inference system with these extensions.  
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The results introduced in chapter 4 and chapter 5 support the statement of Thesis I, II, III, and [99]. 

  



99 | P a g e  

 

CHAPTER -6-                                                                                An FRI Benchmark System 

INTRODUCTION 

Many of the FRI methods suffer from not satisfying some FRI conditions (see chapter 2 

subsection 2.6) related to the type of applicable linguistic terms and rule-base structure. A 

proper benchmark system could be built by analysing a set of conditions of the fuzzy sets such 

as (core, boundary, slopes, etc.) to compare the performance of different FRI conclusions. The 

construction of such a benchmark system is not straightforward because of numerous FRI 

methods and their special requirements. A good solution is to construct an FRI benchmark 

system based on the common criteria of the FRI methods according to fuzzy rule-base, fuzzy 

values, and observation configurations. Some of the required properties are not held in case of 

a given FRI method, e.g., the first method of the FRI "KH method". In this chapter, we will 

study all cases of the KH-FRI method to construct the initial FRI benchmark, highlighting the 

problematic situations for KH-FRI. Additionally, the benchmark will be used as a baseline to 

compare and evaluate the performance of existing and upcoming FRI methods. 

 

6.1. A Survey Study Related to "Normality" and "Linearity" Properties to 

Compare FRI Methods Based on Arbitrary Examples 
 

Before discussing the process of constructing a benchmark system for the CNF and PWL 

properties, I will present a survey study to explain the difference between the CNF and PWL 

properties. This survey study aims to use (arbitrary examples) to compare the results of the FRI 

methods according to the normality and linearity of the fuzzy conclusion using different 

features. 

6.1.1. Arbitrary examples of experiments 

We will present and discuss different examples (arbitrary examples) to compare the FRI 

methods (KH, KH Stabilized, MACI, IMUL, CRF, VKK, GM, FRIPOC, LESFRI, and SCALE 

MOVE) according to CNF and PWL properties. Various features are used for comparing: "the 

number of dimensions", "the shape of membership functions", and "the number of membership 

functions". The triangular, trapezoidal, and singleton membership functions are used to describe 

the antecedent, consequent, and observation. The FRI methods selected are tested by the FRI 

MATLAB toolbox. 

The arbitrary examples will be described in details as follows: 

 Examples FRI_EX1 and FRI_EX2 describe the antecedent and consequent by a single 

dimension, these examples will compare the results based on the difference between the 

number of the fuzzy sets by the same membership functions for antecedent, consequent, 

and observation.  
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 The Example FRI_EX3 will represent the antecedent and consequent by a single 

dimension; the same number of the fuzzy sets is used for the antecedent, consequent part. 

This example describes the antecedent, consequent by a different membership function, 

where the observation represented by the trapezoidal membership function. 

 Examples FRI_EX4 and FRI_EX5 were selected to show the results by the same 

membership functions of the antecedents and consequent using different shapes of the 

observation.  

 Examples FRI_EX6 and FRI_EX7 describe by three dimensions of the antecedent parts 

and single dimension for the consequent part.  

 

Table 13 summarizes the arbitrary examples. The antecedents and observations are shown in 

Fig. 56 - Fig. 62, the consequents part and conclusions have appeared in Fig. 63 - Fig. 72. 

 

Table 13. The Arbitrary Examples 

Examples 
No. Dimensions Type of Membership Functions No. of Membership Functions 

Antecedents Consequents Antecedents Consequents Observations Antecedents Consequents 

Example FRI_EX1 1 1 Triangular Triangular Triangular 2 2 

Example FRI_EX2 1 1 Triangular Triangular Triangular 4 4 

Example FRI_EX3 1 1 Triangular Trapezoidal Trapezoidal 4 4 

Example FRI_EX4 1 1 Trapezoidal Trapezoidal Singleton 4 4 

Example FRI_EX5 1 1 Triangular Triangular Singleton 4 4 

Example FRI_EX6 3 1 Triangular Trapezoidal Triangular 3 3 

Example FRI_EX7 3 1 Triangular Trapezoidal Singleton 3 3 

 

 

Fig. 56. The Antecedent and Observation Fuzzy Sets Related to Example (FRI_EX1) 

 

Fig. 57. The Antecedent and Observation Fuzzy Sets Related to Example (FRI_EX2) 
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Fig. 58. The Antecedent and Observation Fuzzy Sets Related to Example (FRI_EX3) 

 

Fig. 59. The Antecedent and Observation Fuzzy Sets Related to Example (FRI_EX4) 

 

Fig. 60. The Antecedent and Observation Fuzzy Sets Related to Example (FRI_EX5) 

 

Fig. 61. The Antecedents and Observations Fuzzy Sets Related to Example (FRI_EX6) 

 

Fig. 62. The Antecedents and Observations Fuzzy Sets Related to Example (FRI_EX7) 
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Fig. 63. Arbitrary Examples: KH Conclusions 

 

Fig. 64. Arbitrary Examples: KH Stabilized Conclusions 

 

Fig. 65. Arbitrary Examples: MACI Conclusions 
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Fig. 66. Arbitrary Examples: IMUL Conclusions 

 

Fig. 67. Arbitrary Examples: CRF Conclusions 

 

Fig. 68. Arbitrary Examples: VKK Conclusions 
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Fig. 69. Arbitrary Examples: GM Conclusions 

 

Fig. 70. Arbitrary Examples: FRIPOC Conclusions 

 

Fig. 71. Arbitrary Examples: LESFRI Conclusions 
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Fig. 72. Arbitrary Examples: Scale and Move Conclusions 

6.1.2. Discussion of arbitrary examples results: 

The results mentioned above of the arbitrary examples conclude the following: 

 According to the antecedents and observations are shown in Fig. 56, Fig. 57, Fig. 59, and 

Fig. 60, the FRI methods (KH, KH Stabilized, MACI, IMUL, CRF, VKK, GM, FRIPOC, 

LESFRI, and SCALE MOVE) could be a suitable approach to be implemented as an 

inference system, in case a single dimension antecedent, where the antecedent and 

consequent have the same type of membership functions (Triangular / Trapezoidal), despite 

the type of observation membership function, Fig. 63 - Fig. 72 describe the results of 

Examples (FRI_EX1, FRI_EX2, FRI_EX4, and FRI_EX5). 

 Concerning the antecedents and observations are shown in Fig. 58, the FRI methods (KH, 

KH Stabilized) could be a suitable approach to be implemented as an inference system, in 

case a single dimension antecedent, in which the antecedent and consequent have a different 

type (Triangular and Trapezoidal), respectively, based on the type of the observation, Fig. 

63 and Fig. 64 represented the results of the Example (FRI_EX3). 

 According to the antecedents and observations are shown in Fig. 58, the FRI methods 

(MACI, IMUL, CRF, GM, FRIPOC, and LESFRI) could be a suitable approach to be 

implemented as an inference system, in case a single dimension, where the antecedent and 

consequent have a different type (Triangular / Trapezoidal), regardless of the type of the 

observation, Fig. 65 - Fig. 67 and Fig. 69 - Fig. 71 illustrated the results of the Example 

(FRI_EX3). 

 Regarding the antecedents and observations are shown in Fig. 61 and Fig. 62, the FRI 

methods (MACI and GM) could be a suitable approach to be implemented as an inference 

system, in case multi-dimension antecedents, where the antecedent and consequent have a 

different type of membership functions (Triangular / Trapezoidal), despite the type of 

observation membership function, Fig. 65 and Fig. 69 described the results of Examples 

(FRI_EX6 and FRI_EX7). 

 According to the antecedents and observations are shown in Fig. 61 and Fig. 62, the FRI 

methods (IMUL and CRF) could be a suitable approach to be implemented as an inference 

system, in case multi-dimension antecedents, where the antecedent and consequent have a 

different type of membership functions (Triangular and Trapezoidal), regardless of the type 
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of observation membership function, Fig. 66 and Fig. 67 described the results of Examples 

(FRI_EX6 and FRI_EX7).  

 Regarding the antecedents and observations are shown in Fig. 62, the FRI method 

(FRIPOC) could be a suitable approach to be implemented as an inference system, in case 

multi-dimension antecedents, where the antecedent and consequent have a different type of 

membership functions (Triangular and Trapezoidal), in case of the type of observation 

membership function is singleton, Fig. 70 shown the results of the Example (FRI_EX7).  

 On the other hand, regarding the antecedents and observations are shown in Fig. 58, the FRI 

method (VKK) suffers from the abnormality in case a single dimension antecedent, where 

the antecedent and consequent have a different type (Triangular and Trapezoidal), 

respectively, based on the type of the observation, Fig. 68 illustrated the results of the 

Example (FRI_EX3). 

 Referring to the antecedents and observations shown in Fig. 61 and Fig. 62, the FRI methods 

(KH, KH Stabilized, and VKK) suffer from the abnormality in case multi-dimens ion 

antecedents. In contrast, the antecedent and consequent have a different type of membership 

functions (Triangular / Trapezoidal), regardless of the type of observation membership 

functions, Fig. 63, Fig. 64 and Fig. 68 described the results of Examples (FRI_EX6 and 

FRI_EX7). 

 According to the antecedents and observations are shown in Fig. 61, the FRI method 

(FRIPOC) suffers from the piecewise linearity in multi-dimension antecedents. In contrast, 

the antecedent and consequent have a different type of membership functions (Triangular / 

Trapezoidal), in case the type of observation membership function is triangular, which the 

results shown in Fig. 70 and described in the Example (FRI_EX6). 

 Regarding the antecedents and observations are shown in Fig. 61 and Fig. 62, the FRI 

method (LESFRI) suffers from the abnormality, in case multi-dimension antecedents. In 

contrast, the antecedent and consequent have a different type of membership functions 

(Triangular and Trapezoidal), in case the type of observation membership function is 

triangular, which the results shown in Fig. 71 and defined in Examples (FRI_EX6 and 

FRI_EX7). 

 

Based on the above, we are going to construct the initial benchmark examples for two of 

the most important recommended properties of the FRI concept, which are CNF and PWL 

properties, to be a baseline for comparing and evaluating FRI methods. The survey study in 

(6.1) gave a general description for comparing FRI methods according to normality and 

linearity based on different features, but these examples are not sufficient to be used as 

benchmark examples for comparing FRI methods with CNF and PWL properties. Therefore, in 

the following subsections, the initial benchmark examples of CNF and PWL properties will be 

constructed, the properties are following the KH-FRI method, taking into consideration 
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investigating all the conditions of the core, boundary, and slopes of the fuzzy rule bases and 

observation, I will present in details these initial benchmark examples below. 

 

6.2. FRI Benchmark Examples of the CNF Property for the Koczy-Hiro ta 

Interpolation Method. 

 

The original KH-FRI produces the output based on α-cuts. The most significant benefit of 

the KH-FRI is its low computational complexity. Despite many advantages, in some antecedent 

fuzzy set configuration, the KH-FRI suffers from the abnormality of the conclusion (see more 

details in [17], [32]). The study in [18], [41] discusses the normality property and gives some 

boundary conditions for the observation, the antecedent, and consequent fuzzy sets. Where the 

normality of the conclusion necessarily holds.  

The main goal of this subsubsection is to take these boundary conditions and construct 

CNF_Benchmark  Examples to highlight the problematic properties of the original KH Fuzzy 

Rule Interpolation. Besides, this CNF_Benchmark  Examples could be used for testing other FRI 

methods against these ill conditions. All CNF_Benchmark Examples introduced in this 

subsubsection are implemented by the MATLAB FRI Toolbox [24], [26], which provides an 

easy-to-use framework for FRI applications. 

6.2.1.  Preliminaries and basic definitions related to CNF property  

A fuzzy set defined on a universe of discourse that holds total ordering is a convex and 

normal fuzzy (CNF) set. If it has a height equal to one, and having membership grade of any 

elements between two other elements greater than, or equal to the minimum membership degree 

of these tow boundary elements. I.e a convex fuzzy set can be defined by (∀ x, y ∈ U), (∀λ ∈ 

[0,1]): (μA (λx + (1−λy)) ≥ min (μA(x), μA(y)))). 

Fig. 73 describes some properties of the membership functions. The support of the fuzzy set 

is the set of all elements in the universe of discourse with a greater than zero membership 

degree. The α-cut and the strong α-cut of a fuzzy set is the crisp subset of the universe where 

the membership degrees are higher (strong α-cut), or higher, or equal (α-cut) than a specified α 

value. The kernel of a fuzzy set is the crisp subset of the universe, where the membership 

degrees are equal to 1. The width of a convex fuzzy set is the length of the support, an interval 

in the case of a convex fuzzy set. (see subsubsection 4.1.1) for more details about these 

properties)  
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Fig. 73. Support and α-Cuts of Triangular and Trapezoidal Fuzzy Sets 

A typical example of a sparse fuzzy rule-base was presented in the KH-FRI reasoning method 

in [42]. It could be briefly described as follows. From the rule-base, the two closest surrounding 

fuzzy rules to the observation are taken into consideration only (see Fig. 73, the observation 

and the two surrounding antecedent fuzzy sets): 

 

If X is A1 then Y is B1 

If X is A2 then Y is B2 

 

The two rules will be abbreviated as A1 ⇒ B1 and A2 ⇒ B2, respectively. Suppose that these 

two rules are adjacent, as shown in Fig. 74. Thus, we can see that when observation A* has no 

overlapping with fuzzy sets A1 or A2, none of the rules are firing, no results could be obtained 

by classical fuzzy reasoning. 

 

If X is A1 then Y is B1 

If X is A2 then Y is B2 

Observation: X is A* 

---------------------------------- 
Conclusion: Y = (B*) 

 

FRI reasoning methods could provide interpolated conclusion B* when the observation A* 

does not overlap with any of the rule antecedents A1 and A2. According to the interpolation 

concept that was suggested by Koczy and Hirota in [3], [25], and [14]. In the following, some 

definitions related to linear interpolation (KH-FRI) can be introduced: 
 

 Definition of the Preceding CNF Sets: Referring to all fuzzy sets that must be normal and 

convex in the universe Xi by P(Xi). The α-cuts are intervals. Then for (A1, A1 ∈ P(Xi)), if (∀α ∈ 

(0,1]), A1 is precedes A2 (A1 < A2) if: 
 

inf(A1α) < inf(A2α), sup(A1α) < sup(A2α) (6.1) 

 

Where A1α and A2α are α-cut sets of A1 and A2, respectively, inf (Aiα) is the infimum of Aiα and 

sup (Aiα) is the supremum of Aiα (i= 1,2). 
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 Definition of the Lower and Upper Fuzzy Distances: Given a fuzzy relation (R≺: (A1, A2) 

| A1, A2 ∈P(X)), (A1≺A2), if fuzzy sets A1 and A2 satisfy R≺, the lower (dL) and the upper (dU) 

fuzzy distances between A1 and A2 by the resolution principles [46], [47], it can be defined by 

Eq.(6.2): 
 

dL (A1, A2): R≺ → P([0,1]) 

μdL(δ): ∑α∈[0,1] α /d(inf(A1α), inf(A2α)) 

dU (A1, A2): R≺ → P([0,1]) 

μdU(δ): ∑α∈[01] α /d(sup(A1α), sup(A2α)) 

(6.2) 

 

Where δ ∈ [0,1] and d is the Euclidean distance, or more generally the Minkowski distance. 

 

 Definition of the KH Linear Fuzzy Rule Interpolation: When A1 ⇒ B1, A2 ⇒ B2 be disjoint 

fuzzy rules on the universe of discourse X × Y, and A1, A2, B1, and B2 be fuzzy sets on X and Y, 

respectively. Assume that A* is the observation of the input universe X. If (A1 < A* < A2) then 

the KH linear fuzzy rule interpolation between R1 and R2 is defined by Eq.(6.3): 

 

d(A1, A*) : d(A*,A2) = d(B1, B*) : d(B*,B2) (6.3) 

 

Where d refers to the fuzzy distance according to Definition the KH Linear Fuzzy Rule 

Interpolation that could be used between the fuzzy sets (A1, A*, A2) and (B1, B2). 

 

 Definition of the Lower and Upper Distances Between α-cuts:  Let A1 and A2 be fuzzy sets 

on the universe of discourse X with |X| < ∞, then the lower and upper distances between α-cuts 

sets A1α and A2α are determined via Eq.(6.4):  

 

dL (A1α, A2α) = d(inf(A1α), inf (A2α)),  

dU (A1α, A2α)= d(sup(A1α), sup (A2α)) 
(6.4) 

 

According to Definitions of the Preceding CNF Sets, the KH Linear Fuzzy Rule Interpolation 

and the Lower and Upper Distances Between α-cuts the FERI of (dU) and (dL) α-cuts, the 

formula can be rewritten as Eq.(6.5):  
 

dL (A∗, A1α): dL (A∗, A2α) = dL (B*, B1α): dL (B∗, B2α) 

dU (A∗, A1α) : dU (A∗ ,A2α) = dU (B∗, B1α) : dU (B∗ , B2α) 
(6.5) 

 

Thus, the infimum (inf) and supremum (sup) of the conclusion can be determined by Eq.(6.6) 

and Eq.(6.7): 
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(6.6) 

 

then, 

B*
α = (inf (B*

α); sup (B*
α)). (6.7) 

 

Finally, consequence B∗ can be constructed by Eq.(6.8): 

 


]1,0[

.


 


 BB  (6.8) 

6.2.2. The original KH fuzzy linear interpolation  

The original Koczy and Hirota interpolation (later referred as KH-FRI) [3], [7], [16], [25], 

[39], [40] requires the antecedents and consequences fuzzy sets to be convex and normal (CNF) 

[15], [43]. In this case, the approximated conclusion can be generated by decomposing the fuzzy 

sets into α-cuts. The KH-FRI is defined for a single-dimensional antecedent space, for two rules, 

whose antecedents surround the observation: 

 

(A1≺ A∗≺ A2)  

And 

(B1≺ B2) 

 

According to the concept of fuzzy distance [16] in KH-FRI (see Definition of the Preceding 

CNF Sets), the fuzzy distance of two CNF sets can be defined by the distance of lower and 

upper endpoints of their α-cuts. The "linear interpolation" idea of the KH-FRI is that the rate of 

the upper and lower fuzzy distances between observation and antecedents. It must be the same 

as the rate of the fuzzy distances between the two rule conclusions and the consequent. 

Therefore, regarding the previous definitions and resolution principles of fuzzy sets, the 

conclusion B* for the KH-FRI method is produced directly based on α-cuts of the observation 

and the two surrounding fuzzy rules. 

A key advantage of the original KH approach is its low computational complexity for fuzzy 

rules. Since it deals with two rules only from the rule base during the determination of 

consequent. The antecedents of those rules are the closest flanking to the observation, 

(A1≺A*≺A2) (See Fig. 74).  
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Fig. 74. Fuzzy Interpolative Reasoning with an Invalid Conclusion for the KH-FRI 

On the other hand, searching for these two rules could be a computationally demanding task. 

Despite the advantages, in some rule and observation configurations, the conclusion can be 

abnormal, or not always directly interpretable. Therefore, in the following, the conditions of 

normal and abnormal conclusions will be presented in detail. 

6.2.3. The convexity and normality of the KH-FRI conclusion 

Several FRI techniques followed the resolution principle, which requires turning the problem 

of fuzzy interpolation into an infinite family of crisp interpolations. That is according to the α-

cuts of the fuzzy rules and observation, then merging the results and conclude the fuzzy solution, 

(see Eq.(6.8)). 

In the case of the KH-FRI, several necessary conditions must be held, requiring all fuzzy sets 

to be convex and normal (CNF). This condition guarantees that all α-cuts are intervals and exist.  

The CNF property of the conclusion fuzzy set can be checked if all α-cuts are connected. The 

KH-FRI cannot produce any results if the α-cuts are not connected (see cases in [35]). The 

conclusion is created as intervals by determining their lowest and highest endpoints. Therefore, 

the convexity condition is automatically satisfied. Fig. 75 represents a convex and a non-convex 

fuzzy set. 
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Fig. 75. A Convex (a) and a Non-Convex (b) Fuzzy Set 

In contrast, the normality of the conclusion is not always satisfied. The conclusion is normal 

if the membership function assumes all values between 0 and 1. So, the condition will be 

satisfied if (inf(B*
α) ≤ sup(B*

α)) for all α. Otherwise, if the condition is not satisfied, the 

membership function will suffer from an abnormality, as shown in Fig. 76. 

To generate the initial CNF_Benchmark  Examples, we should collect which equations in [18], 

[41] have been used to determine and verify the normality of the conclusion. If the shape of the 

antecedent and consequent fuzzy sets is restricted to triangular and trapezoidal, the membership 

functions can be described by three or four points. In the case of trapezoidal, it has four values 

(a1, a2, a3, a4), and in case of triangular, it could consider as a special trapezoidal a2 = a3 (see 

Fig. 73).  
 

 

Fig. 76. Forms of the Abnormal Conclusions 

Additionally, a singleton membership function is also a particular trapezoidal membership 

function, where all the values (a1, a2, a3, a4) are the same. Accordingly, the characteristic points 

of the KH-FRI conclusion can be defined by the following equations in [41]. The conclusion is 

that B* is normal if and only if (yinf1, yinf2, ysup1, and ysup2) are met the following conditions: 
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(6.9) 

 

According to Eq.(6.10) - Eq.(6.12), the conclusion core and boundary lengths can be 

determined. To verify the normality of the LefT Boundary (LTB) length of the conclusion, 

Eq.(6.10) could be applied: 
 

Length.LT Bound1 ≤ Length.LT Bound2 (6.10) 
 

where 
 

Length.LT Bound1= dbLT B×(((Ka1LTB+da1LTB) × (Ka2LTB+da2LTB)) –  

((Ka∗
LTB+da1LTB) × (Ka∗

LTB+da2LTB))) 
 

Length.LT Bound2=((Ka1LTB+da1LTB) × (da1LTB+Ka∗
LTB) × Kb2LT B) + 

((Ka2LTB+da2LTB) × (da2LTB+Ka∗
LTB) × Kb1LTB) 

 

The core length of the conclusion can be determined by Eq.(6.11) as follows: 

 

Length.Core1 ≤ Length.Core2 (6.11) 
 

where 
 

Length.Core1=dbcore × (((Ka1core+da1core) × (Ka2core+da2core)) − 

  ((Ka∗
core+da1core) × (Ka∗

core+da2core))) 
 

Length.Core2=((Ka1core+da1core) × (da1core+Ka∗
core) × Kb2core) + 

((Ka2core + da2core) × (da2core + Ka∗
core) × Kb1core) 

 

For RighT Boundary (RTB) length of the conclusion can be determined by the following 

Eq.(6.12): 
 

Length.RT Bound1 ≤ Length.RT Bound2 (6.12) 
 

where 
 

Length.RT Bound1= dbRTB × (((Ka1RTB+da1RTB) × (Ka2RTB+da2RTB)) – 

((Ka∗
RTB+da1RTB) × (Ka∗

RTB+da2RTB))) 
 

Length.RT Bound2=((Ka1RTB+da1RTB) × (da1RTB+Ka∗
RTB) × Kb2RT B) + 
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((Ka2RTB+da2RTB) × (da2RTB+Ka∗
RTB) × Kb1RTB) 

 

where the parameters of the core length for Eq.(6.11) can be defined as follows: 
  

Ka1core=a13−a12, Ka2core=a23−a22 

Kb1core=b13−b12, Kb2core=b23−b22 

Ka∗
core=x3−x2, da1core=x2−a13 

 

The LTB and RTB boundary can be constructed similarly to the core length parameters (as 

above parameters). From another point of view, the length ratio of the distance between the 

fuzzy sets of the antecedent with observation (Kai, Ka*) and consequent (Kbi) Eq.(6.13), 

Eq.(6.14), and Eq.(6.15) could also be used to check the normality (validity) of the conclusion, 

which can be defined as follows: 
 

For the length ratio of the left Boundary: 
 

RatioLT1= LTBound (Kb1,b2) / LTBound (Ka1,a2). 

RatioLT2= LTBound(Ka1,a2) / (LTBound (Ka∗Ka1)+ LTBound(Ka2Ka∗)). 
(6.13) 

 

where 
 

LTBound(Kb1,b2)= b21 - b12, 

LTBound(Ka1,a2)= a21 - a12, 

LTBound(Ka∗Ka1)= a∗
1 - a12, 

LTBound(Ka2Ka∗)= a21 - a∗
2. 

 

For the length ratio of the core: 
 

RatioC1= Core(Kb1,b2)/Core(Ka1,a2), 

RatioC2= Core(Ka1,a2)/(Core(Ka∗Ka1)+Core(Ka2Ka∗)). 
(6.14) 

 

where 
 

Core(Kb1,b2)= b22 – b13, 

Core(Ka1,a2)= a22 – a13, 

Core(Ka∗Ka1)= a∗
2 - a13, 

Core(Ka2Ka∗)= a22 - a∗
3. 

 

For the length ratio of the right Boundary: 
 

RatioRT1= RTBound (Kb1,b2) / RTBound (Ka1,a2). 

RatioLT2= RTBound(Ka1,a2) / (RTBound (Ka∗Ka1)+ RTBound(Ka2Ka∗)). 
(6.15) 

 

where 
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RTBound(Kb1,b2)= b23 – b14, 

RTBound(Ka1,a2)= a23 – a14, 

RTBound(Ka∗Ka1)= a∗
3 – a14, 

RTBound(Ka2Ka∗)= a23 - a∗
4. 

6.2.4. Reference values the CNF property 

According to the main corollaries in [18], [41], the normality of the KH-FRI conclusion can 

be determined as follows: 
 

1) Corollary CNFCR1: Kai = Kbi = Ka* 

 If rules A1 ⇒ B1, A2 ⇒ B2, and the observation A* have the same core and left-right 

boundary lengths as the antecedent (Kai) and consequent (Kbi) fuzzy sets, the conclusion will 

always be normal. For this corollary, Eq.(6.10) - Eq.(6.15) could validate the normality. 

2) Corollary CNFCR2: Kai = KA, Kbi = KB  

 If the fuzzy set of the antecedent (Kai = KA) and the consequent (Kbi = KB) have a uniform 

core and boundary lengths, then the conclusion fuzzy set is always normal if and only if the 

following conditions by Eq.(6.16) and Eq.(6.17) must hold: 
 

For the core length: 
 

  If Ka∗ ≠ 0 
 

Length.Core1 ≤ Length.Core2 (6.16) 
 

where 
 

Length.Core1= dbcore × (Kacore−Ka∗
core), 

Length.Core2= Kb × (da1core+da2core+2× Ka∗
core) 

 

  If Ka∗ = 0 
 

Length.Core1 ≤ Length.Core2 (6.17) 
 

where 
 

Length.Core1= dbcore × (Kacore−Ka∗
core), 

Length.Core2= Kbcore × dacore 

and 

dacore=a22−a13 

 

For left and right boundary lengths, similar equations to the core length could be constructed. 
 

3) Corollary CNFCR3: Kai = Ka*, Kbi = KB 

 In this corollary, if the antecedent fuzzy sets and observation have the same core and 

boundary lengths, and the fuzzy sets of the consequent have the same length too, then the 
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conclusion fuzzy set is always normal. To verify the normality condition Eq.(6.16) and 

Eq.(6.17) for the core and boundary lengths are used. 

 

4) Corollary CNFCR4: The antecedents and consequences have uniform core length 

 The conclusion fuzzy set is always normal if the length ratio of the distance between the 

fuzzy sets of the antecedent and consequent (distance KB) / (distance KA) does not exceed 

the length ratio of themselves. Eq.(6.13), Eq.(6.14), and Eq.(6.15) can be used to verify the 

normality condition, in other words, the consequents have not shorter length, i.e., the 

consequents are not less than fuzzy the antecedents. 
 

Fig. 77 illustrates all the core and boundary CNF_Notations (Ka, Kb) that are used in 

Eq.(6.10) - Eq.(6.15), as follows: 
 

 

Fig. 77. CNF_Notations Related to Core and Boundary Lengths of Trapezoidal Fuzzy Sets 

6.2.5. The KH-FRI CNF benchmark  

In the following, the CNF_Benchmark  Examples will be constructed to highlight the 

conditions of the normality conclusion of the KH-FRI. Various corollaries introduced to check 

the normality of the conclusion based on the core and (Left-Right) boundary lengths have a 

primary role in determining the normality. According to the prerequisites of the KH-FRI, one-

dimensional antecedents and consequents with trapezoidal, triangular, and singleton fuzzy sets, 

and two rules of the rule-bases could be considered. In the rest of the subsubsection, all the 

calculations and figures were prepared by the fuzzy rule interpolation (FRI) toolbox. The 

current version of the FRI toolbox is freely available to download in [24]. 

We will discuss the special cases where the conclusion of the KH-FRI is normal and abnormal 

according to the equations and corollaries explained previously.  

First of all, the normality condition is always satisfied with the KH-FRI if any of the 

following cases are met: 
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 Case CNF.C1: When the core and boundary lengths of the observation are greater or equal 

than the antecedent fuzzy sets (KA* >= KA), if (Kai = KA), the normality of the KH-FRI 

conclusion fuzzy set will always be satisfied. In this case, there is no restriction on the shape 

and size of the consequent (KB). Table 14 illustrates the Example "CNF.KH_NOR.C1" that 

demonstrates Case CNF.C1. 

 
Table 14. The Normal Conclusion of the KH-FRI with Fuzzy Sets According to Case CNF.C1 

Example ("CNF.KH_NOR.C1") 

CNF_Notations that prove case CNF.C1 (KA* >= KA), if (Kai = KA) 

The values of the fuzzy sets: 

A1= [1 2 2 3] A2= [7 8 8 9] 

B1= [2 2 2 2] B2= [8 8 8 8] 

A*= [4 5 5 6] B*= [5 5 5 5] 

The case of the Core and (LF and RF) Boundary 

conclusion: 

The length (LFBound) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFBound) is (NORMAL) 

The length ratio between KA, Ka∗ , and KB: 

LTBound: RatioLT1= 1.20, RatioLT2= 1.25 

Core: RatioC1= 1, RatioC2= 1 

RTBound: RatioRT1= 1.20, RatioRT2= 1.25 

The Lengths notations to determine the normality: 

LTBound1 = 0, LTBound2 = 0 

Core1 = 0, Core2 = 0 

RTBound1 = 0, RTBound2 = 0 

 
 

 Case CNF.C2: When the core and boundary lengths of the fuzzy sets are the same (KA = 

KB) if (Kai= KA) and (Kbi= KB), the normality of the KH-FRI conclusion fuzzy set is always 

satisfied. In this case, there is no restriction on the shape and size of the observation A*. 

Table 15 illustrates Example "CNF.KH_NOR.C2_1" and Example "CNF.KH_NOR.C2_2" 

to demonstrate Case CNF.C2. 
 

Table 15. The Normal Conclusion of the KH-FRI with Fuzzy Sets According to Case CNF.C2 

Example ("CNF.KH_NOR.C2_1" ) 

CNF_Notations that prove case CNF.C2 when (KA = KB) 

The values of the fuzzy sets: 

A1= [1 2.5 2.5 4] A2= [6 7.5 7.5 9] 

B1= [1 2.5 2.5 4] B2= [6 7.5 7.5 9] 

A∗= [4.5 5 5 5.5] B∗= [4.5 5 5 5.5] 

The case of the Core and (LF and RF) Boundary 

conclusion: 

The length (LFBound) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFBound) is (NORMAL) 

The length ratio between KA, Ka∗ , and KB: 

LTBound: RatioLT1= 1, RatioLT2= 1.16 

Core: RatioC1= 1, RatioC2= 1 

RTBound: RatioRT1= 1, RatioRT2= 1.16 

The Lengths notations to determine the normality: 

LTBound1 = 3.5, LTBound2 = 6 

Core1 = 0, Core2 = 0 

RTBound1 = 3.5, RTBound2 = 6 
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Example ("CNF.KH_NOR.C2_2" ) 

The values of the fuzzy sets: 

A1=[1 2 3 4] A2=[6 7 8 9] 

B1=[1 2 3 4] B2=[6 7 8 9] 

A∗=[4 4.8 5.2 6] B∗=[4 4.8 5.2 6] 

The case of the Core and (LF and RF) Boundary 

conclusion: 

The length (LFBound) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFBound) is (NORMAL) 

The length ratio between KA, Ka∗ , and KB: 

LTBound: RatioLT1= 1, RatioLT2= 1.25 

Core: RatioC1= 1, RatioC2= 1.11 

RTBound: RatioRT1= 1, RatioRT2= 1.25 

The Lengths notations to determine the normality: 

LTBound1 = 0.8, LTBound2 = 4.8 

Core1 = 2.4, Core2 = 4.4 

RTBound1 = 0.8, RTBound2 = 4.8 

 

 

 Case CNF.C3: If the core and boundary lengths of fuzzy sets (KB > KA), where (Kai = KA) 

and (Kbi= KB), the conclusion of the KH-FRI is always normality. Table 16 represents 

Example "CNF.KH_NOR.C3_1" and Example "CNF.KH_NOR.C3_2" that describes Case 

CNF.C3. 

 
Table 16. The Normal Conclusion of the KH-FRI with Fuzzy Sets according to Case CNF.C3 

Example ("CNF.KH_NOR.C3_1" ) 

CNF_Notations that prove case CNF.C3 when (KB > KA) 

The values of the fuzzy sets: 

A1= [1.5 2 2 2.5] A2= [6.5 7 7 7.5] 

B1= [1 2 3 4] B2= [6 7 8 9] 

A∗= [4.5 4.5 4.5 4.5] B∗= [4 4.5 5.5 6] 

The case of the Core and (LF and RF) Boundary 

conclusion: 

The length (LFBound) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFBound) is (NORMAL) 

The length ratio between KA, Ka∗ , and KB: 

LTBound: RatioLT1= 0.88, RatioLT2= 1 

Core: RatioC1= 0.80, RatioC2= 1 

RTBound: RatioRT1= 0.88, RatioRT2= 1 

The Lengths notations to determine the normality: 

LTBound1 = 2, LTBound2 = 4.5 

Core1 = 0, Core2 = 5 

RTBound1 = 2, RTBound2 = 4.5 
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Example ("CNF.KH_NOR.C3_2") 

The values of the fuzzy sets: 

A1= [2 2 2 2] A2= [8 8 8 8] 

B1= [1 2 3 4] B2= [6 7 8 9] 

A∗= [4.5 5 5 5.5] B∗= [3.08 4.5 5.5 6.916] 

The case of the Core and (LF and RF) Boundary 

conclusion: 

The length (LFBound) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFBound) is (NORMAL) 

The length ratio between KA, Ka∗ , and KB: 

LTBound: RatioLT1= 0.66, RatioLT2= 1.09 

Core: RatioC1= 0.66, RatioC2= 1 

RTBound: RatioRT1= 0.66, RatioRT2= 1.09 

The Lengths notations to determine the normality: 

LTBound1 = -2, LTBound2 = 6.5 

Core1 = 0, Core2 = 6 

RTBound1 = -2, RTBound2 = 6.5 

 
 

In contrast, the abnormality of the conclusion can appear in Case  CNF.C4 (KB < KA). So, 

to demonstrate the abnormality problem, we will consider the length ratio between Ka* and KB 

based on Eq.(6.13), Eq.(6.14), and Eq.(6.15). Therefore, we will address the problem with 

different lengths of core and boundary.  

 

Table 17 - Table 20 describe the results of Eq.(6.10) - Eq.(6.15) to prove the normality of 

the KH-FRI conclusion will not be satisfied. The Example "CNF.KH_ABNOR.C4_1" in Table  

17 shows the problem with the core length. Example "CNF.KH_ABNOR.C4_2" and Example 

"CNF.KH_ABNOR.C4_3" in Table 18 and Table 19 illustrate the problem of the left and right 

boundary. The Example "CNF.KH_ABNOR.C4_4" in Table 20 shows the problem in both the 

core and boundary lengths. 
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 Table 17 describes the abnormality in the core length of the KH-FRI conclusion. 
 

Table 17. The Problem with Core Length, Abnormal Conclusion 

Example ("CNF.KH_ABNOR.C4_1") 

The values of the fuzzy sets: 

A1= [1 2 3 4] A2= [6 7 8 9] 

B1= [1.5 2.5 2.5 3.8] B2= [6.5 7.5 7.5 9] 

A∗= [4.2 5.2 5.2 6.7] B∗= [4.7 5.7 4.7 6.6] 

The case of the Core and (LF and RF) Boundary 

conclusion: 

The length (LFBound) is (NORMAL) 

The length (Core) is (PROBLEM) 

The length (RFBound) is (NORMAL) 

The length ratio between KA, Ka∗ , and KB: 

LTBound: RatioLT1= 1, RatioLT2= 1.33 

Core: RatioC1= 1.25, RatioC2= 1 

RTBound: RatioRT1= 0.92, RatioRT2= 1.6 

The Lengths notations to determine the normality: 

LTBound1 = 0, LTBound2 = 5 

Core1 = 5, Core2 = 0 

RTBound1 = -9.25, RTBound2 = 17.28 

 
 

An explanation of the abnormality of the left boundary length in the KH-FRI conclusion is 

shown in Table 18.  

 
Table 18. The Problem with Left Length, Abnormal Conclusion 

Example ("CNF.KH_ABNOR.C4_2") 

The values of the fuzzy sets: 

A1= [1 2.5 2.5 4] A2= [5.5 7.5 7.5 9] 

B1= [1 2 3 4.5] B2= [6.5 7 8 9.5] 

A∗= [4.5 4.9 5.1 5.5] B∗= [5.27 4.4 5.6 6.0] 

The case of the Core and (LF and RF) Boundary 

conclusion: 

The length (LFBound) is (PROBLEM) 

The length (Core) is (NORMAL) 

The length (RFBound) is (NORMAL) 

The length ratio between KA, Ka∗ , and KB: 

LTBound: RatioLT1= 1.5, RatioLT2= 1.15 

Core: RatioC1= 0.8, RatioC2= 1.04 

RTBound: RatioRT1= 1, RatioRT2= 1.12 

The Lengths notations to determine the normality: 

LTBound1 = 30.15, LTBound2 = 6.80 

Core1 = -0.8, Core2 = 5.2 

RTBound1 = 3.85, RTBound2 = 5.85 
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An illustration of the abnormality in the right boundary length in the KH-FRI conclusion is 

displayed in Table 19. 
 

Table 19. The Problem with Right Length, Abnormal Conclusion 

Example ("CNF.KH_ABNOR.C4_3") 

The values of the fuzzy sets: 

A1= [1.5 2.5 2.5 4.3] A2= [6.5 7.5 7.5 8.8] 

B1= [1 2 3 3.5] B2= [6 7 8 8.9] 

A∗= [4.5 4.9 5.1 5.5] B∗= [4 4.4 5.6 4.94] 

The case of the Core and (LF and RF) Boundary 

conclusion: 

The length (LFBound) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFBound) is (PROBLEM) 

The length ratio between KA, Ka∗ , and KB: 

LTBound: RatioLT1= 1, RatioLT2= 1.11 

Core: RatioC1= 0.80, RatioC2= 1.04 

RTBound: RatioRT1= 1.40, RatioRT2= 1.14 

The Lengths notations to determine the normality: 

LTBound1 = 2.4, LTBound2 = 4.4 

Core1 = -0.8, Core2 = 5.2 

RTBound1 = 25.65, RTBound2 = 6.76 

 
 

 

Table 20 describes the abnormality in both core and boundary lengths in the KH-FRI 

conclusion. 
 

Table 20. The Problem with Core and Boundary Lengths, Abnormal Conclusion 

Example ("CNF.KH_ABNOR.C4_4") 

The values of the fuzzy sets: 

A1=[2 2 2.5 3] A2=[6 7.5 8 8] 

B1=[2 2 2 2] B2=[8 8 8 8] 

A∗=[5 5 5 5] B∗=[6.5 5.27 4.72 4.4] 

The case of the Core and (LF and RF) Boundary 

conclusion: 

The length (LFBound) is (PROBLEM) 

The length (Core) is (PROBLEM) 

The length (RFBound) is (PROBLEM) 

The length ratio between KA, Ka∗ , and KB: 

LTBound: RatioLT1= 1.5, RatioLT2= 1 

Core: RatioC1= 1.2, RatioC2= 1 

RTBound: RatioRT1= 1.2, RatioRT2= 1 

The Lengths notations to determine the normality: 

LTBound1 = 27, LTBound2 = 0 

Core1 = 3, Core2 = 0 

RTBound1 = 9, RTBound2 = 0 
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6.2.6. Discussion of the CNF benchmark examples 

The cases and equations were discussed earlier have been used to construct CNF_Benchmark  

Examples. The CNF_Benchmark  Examples are classified into two groups, as shown in Table 

14 - Table 20. The first group contains Examples "CNF.KH_NOR.C1" – 

"CNF.KH_NOR.C3_2" described the normality conclusion of the KH-FRI, where Corollaries 

of the normality condition (Corollaries CNFCR1– CNFCR4) are met. The second group 

includes Examples "CNF.KH_ABNOR.C4_1" – "CNF.KH_ABNOR.C4_4" described the 

abnormality conclusion of the KH-FRI. The abnormality could appear in case the corollary (KB 

< KA), if (KA* < KB). 

 

Referring to Example "CNF.KH_NOR.C1" as shown in Table 14, we conclude the 

following: 

 The core and boundary lengths of fuzzy sets of the observation (KA*) is large or equal 

than the antecedents (KA) (see case CNF.C1) and if (Kai = KA), then the conclusion is 

always normal. In this case, there is no restriction on the shape and size of the 

consequent (KB). 

­ E.g., the core lengths of the antecedent fuzzy sets are (KA1= 0 (2-2), KA2=0 (8-8), and 

the average length of the antecedent fuzzy sets KA=0 (5-5)), and for the observation 

fuzzy set (KA*=0). 

 Regarding Eq.(6.16) and Eq.(6.17), all CNF_Notations satisfy the normality conclusion, 

i.e.:  

­ The core length (Core1=0) is less than or equal to (Core2=0),  

­ The left length (LTBound1=0) is also less than (LTBound2=0).  

­ The right length (RTBound1=0) is also less than (RTBound2=0).  

 From another side, the length ratio using Eq.(6.13), Eq.(6.14), and Eq.(6.15) are also 

satisfied with the normality, i.e.:   

­ The length ratio of the core (RatioC1= 1) is less than or equal (RatioC2= 1). 

­ The length ratio of the left boundary (RatioLT1= 1.20) is less than (RatioLT2= 1.25). 

­ The length ratio of the right boundary (RatioRT1= 1.20) is less than (RatioRT2= 1.25). 

 In this case (KA>=KA*) and if (Kai = KA), the conclusion B*= [5 5 5 5] is always 

normal.  
 

In the Example "CNF.KH_NOR.C2_2" as shown in Table 15, we conclude the following: 

 The core and boundary lengths of fuzzy sets antecedents (KA) are equal consequents 

(KB) (see case CNF.C2), and if (Kai= KA), (Kbi= KB), then the conclusion is always 

normal. In this case, there is no restriction on the length of the observation (KA*) fuzzy 

set. 

­ E.g., the right lengths of the antecedents fuzzy sets are (KA1=1 (4-3), KA2=1 (9-8), 

and the average length of the antecedent fuzzy sets KA=1), and the consequents fuzzy 
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sets are (KB1=1 (4-3), KB2=1 (9-8), and the average length of the consequents fuzzy 

sets KB=1). 

 The normality conclusion is satisfying, according to Eq.(6.16). I.e.: 

­ The core length (Core1=4.2) is less than (Core2=4.4).  

­ The left length (LTBound1=0.8) is less than (LTBound2=4.8).  

­ The right length (RTBound1=0.8) is less than (RTBound2=4.8).  

 Also, according to the length ratio using Eq.(6.13), Eq.(6.14), and Eq.(6.15) are also 

satisfied with core and boundary, i.e.:   

­ The length ratio of the core (RatioC1= 1) is less than (RatioC2= 1.11). 

­ The length ratio of the left boundary (RatioLT1= 1) is less than (RatioLT2= 1.25). 

­ The length ratio of the right boundary (RatioRT1= 1) is less than (RatioRT2= 1.25). 

 In this case (KA=KB), and if (Kai= KA), (Kbi= KB), the conclusion B*= [4 4.8 5.2 6] is 

always normal.  
 

For Example "CNF.KH_NOR.C3_1" as shown in Table 16, we conclude the following: 

 The core and boundary lengths of fuzzy sets consequents (KB) are large than 

antecedents (KA) (see case CNF.C3), where (Kai = KA) and (Kbi= KB), then the 

conclusion is always normal. 

­ E.g., the left lengths of the consequents fuzzy sets are (KB1=1 (2-1), KB2=1 (7-6), and 

the average length of the consequents fuzzy sets KB=1). The antecedents fuzzy sets 

are (KA1=0.5 (2-1.5), KA2=0.5 (7-6.5). The average length of the antecedent fuzzy 

sets KA=0.5).  

 The normality conclusion is satisfying according to Eq.(6.17), i.e.:   

­ The core length (Core1=0) is less than (Core2=5).  

­ The left boundary length, (LTBound1 = 2) is less than (LTBound2 = 4.5), the 

conclusion is normal.  

­ The right boundary length, (RTBound1 = 2) is less than (RTBound2 = 4.5), the 

conclusion is normal.  

 Also, according to the length ratio using Eq.(6.13), Eq.(6.14), and Eq.(6.15), are also 

satisfied for core and boundary, i.e.:  

­ The length ratio of the left boundary LTBound: (RatioLT1= 0.88) is less than 

(RatioLT2= 1),  

­ The length ratio of the core: (RatioC1= 0.80) is less than (RatioC2= 1),  

­ The length ratio of the right boundary RTBound: (RatioRT1= 0.88) is less than 

(RatioRT2= 1). 

 In this case (KB>KA), where (Kai = KA) and (Kbi= KB), the conclusion B*= [4 4.5 5.5 

6] is always normal,  

 

Nevertheless, the second group includes Examples "CNF.KH_ABNOR.C4_1" – 

"CNF.KH_ABNOR.C4_4", the abnormality conclusion could appear in case the length of the 
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consequence (KB) is less than the length of the antecedents (KA) with taking into consideration 

the length ratio (Ka* < KA). Therefore, all CNF_Notations used to check the normality 

conclusion are proved these examples not satisfied with CNF property.  Eq.(6.13) - Eq.(6.15) 

are important to prove abnormality in the core and boundary conditions (e.g., in case the core 

length, when ratio [Core(KA)/Core(KB))] does not exceed ratio [Core(KA)/(Core(Ka*.KA1) + 

Core(KA2.Ka*))]). 

 

In Example "CNF.KH_ABNOR.C4_1" as shown in Table 17, we conclude the following: 

 The core and boundary lengths of the fuzzy sets consequents (KB) are less than 

antecedents (KA). The observation fuzzy set is less than consequent fuzzy sets (KA* < 

KB) (see case CNF.C4), then the conclusion is always abnormal. 

­ I.e., the core lengths of the consequents fuzzy sets are (KB1=0 (2.5-2.5), KB2=0 (7.5-

7.5), and the average length of the consequents fuzzy sets KB=0), and the antecedents’ 

fuzzy sets are (KA1=1 (3-2), KA2=1 (8-7). The average length of the antecedent fuzzy 

sets KA=1), and the core length of the observation fuzzy set KA*=0 (5.2-5.2). 

 For the length ratio CNF_Notations used to prove the problem (abnormality in the core), 

using (Eq.(6.14)) as follows:  

­ The length ratio of core is not satisfied, as (RatioC1= 1.25) exceeds the (RatioC2= 1).  

 From another side, Eq.(6.17) also demonstrates an issue for the core length. 

­ The core length values, (Core1= 5) is greater than (Core2 = 0). 

 In this case (KB<KA) and (KA* < KB), the conclusion B*= [4.7 5.7 4.7 6.6] is always 

abnormal, as shown by values of the core (5.7 is greater than 4.7). 
 

In Example "CNF.KH_ABNOR.C4_2" as shown in Table 18, we conclude the following: 

 The core and boundary lengths of the fuzzy sets KB < KA and KA* < KB. In this case, 

the conclusion B*= [5.27 4.4 5.6 6.0] is always abnormal, where the problem could 

appear in the left values as (5.27 is greater than 4.4).  

­ I.e., the left lengths of the consequents fuzzy sets are (KB1=1 (2-1), KB2=0.5 (7-6.5), 

and the average length of the consequents fuzzy sets KB=0.75). The antecedents fuzzy 

sets are (KA1=1.5 (2.5-1), KA2=2 (7.5-5.5), and the average length of the antecedent 

fuzzy sets KA=1.75), and the left length of the observation fuzzy set KA*=0.4 (4.9-

4.5). 

 For the length ratio CNF_Notations used to prove the problem (abnormality in the core), 

using (Eq.(6.13)) as follows: 

­ The length ratio of the left boundary is not satisfied, where (RatioLT1= 1.5) exceeds 

the (RatioLT2= 1.15).  

 Also, using Eq.(6.10) demonstrates a problem as follows: 

­ The left length values, where (LTBound1= 30.15) is greater than (LTBound2 = 6.80), 

the conclusion is suffering from the abnormality. 
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In Example "CNF.KH_ABNOR.C4_3" as shown in Table 19, we conclude the following: 

 The core and boundary lengths of KB < KA and KA* < KA. In this case, the conclusion 

B*= [4 4.4 5.6 4.94] is always abnormal, where the problem could appear in the right 

values (5.6 is greater than 4.94).   

 I.e., the right lengths of the consequents fuzzy sets are (KB1=0.5 (3.5-3), KB2=0.9 (8.9-

8), and the average length of the consequents fuzzy sets KB=0.7). The antecedents fuzzy 

sets are (KA1=1.8 (4.3-2.5), KA2=1.3 (8.8-7.5). The average length of the antecedent 

fuzzy sets KA=1.55), and the right length of the observation fuzzy set KA*=0.4 (5.5-

5.1). 

 For the length ratio CNF_Notations used to prove the problem (abnormality in the core), 

using Eq.(6.15) as follows: 

­ The length ratio of the right boundary is not satisfied, where (RatioRT1= 1.40) 

exceeds (RatioRT2= 1.14).  

 Also, using Eq.(6.12) demonstrates a problem as follows: 

­ The left length values, where (RTBound1= 25.65) is greater than (RTBound1= 6.76), 

and therefore, the conclusion is suffering from the abnormality. 

 

In Example "CNF.KH_ABNOR.C4_4" as shown in Table 20, we conclude the following: 

 We can see the problems in both of the core and boundary lengths, where the conclusion 

B*= [6.5 5.27 4.72 4.4] is always abnormal.  

 Regarding the CNF_Notations by Eq.(6.10), Eq.(6.11), Eq.(6.12), and Eq.(6.17) of the 

left and right boundary are not satisfied with the normality: 

­  Left Boundary length: LTBound1=27 > LTBound2=0, 

­ Core length: Core1=3 > Core2=0, 

­ Right Boundary length: RTBound1=9 > RTBound2=0. 

 Also, Eq.(6.13) - Eq.(6.15) are not satisfied because (Ratio1) is greater than (Ratio2)  

for the core and boundary of the conclusion: 

­ Left ratio: RatioLT1=1.5 > RatioLT2=1 

­ Core: RatioC1=1.2 > RatioC2=1 

­ Right ratio: RatioRT1=1.2 > RatioRT2=1 

 

Based on all examples and cases of the CNF property benchmark, we conclude the 

following:  
1. Regarding the examples of the first group. We conclude that all examples are satisfied with 

CNF property according to the difference between the core and boundary conditions of the 
fuzzy rules and observation fuzzy sets. Where the conclusion is always "normal" in case: 

 (KA* >= KA), if (Kai = KA). 

 (KA = KB), if (Kai = KA) and (Kbi = KB). 

 (KB > KA), if (Kai = KA) and (Kbi = KB) 



126 | P a g e  

 

Moreover, all CNF_Notations in Eq.(6.10) - Eq.(6.15) of the core and Left-Right boundary 
(lengths and ratios) proved that the normality conclusion, which is always satisfied with the 
CNF condition.  

2. On the other hand, regarding the examples of the second group. We conclude that all 
examples are not satisfied with CNF property according to the difference between the core 
and boundary conditions of the fuzzy rules and observation, where the conclusion is always 
abnormal in case:  

 (KB < KA), if (KA* < KB). 
Furthermore, all CNF_Notations in Eq.(6.10) - Eq.(6.15) of the core and Left-Right boundary 
(lengths and ratios) proved that the abnormality conclusion, which is always not satisfied with 

the CNF condition.  
 

6.3. FRI Benchmark Example of the PWL Property for the Koczy-Hirota 

Interpolation Method 
 

Among several conditions for fuzzy interpolation techniques which were recommended in 

[15], [17] and [43], the conservation of the Piecewise Linearity (PWL) is an important property 

for reducing the computational complexity, in case of α-cut based FRI methods (like the studied 

KH-FRI). If the FRI method preserves the Piecewise Linearity of the fuzzy sets, and all the 

fuzzy values, and the observation are PWL fuzzy sets, the FRI calculations can be reduced some 

related α-cut levels. 

The most significant benefit of the KH-FRI is its low computational complexity. 

Notwithstanding the advantages, in some antecedent fuzzy set configuration, the KH-FRI 

conclusion suffers from preserving a PWL (for more details see [4], [5]). The preservation of 

PWL is a significant property to be able to eliminate the FRI calculations between two 

consecutive α-cuts. The studies in [41], [44], and [45] discuss the PWL property and gives some 

conditions for the fuzzy rules and observation fuzzy sets, where the PWL of the conclusion 

necessarily holds. 

This subsubsection aims to highlight the problematic properties of the KH-FRI method to 

prove its efficiency with PWL condition to construct PWL_Benchmark  Examples. This 

benchmark can serve as a baseline for testing other FRI methods against cases that the KH-FRI 

is not satisfied with the linearity condition. All benchmark examples in this subsubsection are 

constructed using notations and equations detailed in [41], [44], [45], and implemented in the 

MATLAB FRI Toolbox [24], [26], which provides an easy-to-use framework to represent the 

conclusions of the FRI methods. 

6.3.1.  The shape of the KH-FRI conclusion in case of PWL fuzzy sets 

The main concept of the KH-FRI is based on the resolution and extension principles [90], in 

which the FRI can be decomposed to the problem into an infinite family of crisp issues 

corresponding to α-cuts of fuzzy rule bases and observation. The interpolation conclusion can 
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be solved for every α-cuts independently. And it can deduce the fuzzy solution by combining 

these results into a fuzzy approximation (see Eq.(6.8)). 

Most FRI methods require some constraints to be satisfied: all the fuzzy sets of fuzzy rules 

and observation must be convex and normal, or briefly a CNF set. Let us assume (A) is a fuzzy 

set; thus, (A) is called normal when (Height(A) = max(x) ∈ U(µA(x))), and is convex if each of 

its α-cuts is connected. Thus, the Membership Functions (MF) of fuzzy rules and observation 

(e.g., trapezoidal and triangular) are also restricted to be PWL because it will be much easier for 

calculation with such functions because it depends on α-cuts. Definitions (Definition of the 

Preceding CNF Sets - Definition of the Lower and Upper Distances Between α-cuts in previous 

subsection 6.2) could be introduced to realize the interpolation concept. 

Fig. 78 represents the linear interpolation method between two fuzzy rule bases and 

observation described by trapezoidal Membership Function (MF) for α ∈ [0, 1]. The 

characteristic points of the trapezoidal MF denoted by vector a= [a1, a2, a3, a4], where the 

support (a1 and a4) represents by P (0, L) and P (0, U), the core (a2 and a3) describes by P (1, 

L) and P (1, U), in which L denotes to lower, and U denotes to upper. In the case of triangular 

MF, it can be represented by P (0, L), P (0, U), and P (1, (L and U)), in which a2=a3 for the 

core fuzzy set A. 

 

 

Fig. 78. The Ratio of the Lower and Upper Distances Calculated Between the Interpolation of Two Piecewise 

Linear Rules. The Shape of the Conclusion (B
*
) Shows for the α -Cuts Level Between α ∈ (0, 1) [41] 

6.3.2.  The piecewise linearity of the KH-FRI conclusion 

Many FRI methods are not preserving the PWL in conclusion (see cases in [32]). The KH-

FRI is one of them, which also cannot fulfill this condition. Most of the FRI methods, which 

hold the PWL condition, the FRI calculations are restricted to a small finite set of α-cut levels, 

which will be called the necessary cuts. For PWL membership functions (e.g., trapezoidal and 
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triangular), an obvious assumption is to define the set of significant cuts by the united 

breakpoint set α. However, this is not true in general because in many FRI methods, the 

conclusion B∗ is severely distorted and non-linear (i.e., the PWL condition not holds). 

Theoretically, the conclusion of the KH-FRI can be calculated by its α-cuts. All α-cuts should 

be considered, but for practical reasons, only a finite set is taken into consideration during the 

computation. Now, let us determine which PWL_Notations will be used to calculate the 

characteristic points of the lower and upper of fuzzy rule bases and observation fuzzy sets that 

can be defined as follows:  
 

For antecedent fuzzy set: 

AiαL = α . (ai2 − ai1) + ai1 

AiαU = α . (ai3 − ai4) + ai4 
(6.18) 

 

For consequent fuzzy set: 
 

BiαL = α . (bi2 − bi1) + bi1 

BiαU = α . (bi3 − bi4) + bi4 
(6.19) 

 

For observation fuzzy set:  
 

A∗
αL = α . (a∗

2 − a∗
1) +a∗

1 

A∗
αU = α . (a∗

3 − a∗
4) +a∗

4 
(6.20) 

 

The conclusion of the linear interpolation (left slope) could be calculated for α-cut levels by 

the statement as follows: 
 

Statement PWLST1: The equations of the left and right slopes to breakpoint levels 0 and α can 

be calculated for the two fuzzy rule bases A1 → B1, A2 → B2, and the observation A* as follows: 
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DLDLDL
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


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


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where 
 

DL1= (cL3.cL5) + (cL1.cL7) 

DL2= (cL3.cL6) + (cL4.cL5) + (cL1.cL8) +(cL2.cL7) 

DL3= (cL4.cL6) + (cL2.cL8) 

And 
 

cL1 = a∗
2 − a∗

1 −a12 +a11;  cL2 = a∗
1 − a11 ;  cL3 = a22 − a21 − a∗

2 + a∗
1 

cL4 = a21 − a∗
1;  cL5 = b12 − b11; cL6 = b11 ;  cL7 = b22 − b21 

cL8 = b21; cL9 = a11 − a12 + a22 − a21;   cL10 = a21 − a11 
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Similar to the left slope equation, the right slope can be constructed, it can replace the index 

1 of the characteristic points fuzzy set a1(1), a2(1), a*
(1), b1(1) and b2(1) by index 4, and index 2 of 

a1(2), a2(2), a*
(2), b1(2) and b2(2) are replaced by 3, and the sign in X replaced by its opposite 

(negative direction tangents). 

On the other hand, authors in [41], [44], [45] also introduced other equations to calculate the 

left and right slopes of the conclusion as follows: 
 

The left slope of the conclusion: 
 






)..(

).()..().(
 = 

109

2

9

2

101

2

1092

2

93

cLcLcL

cLDLcLcLDLcLDL
BL

 2

9

10192

9

1 ).().(
.

cL

cLDLcLDL

cL

DL 
  (6.23) 

 

it can be written: 
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Where yL refers to a straight line and yH denotes the hyperbola, BαL is the curve that represents 

the superposition of yL and yH (for more details see Figure (11) in [41], [45]). Similar equations 

of the left slope can calculate the right slope. 

6.3.3.  Reference values for the PWL property 

The KH-FRI conclusion is not preserving the PWL property, becuase the rate calculated by 

the KH fundamental equation between two adjacent fuzzy rules and the observation, which are 

changing for all the α levels. According to the main corollaries in [41], [44], [45], the linearity 

of the left and right slopes of the KH-FRI conclusion could be determined as follows: 

The condition of polynomiality when (cL9 = 0). Then, we get: 
 

1) Corollary PWLCR1:  

The flanks of B* are piecewise polynomial if and only if the two antecedents A1 and A2 have 

equivalent PWL slopes, obtainable from each other by geometric translations:  
 

a12 − a11 = a22 − a21 (6.25) 
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If we require linearity of the pieces, the condition must be met, when (DL1 = 0). 

Consequently, the linearity conclusion can be demonstrated: 
 

2) Corollary PWLCR2:  

This corollary will be satisfied in three different cases that slopes of the conclusion B* are 

preserving PWL. Hence, if this corollary is done suitably, the KH-FRI conclusion will always 

be satisfied if the following cases are held: 
 

2.1) Case PWLC1:  

If the left and right slopes of the antecedents Ai and the consequents Bi are equivalent to 

PWL on the universe of discourse, then the left slope PWL_Notations can be defined as: 

 

Ai = a12 − a11 = a22 − a21 

Bi = b12 − b11 = b22 − b21 
(6.26) 

 

2.2) Case PWLC2:  

If the left and right slopes and characteristic points of the two adjacent fuzzy rule bases A1 

⇒ B1 and A2 ⇒ B2 are equivalent in the universe of discourse, then the left slope PWL_Notations 

could be determined as follows: 
 

A1 ⇒ B1: a12 − a11 = b12 − b11 

A2 ⇒ B2: a22 − a21 = b22 − b21 

(6.27) 

 

In this case, there is no restriction on the shape of observation A∗. 
 

2.3) Case PWLC3:  

If the antecedents Ai and the observation A∗ are satisfied with PWL. The B∗ slopes are linear 

only if Corollary PWLCR1 is applied.  
 

The left slope PWL_Notations can be determined as follows: 
 

d = d∗ (6.28) 
 

where 

a22 − a21 = a21 − a11 = d  

a∗
2 − a∗

1 = d∗ 

 

For this case, there is no restriction on the consequents Bi. 
 

2.4) Case PWLC4:  

If all the variables on the universe of discourse are covered by equidistant fuzzy sets Ai, Bi, 

and A∗, then PWL_Notations of the left slope can be described as follows: 

Ai = a12 − a11 = a22 − a21  

Bi = b12 − b11 = b22 − b21  
(6.29) 
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A∗ = a∗
2 − a∗

1 
 
 

In [41], [44], [45], the upper bound is presented the possible highest deviation between the 

real and approximated linear functions, hence, if there is a vast difference between them, the 

validity of the method is violated between characteristic points of the fuzzy sets in the interval 

[0, 1], and at the same time could question the applicability of any new method. Regarding the 

beneficial computational properties of the KH-FRI would not hold anymore. Consequently, 

different views were introduced to determine the deviation from the calculated linear 

interpolation. Therefore, the approximating linear equation of the conclusion defined to give a 

straight line that will be used to compare with real function. It can be determined as follows: 
 

 

For the left slope of conclusion B* for two endpoints [0, 1] are: 

10

3
0L  =

DL

DL
B

, 
109

321
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Then, the equation of the left slope of the linear approximation is determined as: 
 

  LLLapproxL BBBB 001)( )(  (6.31) 

 

Fig. 79 describes the maximum difference between the real function and its PWL 

approximation, which can be determined by statement PWLST2: 

 

 

Fig. 79. The Difference Between the Linear Approximation and Real Function of the Left Slope for the α-Cuts 

Level Between α∈ (0, 1) [41], [45] 

Statement PWLST2: The error of the approximating nonlinear slope of the determined 

conclusion could be defined by a linear slope between (0 and 1), which expressed in terms of 

the membership degree running through [0, 1] as follows: 
 


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In Eq.(6.23) could be used to verify the PWL condition, and for further PWL_Notations 

presented to check the upper limit of the error can be given by calculating the difference yH(0) 

- yH(1) (for more details see [41], [45]), which can be determined as follows: 
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Where, the linearity error can be determined by Statement PWLST3: 
 

Statement PWLST3: The linearity error of B∗
L (for the left slope) does not exceed ε > 0 if: 
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(6.34) 

 

Which are proved by: 

The left slope: 

 )))(((. 2

9103 cLcLDLslopeLeft   

0))()(( 2

1019

2

10102  cLDLcLcLcLDL   
(6.35) 

 
 
 

 

The right slope: 

 )))(((. 2
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0))()(( 2

1019

2
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(6.36) 

 

The value ε is assumed 0 to verify PWL_Notations of the statement PWLST3.  
 

The general case of the linear interpolation can only use two breakpoint values (α = 0 and α 

= 1) for computing the support and the core conclusion, which may not be satisfactory because, 

in most cases, the results obtained are somewhat disappointing. For this reason, it will be needed 

to calculate for a much larger number of α-cuts levels. In the next subsubsection, we will discuss 
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all cases used in constructing the PWL_Benchmark  Examples. These cases will be analyzed 

according to the PWL condition, which values of α-cut levels to every step of 0.1, α ∈ [0, 1] 

will be considered. 

6.3.4.  The KH-FRI PWL benchmark  

In this subsubsection, the validity of the PWL condition of the KH-FRI method will be 

investigated. The statements and equations in the previous sub subsections could be used to 

check the linearity of the KH-FRI conclusion, and also to construct the PWL_Benchmark  

Examples. The left and right slopes of the fuzzy rule and observation play a significant role in 

preserving the conclusion’s linearity. To represent the fuzzy sets of the antecedent, consequent, 

and observation in the PWL_Benchmark  Examples, we use one-dimensional input and output 

variables, triangular membership function, and two fuzzy rules. PWL_Benchmark  Examples 

and their results tested by the MATLAB FRI toolbox. The current version of the FRI toolbox 

is freely available to download in [24].  

PWL_Benchmark  Examples are divided into two groups. The first group presents the rule-

base, observation configurations, where the KH-FRI conclusion is satisfied with the PWL 

condition. The second group shows the examples that the conclusions of the KH-FRI are not 

satisfied with the PWL condition. We will discuss the cases related to the PWL property of the 

KH-FRI conclusion. 

The KH-FRI conclusion is always satisfied with PWL condition if the following cases are 

met: 
 

For Case PWLC1: When the left and right slopes Ai and Bi fuzzy sets are identical (e.g., for 

left slop a12 − a11 = a22 − a21 and b12 − b11 = b22 − b21), therefore, the conclusion of KH-FRI 

will always be satisfied with the linearity condition. Table 21 illustrates the PWL_Notations of 

the Example "PWL.LIN.C1" that demonstrate the linearity conclusion related to Case PWLC1.  

 
Table 21. The Preserving PWL Conclusion of The KH-FRI with Fuzzy Sets and PWL_Notations to Case PWLC1. 

Example "PWL.LIN.C1" 

The characteristic points of the fuzzy sets: 

A1= [0 2 2 6] A2= [10 12 12 16] A*= [7 8 8 9] 

B1= [0 2 2 6] B2= [10 12 12 16]  B*= [7 8 8 9] 

The length of left and right slopes of the fuzzy sets:  

For left:     A1=2, A2=2, A
*
=1, B1=2, B2=2  

For Right: A1=4, A2=4, A
*
=1, B1=4, B2=4 

PWL_Notations by Eq.(6.32):  

∆B
*
 Left = 0  

∆B
*
 Right= 0 

PWL_Notations by Eq.(6.33):  

E.Left = NAN  

E.Right = NAN 

PWL_Notations by Eq.(6.34):  

Left.Slope = 1  

Right.Slope = 1 
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For Case PWLC2: If two adjacent fuzzy rule bases A1 → B1 and A2 → B2 (e.g., for left slop: 

Rule1 (a12 − a11 = b12 − b11), Rule2 (a22 − a21 = b22 − b21) have the same left and right slopes 

and the same characteristic points on the universe of discourse, then the KH-FRI conclusion 

will always be satisfied with the linearity condition. Table 22 explains the Example 

"PWL.LIN.C2" that indicate to Case PWLC2.  

 
Table 22. The Preserving PWL Conclusion of The KH-FRI with Fuzzy Sets and PWL_Notations to Case PWLC2. 

Example "PWL.LIN.C2" 

The characteristic points of the fuzzy sets: 

A1= [0 3 3 4] A2= [10 11 11 14] A*= [5 6 6 7] 

B1= [0 3 3 4] B2= [10 11 11 14] B*= [5 6 6 7] 

The length of left and right slopes of the fuzzy sets: 

For left:     A1=3, A2=1, A
*
=1, B1=3, B2=1 

For Right: A1=1, A2=3, A
*
=1, B1=1, B2=3 

PWL_Notations by Eq.(6.32):  

∆B
*
 Left = 0  

∆B
*
 Right= 0 

PWL_Notations by Eq.(6.33):  

E.Left = 0  

E.Right = 0 

PWL_Notations by Eq.(6.34):  

Left.Slope = 1  

Right.Slope = 1 

 

 

For Case PWLC3: When the fuzzy sets of the antecedents Ai and the observation A∗ have 

the same left and right slopes PWL, therefore, the conclusion of the KH-FRI will always be 

satisfied with the linearity condition. Table 23 defined PWL_Notations of Example 

"PWL.LIN.C3" regard to Case PWLC3. 
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Table 23. The Preserving PWL Conclusion of The KH-FRI with Fuzzy Sets and PWL_Notations to Case PWLC3. 

Example "PWL.LIN.C3" 

The characteristic points of the fuzzy sets: 

A1= [0 3 3 6] A2= [13 16 16 19] A*= [6.5 9.5 9.5 

12.5] B1= [1 2 2 3] B2= [7 9 9 11]  B*= [4 5.5 5.5 7] 

The length of left and right slopes of the fuzzy sets: 

For left:     A1=3, A2=3, A
*
=3, B1=1, B2=2 

For Right: A1=3, A2=3, A
*
=3, B1=1, B2=2 

PWL_Notations by Eq.(6.32):  

∆B
*
 Left = 0  

∆B
*
 Right= 0 

PWL_Notations by Eq.(6.33):  

E.Left = NAN  

E.Right = NAN 

PWL_Notations by Eq.(6.34):  

Left.Slope = 1  

Right.Slope = 1 

 

 

For Case PWLC4: When the left and right slopes for all fuzzy sets of two adjacent fuzzy 

rule bases and observation are equidistant (Ai = Bi = A*), therefore, the conclusion of the KH-

FRI will always be satisfied with the linearity condition. Table 24 illustrates PWL_Notations 

to Example "PWL.LIN.C4" which indicates to Case PWLC4. 

 
Table 24. The Preserving PWL Conclusion of The KH-FRI with Fuzzy Sets and PWL_Notations to Case PWLC4. 

Example "PWL.LIN.C4" 

The characteristic points of the fuzzy sets: 

A1= [1 2 2 3] A2= [10 11 11 12] A*= [5 6 6 7]  

B1= [1 2 2 3] B2= [10 11 11 12] B*= [5 6 6 7] 

The length of left and right slopes of the fuzzy sets: 

For left:     A1=1, A2=1, A
*
=1, B1=1, B2=1 

For Right: A1=1 A2=1, A
*
=1, B1=1, B2=1 

PWL_Notations by Eq.(6.32):  

∆B
*
 Left = 0  

∆B
* 
Right= 0 

PWL_Notations by Eq.(6.33):  

E.Left = NAN  

E.Right = NAN 

PWL_Notations by Eq.(6.34):  

Left.Slope = 1  

Right.Slope = 1 

 

 

However, the conclusions of the KH-FRI are not satisfied with PWL condition based on 

Eq.(6.32), Eq.(6.33) and Eq.(6.34) if the following cases hold. 

According to Case PWLC1: When the left and right slopes Ai and Bi are incompatible (e.g., 

for left slop (a12 − a11 ≠ a22 − a21) and (b12 − b11 = b22 − b21), whereas Ai ≠ A∗, in this case, the 
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linearity conclusion of KH-FRI is not satisfied. Example "PWL.NONLIN.C1" constructed to 

prove the problem, which will be described by three different situations based on the 

characteristic points of the observation A∗ to compare its linearity conclusions.  
 

 

Table 25 illustrates PWL_Notations that describe the problem according to the three 

situations. 
 

Table 25. The Problem with Slopes to Case PWLC1 Which is not Preserving PWL 

Example "PWL.NONLIN.C1"  situation1 when e.g., the left slope (b1(2) - b1(1) = b2(2) - b2(1)) = A* 

The characteristic points of the fuzzy sets: 

A1= [0 2 2 8] A2= [14 20 20 22] A*= [9 11 11 13]  

B1= [0 2 2 4] B2= [9 11 11 13]  

B*= [5.79 6.50 6.50 7.21] 

The length of left and right slopes of the fuzzy sets: 

For left:     A1=2, A2=6, A
*
=2, B1=2, B2=2 

For Right: A1=6, A2=2, A
*
=2, B1=2, B2=2 

PWL_Notations by Eq.(6.32):  

∆B
* 
Left (Maximum-deviation) = 0.08  

∆B
*
 Right (Maximum-deviation) = 0.08 

PWL_Notations by Eq.(6.33):  

E.Left = 1.2857 

E.Right = 1.2857 

PWL_Notations by Eq.(6.34):  

Left.Slope = 0 

Right.Slope = 0 

 
Example "PWL.NONLIN.C1" situation2 when e.g., the left slope (b1(2) - b1(1) = b2(2) - b2(1)) < A* 

The characteristic points of the fuzzy sets: 

A1= [0 2 2 8] A2= [14 20 20 22] A*= [8 11 11 14] 

B1= [0 2 2 4] B2= [9 11 11 13]  

B*= [ 5.14 6.50 6.50 7.86] 

The length of left and right slopes of the fuzzy sets: 

For left:    A1=2, A2=6, A
*
=3, B1=2, B2=2 

For Right: A1=6, A2=2, A
*
=3, B1=2, B2=2 

PWL_Notations by Eq.(6.32):  

∆B
*
 Left (Maximum-deviation) = 0.04  

∆B
*
 Right (Maximum-deviation) = 0.04 

PWL_Notations by Eq.(6.33):  

E.Left = 0.6429 

E.Right = 0.6429 

PWL_Notations by Eq.(6.34):  

Left.Slope = 0 

Right.Slope = 0 

 

Example "PWL.NONLIN.C1" situation3 when e.g., the left slope (b1(2) - b1(1) = b2(2) - b2(1)) > A* 

The characteristic points of the fuzzy sets: 

A1= [0 2 2 8] A2= [14 20 20 22] A*= [10 11 11 12] 

B1= [0 2 2 4] B2= [9 11 11 13]  

B*= [6.4286 6.5 6.5 6.571] 

The length of left and right slopes of the fuzzy sets: 

For left: A1=2, A2=6, A
*
=1, B1=2, B2=2 

For Right: A1=6, A2=2, A
*
=1, B1=2, B2=2 
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PWL_Notations by Eq.(6.32):  

∆B
*
 Left (Maximum-deviation) = 0.121 

∆B
*
 Right (Maximum-deviation) = 0.121 

PWL_Notations by Eq.(6.33):  

E.Left = 1.9286 

E.Right = 1.9286 

PWL_Notations by Eq.(6.34):  

Left.Slope = 0 

Right.Slope = 0 

 
 

About Case PWLC2: When the two adjacent fuzzy rule bases A1 → B1 and A2 → B2 have 

the same left and right slopes but have different characteristic points on the universe of 

discourse, in this case, the linearity conclusion of KH-FRI is not satisfied. Example 

"PWL.NONLIN.C2" constructed to prove the issue, as shown in Table 26. 
 

Table 26. The Problem with Slopes to Case PWLC2 Which is not Preserving PWL 

Example "PWL.NONLIN.C2" 

The characteristic points of the fuzzy sets: 

A1= [0 3 3 4] A2= [10 11 11 14] A*= [5 6 6 7]  

B1= [1 4 4 5] B2= [15 16 16 19] B*= [8 8.5 8.5 9.2] 

The length of left and right slopes of the fuzzy sets: 

For left:     A1=3, A2=1, A
*
=1, B1=3, B2=1 

For Right: A1=1, A2=3, A
*
=1, B1=1, B2=3 

PWL_Notations by Eq.(6.32):  

∆B
*
 Left (Maximum-deviation) = 0.028 

∆B
*
 Right (Maximum-deviation) = 0.017 

PWL_Notations by Eq.(6.33):  

E.Left = 0.500 

E.Right = 0.300 

PWL_Notations by Eq.(6.34):  

Left.Slope = 0 

Right.Slope = 0 

 

 

Referring to Case PWLC3: When the left and right slopes of the antecedents Ai (a12 − a11 

= a22 − a21) and the observation A∗ are not equivalent, whereas Ai ≠ Bi, then the linearity 

conclusion of KH-FRI is not satisfied. Refer to Corollary PWLCR1, Example 

"PWL.NONLIN.C3" is applied the polynomial condition when (a12 − a11 = a22 − a21); however, 

it is not linear. Table 27 describes PWL_Notations which prove the problem to this case. 
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Table 27. The Problem with Slopes to Case PWLC3 Which is not Preserving PWL 

Example "PWL.NONLIN.C3" 

The characteristic points of the fuzzy sets: 

A1= [0 3 3 7] A2= [15 18 18 22] A*= [7 8 8 10]  

B1= [0 2 2 5] B2= [8 9 9 10] B*= [3.73 4.33 4.33 6.0] 

The length of left and right slopes of the fuzzy sets: 

For left:     A1=3, A2=3, A
*
=1, B1=2, B2=1 

For Right: A1=4, A2=4, A
*
=2, B1=3, B2=1 

PWL_Notations by Eq.(6.32):  

∆B
*
 Left (Maximum-deviation) = 0.033 

∆B
*
 Right (Maximum-deviation) = 0.067 

PWL_Notations by Eq.(6.33):  

E.Left = NAN 

E.Right = NAN 

PWL_Notations by Eq.(6.34):  

Left.Slope = 0 

Right.Slope = 0 

 
 

According to Case PWLC4: When values of the left and right slopes of fuzzy rule bases 

and observation are not similar (Ai ≠ Bi ≠ A*), then the linearity conclusion of KH-FRI is not 

satisfied. Example "PWL.NONLIN.C4" created to demonstrate the problem, as shown in Table 

28. 

 
Table 28. The Problem with Slopes to Case PWLC4 Which is not Preserving PWL 

Example "PWL.NONLIN.C4" 

The characteristic points of the fuzzy sets: 

A1= [1 2 2 4] A2= [10 12 12 15] A*= [6 7 7 8]  

B1= [0 2 2 5] B2= [12 13 13 14]  

B*= [6.67 7.5 7.5 8.27] 

The length of left and right slopes of the fuzzy sets: 

For left:    A1=1, A2=2, A
*
=1, B1=2, B2=1 

For Right: A1=2, A2=3, A
*
=1, B1=3, B2=1 

PWL_Notations by Eq.(6.32):  

∆B
*
Left (Maximum-deviation)= 0.031 

∆B
*
Right (Maximum-deviation)= 0.101 

PWL_Notations by Eq.(6.33):  

E.Left = 1.1667 

E.Right = 4.2273 

PWL_Notations by Eq.(6.34):  

Left.Slope = 0 

Right.Slope = 0 
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6.3.5. Discussion of the KH-FRI PWL benchmark examples  

In the following, the PWL_Benchmark  Examples and their notations will be discussed in 

detail. Examples "PWL.LIN.C1" to "PWL.LIN.C4" shown in Table 21 - Table 24 demonstrate 

PWL configurations, where the conclusions of the KH-FRI are always preserving PWL 

property, according to Eq.(6.32) is always equal to 0 because the values of the real and linear 

approximation functions are similar. Also, by Eq.(6.33) is NAN or, in some cases, is equal to 0 

because the parameters cL9 or cR9 are equal to 0 (see Corollary PWLCR1 and PWLCR2). 

Eq.(6.34) could always be satisfied with preserving the PWL when left.Slope and right.Slope 

are 1. 

According to examples of the first group, two examples will be taken to demonstrate the 

linearity (PWL) of the KH-FRI.  

 

Referring to Example "PWL.LIN.C1" as shown in Table 21, we conclude the following: 

 The conclusion of the KH-FRI is satisfied with PWL condition related to Case  PWLC1, 

where, the support length of the left and right slopes of antecedent Ai and consequent Bi 

fuzzy sets are similar. 

 Using Eq.(6.32), Eq.(6.33), and Eq.(6.34), the conclusion is always satisfied with the 

linearity property. E.g., 

­ The left slope of antecedent fuzzy sets: (A1=2 and A2=2) and (B1=2 and B2=2).  

­ The right slope of antecedent fuzzy sets: (A1=4 and A2=4) and (B1=4 and B2=4).  

 Fig. 80 shows the result of ∆B∗, which is obtained by Eq.(6.32) for all α-cut levels to 

the left and right slopes that are equal to 0.  

 

 
Fig. 80. The Difference Between the Linear Approximation and Real Functions of the Left and Right Slopes for α 

∈ [0,1] To Example "PWL.LIN.C1" 

 The estimated error PWL_Notations are proved the non-linearity as follows: 

­ By Eq.(6.33) is NAN for left and right slopes (E.left = NAN, E.right = NAN), the 

PWL_Notations of Corollary PWLCR1 and PWLCR2 are also demonstrated, where 

(e.g., for left slope) DL1 is 0 (because of cL9 = 0). 

­ By Eq.(6.34) is 1 for left and right slopes (Left.Slope = 1, Right.Slope = 1).(6.33) 
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Another case of the preserving linearity, it is evident by Example "PWL.LIN.C2" as shown 

in Table 22, we conclude the following: 

 The conclusion of the KH-FRI is satisfied with linearity condition when slopes of two 

fuzzy rule bases are equivalent; this example is restricted to the characteristic points of 

the two fuzzy rule bases, which must be identified as mentioned in Case  PWLC2. E.g., 

­ The Rule A1 ⇒ B1 (for the lower A1=3 and B1=3), and (for the upper A1=1 and B1=1). 

­ The Rule A2 ⇒ B2 (for the lower A1=1 and B1=1), and (for the upper A1=3 and B1=3).  

­ The characteristic points A1= [0 3 3 4] ⇒ B1= [0 3 3 4] and A2= [10 11 11 14] ⇒ B2= 

[10 11 11 14]. 

 ∆B∗ of the left and right slopes that are equal 0, which computed by Eq.(6.32). 

 The estimated error PWL_Notations are proved the non-linearity as follows: 

­ By Eq.(6.33) is 0 for left and right slopes (E.left = 0, E.right = 0), despite the 
parameters cL9 and DL1 (by PWL_Notations of Eq.(6.34)) are "not zero", e.g., for left 
slope, cL9 = -2 and DL1 are -2. 

­ By Eq.(6.34) is 1 for left and right slopes (Left.Slope = 1, Right.Slope = 1).(6.33) 

 

In contrast, Examples "PWL.NONLIN.C1" – "PWL.NONLIN.C4" describe cases, in which 

the conclusions of the KH-FRI are not satisfied with PWL (the second group). These examples 

have been presented based on two facts, either if the conclusion is close to linearity (Example 

"PWL.NONLIN.C1" situation2) or far from linearity (Example "PWL.NONLIN.C1" situation3). 

 

 According to Eq.(6.34), the conclusion is not satisfied with the PWL condition because the 

values are always 0 for (left.Slope and right.Slope). Eq.(6.32) and Eq.(6.33) will be discussed 

in detail as follows:  

 

According to Example "PWL.NONLIN.C1" as shown in Table 25, we conclude the 

following: 

 There are three different situations based on the characteristic points of the consequents 

and the observation as:  

­ Situation1 (when (b12 − b11 = b22 − b21) = A*),  
­ Situation2 (when (b12 − b11 = b22 − b21) < A*), 

­ Situation3 (when (b12 − b11 = b22 − b21) > A*).  
 Fig. 81 shows the difference between real and linear approximation functions for each 

situation. Using Eq.(6.32), the maximum deviation for left and right slopes in situation1 

is 0.08, and situation2 is smaller than situation1, which is 0.04, in contrast, situation3 

has the high deviation is 0.121.  
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Fig. 81. The Difference Between the Linear Approximation and Real Functions of the Left and Right Slopes for α 

∈ [0,1] To Example "PWL.NONLIN.C1" 

 On the other hand, Eq.(6.33) shows the error ratios for the three situations, situation3 

has a large error ratio compared to situation1 and situation2, where the error ratio of the 

left and right slopes of (situation3 is 1.9286), (situation1 is 1.2857), and (situation2 is 

0.6429). Therefore, situation3 is far from linearity, in contrast to situation2, which is 

closer than situation1 to linearity. 

 Using Eq.(6.34), the conclusion is always not satisfied with the PWL condition, where 

the value is always 0 for (left.Slope and right.Slope). 

 

In Example "PWL.NONLIN.C2" as shown in Table 26, we conclude the following: 

 The problem appears when the left and right slopes of fuzzy rule bases are the same, but 

the characteristic points of the fuzzy sets of Ai and Bi are different on the universe of 

discourse. In this case, the conclusion KH-FRI is not satisfied with linearity. E.g., 

­ The Rule A1 ⇒ B1 (for the lower A1=3 and B1=3), and (for the upper A1=1 and B1=1).  

­ The Rule A2 ⇒ B2 (for the lower A1=1 and B1=1), and (for the upper A1=3 and B1=3). 

­ The characteristic points A1= [0 3 3 4] ⇒ B1= [1 4 4 5] and A2= [10 11 11 14] ⇒ B2= 

[15 16 16 19]. 

 Referring to Eq.(6.32), the deviation for the left slope is greater than the right slope, 

where the left slope is 0.028, and the right slope is 0.017, as shown in Fig. 82. 
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Fig. 82. The Difference Between the Linear Approximation and Real Functions of the Left and Right Slopes for α 

∈ [0,1] To Example "PWL.NONLIN.C2" 

 Also, Eq.(6.33) describes the error ratio, where the left slope is 0.5 is far from linearity 

to the right slope is 0.3. 

 According to Eq.(6.34), the conclusion is always not satisfied with the PWL condition, 

where the value is always 0 for (left.Slope and right.Slope). 

 

In Example "PWL.NONLIN.C3" as shown in Table 27, we conclude the following: 

 The conclusion of KH-FRI is not satisfied with linearity according to the results of 

equations and PWL_Notations, when the left and right slopes of the antecedents Ai (a12 

− a11 = a22 − a21) and the observation A∗ are not equivalent whereas Ai ≠ Bi. 

 Fig. 83 shows the difference between real and linear approximation functions, where 

the maximum deviation for left and right slopes are 0.033 and 0.067, respectively, by 

Eq.(6.32).  
 

 

 

Fig. 83. The Difference Between the Linear Approximation and Real Functions of the Left and Right Slopes for α 

∈ [0,1] To Example "PWL.NONLIN.C3" 

 Eq.(6.33) determines the error ratio for the left and the right slopes are NAN, by referring 

to Corollary PWLCR1, this example has achieved the condition of polynomia lity 

because the left and right slopes of A1 and A2 are similar, but not linear. 

 Using Eq.(6.34), the conclusion is always not satisfied with the PWL condition because 

the value of this equation is always 0 for (left.Slope and right.Slope). 
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Also, in Example "PWL.NONLIN.C4" as shown in Table 28, we conclude the following: 

 All fuzzy sets of fuzzy rule bases and observation are different (Ai ≠ Bi ≠ A*), then the 

conclusion KH-FRI is also not satisfied with the linearity condition.  

 Additionally, Fig. 84 shows the difference between real and linear approximation 

functions as follows: 
 

 

Fig. 84. The Difference Between the Linear Approximation and Real Functions of the Left and Right Slopes for α 

∈ [0,1] To Example "PWL.NONLIN.C4" 

 Eq.(6.33) determines the error ratio of the linearity in the right slope is 4.2273, which 

is so far from the left slope of which is 1.1667.  

 According to Eq.(6.34), the conclusion is always not satisfied with the PWL condition 

because the value is always 0 for (left.Slope and right.Slope). 

 

Based on all examples and cases of the PWL benchmark, we conclude the following:  

1. All examples of the first group of the PWL_Benchmark  Examples are satisfied with PWL 

property, as proved by the difference between Left and Right slopes condition between the 

fuzzy rules and observation, the conclusion is always preserving on the linearity if one of 

the below conditions is met: 

• The left and right slopes Ai and Bi fuzzy sets are identical. 

• The two adjacent fuzzy rule bases A1 → B1 and A2 → B2 have the same left and right 

slopes and the same characteristic points on the universe of discourse. 

• The fuzzy sets of the antecedents Ai and the observation A∗ have the same left and right 

slopes.  

• The left and right slopes for all fuzzy sets of two adjacent fuzzy rule bases and observation 

are equidistant (Ai = Bi = A*). 

Moreover, all PWL_Notations of the Left and Right slopes (The error of approximating the 

nonlinear slope Eq.(6.32), the upper limit of the error Eq.(6.33), the linearity error Eq.(6.34) 

of the fuzzy sets and the difference between real function and linear approximation) are also 

satisfied with the PWL condition. 

2. On the other hand, all examples of the second group of the PWL_Benchmark  Examples are 

not satisfied with PWL property, as proved by the difference between Left and Right slopes 
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condition of the fuzzy rules and observation, where the conclusion is always not preserving 

on the linearity if one of the below conditions is met: 

 The left and right slopes Ai and Bi are incompatible, whereas Ai ≠ A∗, and (Situation1: Bi 

= A*, Situation2: Bi < A*, Situation3: Bi > A*). 

 The two adjacent fuzzy rule bases A1 → B1 and A2 → B2 have the same left and right 
slopes but have different characteristic points on the universe of discourse. 

 The left and right slopes of the antecedents Ai (a12 − a11 = a22 − a21) and the observation 

A∗ are not equivalent, whereas Ai ≠ Bi. 

 The values of the left and right slopes of fuzzy rule bases and observation are not similar 

(Ai ≠ Bi ≠ A*). 
Moreover, all PWL_Notations of the Left and Right slopes (Eq.(6.32), Eq.(6.33), Eq.(6.34), 

and the difference between real function and linear approximation) proved that the conclusion 

is always not satisfied with the PWL condition.  

 

6.4.  The Application of the CNF and PWL Benchmark Examples 
 

This subsection will discuss the efficiency of the CNF and PWL benchmarks compared to 

some of the FRI methods implemented via the FRI Toolbox. Besides, the validity of the 

proposed Incircle-FRI method will be discussed based on this benchmark and compared to other 

FRI methods. 

6.4.1.  Testing FRI methods based on the CNF benchmark examples  

In the following, some of the FRI methods (KHstabilized [5], MACI [6], VKK [4], and CRF 

[7]) will be tested and compared according to the CNF_Benchmark  Examples. To offer a simple 

way of comparison, we focus on the cases that demonstrated abnormal conclusion (Examples: 

"CNF.KH_ABNOR.C4_1" – "CNF.KH_ABNOR.C4_4"). This comparison shows the difference 

between the results of the selected methods according to the CNF property. Fig. 85 introduces 

the antecedents and observation part of Examples ("CNF.KH_ABNOR.C4_1" – 

"CNF.KH_ABNOR.C4_4") as shown in Table 17 – Table 20 and Fig. 86 - Fig. 89 describe the 

results of the FRI methods (KHstabilized [5], MACI [6], VKK [4], and CRF [7]). 
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Fig. 85. The Antecedents and Observations Related to Examples ("CNF.KH_ABNOR.C4_1" –

"CNF.KH_ABNOR.C4_4") 
The Consequents and Conclusion by (KHstabilized-FRI) Related to Example "CNF.KH_ABNOR.C4_1" 

 
The Consequents and Conclusion by (KHstabilized-FRI) Related to Example "CNF.KH_ABNOR.C4_2" 

 
The Consequents and Conclusion by (KHstabilized-FRI) Related to Example "CNF.KH_ABNOR.C4_3" 
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The Consequents and Conclusion by (KHstabilized-FRI) Related to Example "CNF.KH_ABNOR.C4_4" 

 

Fig. 86. The Conclusions of the KHstabilized-FRI Method Related to CNF_Benchmark Examples 

("CNF.KH_ABNOR.C4_1" – "CNF.KH_ABNOR.C4_4") 

The Consequent and Conclusion by (MACI-FRI) Related to Example "CNF.KH_ABNOR.C4_1" 

 
The Consequent and Conclusion by (MACI-FRI) Related to Example "CNF.KH_ABNOR.C4_2" 

 
The Consequent and Conclusion by (MACI-FRI) Related to Example "CNF.KH_ABNOR.C4_3" 

 
The Consequent and Conclusion by (MACI-FRI) Related to Example "CNF.KH_ABNOR.C4_4" 

 

Fig. 87. The Conclusions of the MACI-FRI Method Related to CNF_Benchmark Examples 

("CNF.KH_ABNOR.C4_1" – "CNF.KH_ABNOR.C4_4") 
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The Consequent and Conclusion by (VKK-FRI) Related to Example "CNF.KH_ABNOR.C4_1" 

 
The Consequent and Conclusion by (VKK-FRI) Related to Example "CNF.KH_ABNOR.C4_2" 

 
The Consequent and Conclusion by (VKK-FRI) Related to Example "CNF.KH_ABNOR.C4_3" 

 
The Consequent and Conclusion by (VKK-FRI) Related to Example "CNF.KH_ABNOR.C4_4" 

 
Fig. 88. The Conclusions of the VKK-FRI Method Related to CNF_Benchmark Examples 

("CNF.KH_ABNOR.C4_1" – "CNF.KH_ABNOR.C4_4") 

The Consequent and Conclusion by (CRF-FRI) Related to Example "CNF.KH_ABNOR.C4_1" 
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The Consequent and Conclusion by (CRF-FRI) Related to Example "CNF.KH_ABNOR.C4_2" 

 
The Consequent and Conclusion by (CRF-FRI) Related to Example "CNF.KH_ABNOR.C4_3" 

 
The Consequent and Conclusion by (CRF-FRI) Related to Example "CNF.KH_ABNOR.C4_4" 

 

Fig. 89. The Conclusions of the CRF-FRI Method Related to CNF_Benchmark Examples 

("CNF.KH_ABNOR.C4_1" – "CNF.KH_ABNOR.C4_4") 

6.4.2.  Testing the Incircle-FRI method based on the CNF benchmark examples 

In the following, the proposed Incircle-FRI will be tested to prove the validity of the 

conclusions according to the CNF property. First, the Incircle-FRI will be tested according to 

CNF_Benchmark  Examples (see section 6.2). Second, it will be tested according to all examples 

used in chapter 4. Third, it will be tested using examples with different core and fuzziness sides 

between fuzzy rules and observation fuzzy sets.   

 

1. According to the CNF_Benchmark  Examples presented in subsection 6.2, which was 

constructed to test the CNF property, in the following, we examine the Incircle-FRI based 

on this benchmark. Table 29 - Table 32 introduce the CNF_Notations that prove the 

preservation of the CNF property of the Incircle-FRI. 
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Table 29. The CNF_Notations of the Incircle-FRI Result Related to Example "CNF.KH_ABNOR.C4_1" (in 
subsection 6.2), Which is Preserving CNF 

The values of the fuzzy sets: 

A1= [1 2 3 4] A2= [6 7 8 9] 

B1= [1.5 2.5 2.5 3.8] B2= [6.5 7.5 7.5 9] 

A*= [4.2 5.2 5.2 6.7] B*= [4.82 5.55 5.55 6.49] 

The case of the Core, LFs and RFs conclusion: 

The length (LFs) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFs) is (NORMAL) 

The lengths of the Core and Fuzziness sides: 

LFS_length: LFS1 = (0), LFS2 = (0.88) 

CoreL: Core1= (-56.7273), Core2= (431.0204) 

CoreR: Core1= (-25.06), Core2= (566.41) 

RFS_length: RFS1= (0.0941), RFS2= (2.423) 

Length ratios of the Core and Fuzziness sides:  

LFS.Ratio1 = (0), LFS.Ratio2 = (0) 

CoreL.Ratio1 = (1), CoreL.Ratio2 = (1) 

CoreR.Ratio1 = (1), CoreR.Ratio2 = (1) 

RFS.Ratio1 = (0), RFS.Ratio2 = (0) 

The Consequent and Conclusion by (Incircle-FRI) Related to Example "CNF.KH_ABNOR.C4_1" 

 
 

Table 30. The CNF_Notations of the Incircle-FRI Result Related to Example "CNF.KH_ABNOR.C4_2" (in 
subsection 6.2), Which is Preserving CNF 

The values of the fuzzy sets: 

A1= [1 2.5 2.5 4] A2= [5.5 7.5 7.5 9] 

B1= [1 2 3 4.5] B2= [6.5 7 8 9.5] 

A*= [4.5 4.9 5.1 5.5] B*= [4.36 4.86 5.29 5.87] 

The case of the Core, LFs and RFs conclusion: 

The length (LFs) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFs) is (NORMAL) 

The lengths of the Core and Fuzziness sides: 

LFS_length: LFS1 = (-0.71), LFS2 = (4.20) 

CoreL: Core1= (-34.0508), Core2= (383.2101) 

CoreR: Core1= (-28.722), Core2= (567.0) 

RFS_length: RFS1= (0), RFS2= (0.767) 

Length ratios of the Core and Fuzziness sides:  

LFS.Ratio1 = (0), LFS.Ratio2 = (1) 

CoreL.Ratio1 = (1), CoreL.Ratio2 = (1) 

CoreR.Ratio1 = (1), CoreR.Ratio2 = (1) 

RFS.Ratio1 = (0), RFS.Ratio2 = (0) 

The Consequent and Conclusion by (Incircle-FRI) Related to Example "CNF.KH_ABNOR.C4_2" 
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Table 31. The CNF_Notations of the Incircle-FRI Result Related to Example "CNF.KH_ABNOR.C4_3" (in 
subsection 6.2), Which is Preserving CNF 

The values of the fuzzy sets: 

A1= [1.5 2.5 2.5 4.3] A2= [6.5 7.5 7.5 8.8] 

B1= [1 2 3 3.5] B2= [6 7 8 8.9] 

A*= [4.5 4.9 5.1 5.5] B*= [4.10  4.80 5.23  5.65] 

The case of the Core, LFs and RFs conclusion: 

The length (LFs) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFs) is (NORMAL) 

The lengths of the Core and Fuzziness sides: 

LFS_length: LFS1 = (0), LFS2 = (0.5137) 

CoreL: Core1= (-32.58), Core2= (381.728) 

CoreR: Core1= (-28.89), Core2= (558.87) 

RFS_length: RFS1= (0.409), RFS2= (0.681) 

Length ratios of the Core and Fuzziness sides:  

LFS.Ratio1 = (0), LFS.Ratio2 = (0) 

CoreL.Ratio1 = (1), CoreL.Ratio2 = (1) 

CoreR.Ratio1 = (1), CoreR.Ratio2 = (1) 

RFS.Ratio1 = (-0.68), RFS.Ratio2 = (1) 

The Consequent and Conclusion by (Incircle-FRI) Related to Example "CNF.KH_ABNOR.C4_3"

 

 
Table 32. The CNF_Notations of the Incircle-FRI Result Related to Example "CNF.KH_ABNOR.C4_4" (in 

subsection 6.2), Which is Preserving CNF 

The values of the fuzzy sets: 

A1= [2 2 2.5 3] A2= [6 7.5 8 8] 

B1= [2 2 2 2] B2= [8 8 8 8] 

A*= [5 5 5 5] B*= [5.03  5.023  5.03  5.03] 

The case of the Core, LFs and RFs conclusion: 

The length (LFs) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFs) is (NORMAL) 

The lengths of the Core and Fuzziness sides: 

LFS_length: LFS1 = (0), LFS2 = (0) 

CoreL: Core1= (-57.2133), Core2= (458.7421) 

CoreR: Core1= (-28.48), Core2= (467.93) 

RFS_length: RFS1= (0), RFS2= (0) 

Length ratios of the Core and Fuzziness sides:  

LFS.Ratio1 = (0), LFS.Ratio2 = (1) 

CoreL.Ratio1 = (1), CoreL.Ratio2 = (1) 

CoreR.Ratio1 = (1), CoreR.Ratio2 = (1) 

RFS.Ratio1 = (0), RFS.Ratio2 = (1) 

The Consequent and Conclusion by (Incircle-FRI) Related to Example "CNF.KH_ABNOR.C4_4" 

 

 

2. According to the suggested examples in chapter 4, which was presented to test the proposed 

Incircle-FRI, in the following. Table 33 - Table 38 introduce the CNF_Notations that 

demonstrate the CNF property of the Incircle-FRI. 
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Table 33. The CNF_Notations of the Incircle-FRI Result Related to Example CNFIncircle(TR1) (in chapter 4), 
Which is Preserving CNF 

Example CNFIncircle(TR1) 

In case the (A i), (A
*), and (Bi) are Triangular 

The values of the fuzzy sets: 

A1= [0 5 6] A2= [11 13 14] 

B1= [0 2 4] B2= [10 11 13] 

A*= [7 8 9] B*= [4.95  5.42  7.16] 

The case of the Core, LFs and RFs conclusion: 

The length (LFs) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFs) is (NORMAL) 

The lengths of the Core and Fuzziness sides: 

LFS_length: LFS1 = (-6.25), LFS2 = (5.05) 

CoreL: Core1= (0.104), Core2= (1.29) 

CoreR: Core1= (13.07), Core2= (15.83) 

RFS_length: RFS1= (0), RFS2= (2.288) 

Length ratios of the Core and Fuzziness sides:  

LFS.Ratio1 = (0.310), LFS.Ratio2 = (1) 

CoreL.Ratio1 = (1), CoreL.Ratio2 = (1) 

CoreR.Ratio1 = (1), CoreR.Ratio2 = (1) 

RFS.Ratio1 = (0), RFS.Ratio2 = (0) 

 
Table 34. The CNF_Notations of the Incircle-FRI Result Related to Example CNFIncircle(TR2) (in chapter 4), 

Which is Preserving CNF 

Example CNFIncircle(TR2) 

In case the (A i) and (Bi) are Triangular, (A*) is Singlton 

The values of the fuzzy sets: 

A1= [0 5 6] A2= [11 13 14] 

B1= [0 2 4] B2= [10 11 13] 

A*= [8 8 8] B*= [5.42 5.42 5.42] 

The case of the Core, LFs and RFs conclusion: 

The length (LFs) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFs) is (NORMAL) 

The lengths of the Core and Fuzziness sides: 

LFS_length: LFS1 = (-6.705), LFS2 = (8.472) 

CoreL: Core1= (-32.15), Core2= (1359) 

CoreR: Core1= (46.16), Core2= (1520) 

RFS_length: RFS1= (0), RFS2= (1.14) 

Length ratios of the Core and Fuzziness sides:  

LFS.Ratio1 = (0.310), LFS.Ratio2 = (1) 

CoreL.Ratio1 = (1), CoreL.Ratio2 = (1) 

CoreR.Ratio1 = (1), CoreR.Ratio2 = (1) 

RFS.Ratio1 = (0), RFS.Ratio2 = (0) 

 

Table 35. The CNF_Notations of the Incircle-FRI Result Related to Example CNFIncircle(TR3) (in chapter 4), 
Which is Preserving CNF 

Example CNFIncircle(TR3) 

In case the (A i) is Singlton, and (A*) is Triangular and (Bi) (Singlton & Triangular) 

The values of the fuzzy sets: 

A1= [3 3 3] A2= [12 12 12] 

B1= [4 4 4] B2= [10 11 13] 

A*= [5 6 8] B*= [5.28  6.37  8.28] 

The case of the Core, LFs and RFs conclusion: 

The length (LFs) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFs) is (NORMAL) 

The lengths of the Core and Fuzziness sides: 

LFS_length: LFS1 = (-0.353), LFS2 = (0.707) 

CoreL: Core1= (18.06), Core2= (1406) 

CoreR: Core1= (-22.63), Core2= (1521) 

RFS_length: RFS1= (-4.236), RFS2= (8.472) 

Length ratios of the Core and Fuzziness sides:  

LFS.Ratio1 = (0), LFS.Ratio2 = (0) 

CoreL.Ratio1 = (0.75), CoreL.Ratio2 = (1) 

CoreR.Ratio1 = (0.80), CoreR.Ratio2 = (1) 

RFS.Ratio1 = (0), RFS.Ratio2 = (0) 
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Table 36. The CNF_Notations of the Incircle-FRI Result Related to Example CNFIncircle(TP1) (in chapter 4), 
Which is Preserving CNF 

Example CNFIncircle(TP1) 

In case the (A i) and (Bi) are Trapezoidal, and (A*) is Triangular 

The values of the fuzzy sets: 

A1= [0 4 5 6] A2= [11 12 13 14] 

B1= [0 2 3 4] B2= [10 11 12 13] 

A*= [6 6 9 10] B*= [4.54  4.54  7.47  8.53] 

The case of the Core, LFs and RFs conclusion: 

The length (LFs) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFs) is (NORMAL) 

The lengths of the Core and Fuzziness sides: 

LFS_length: LFS1 = (-3.069), LFS2 = (2.918) 

CoreL: Core1= (68.90), Core2= (989.37) 

CoreR: Core1= (-130.9), Core2= (2081) 

RFS_length: RFS1= (0), RFS2= (1.896) 

Length ratios of the Core and Fuzziness sides:  

LFS.Ratio1 = (0.319), LFS.Ratio2 = (1) 

CoreL.Ratio1 = (1), CoreL.Ratio2 = (1) 

CoreR.Ratio1 = (1), CoreR.Ratio2 = (1) 

RFS.Ratio1 = (0), RFS.Ratio2 = (0) 

 
Table 37. The CNF_Notations of the Incircle-FRI Result Related to Example CNFIncircle(TP2) (in chapter 4), 

Which is Preserving CNF 

Example CNFIncircle(TP2) 

In case the (A i) and (A*) are Triangular, and (Bi) is Trapezoidal 

The values of the fuzzy sets: 

A1= [0 5 6] A2= [11 13 14] 

B1= [0 2 3 4] B2= [10 11 12 13] 

A*= [7 8 9] B*= [ 5.01 5.90 5.90  7.33] 

The case of the Core, LFs and RFs conclusion: 

The length (LFs) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFs) is (NORMAL) 

The lengths of the Core and Fuzziness sides: 

LFS_length: LFS1 = (-6.250), LFS2 = (5.4113) 

CoreL: Core1= (0.104), Core2= (135) 

CoreR: Core1= (13.0), Core2= (1851) 

RFS_length: RFS1= (0), RFS2= (1.270) 

Length ratios of the Core and Fuzziness sides:  

LFS.Ratio1 = (0.310), LFS.Ratio2 = (1) 

CoreL.Ratio1 = (1), CoreL.Ratio2 = (1) 

CoreR.Ratio1 = (1), CoreR.Ratio2 = (1) 

RFS.Ratio1 = (0), RFS.Ratio2 = (0) 

 

Table 38. The CNF_Notations of the Incircle-FRI Result Related to Example CNFIncircle(TP3) (in chapter 4), 
Which is Preserving CNF 

Example CNFIncircle(TP3) 

In case (A i) is Trapezoidal, and (A*) and (Bi) are Triangular 

The values of the fuzzy sets: 

A1= [0 4 5 6] A2= [11 12 13 14] 

B1= [0 2 4] B2= [10 11 13] 

A*= [6 6 9 10] B*= [ 4.37  4.37  6.66  8.57] 

The case of the Core, LFs and RFs conclusion: 

The length (LFs) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFs) is (NORMAL) 

The lengths of the Core and Fuzziness sides: 

LFS_length: LFS1 = (-3.069), LFS2 = (2.610) 

CoreL: Core1= (68.90), Core2= (945.35) 

CoreR: Core1= (-130.9), Core2= (180) 

RFS_length: RFS1= (0), RFS2= (3.416) 

Length ratios of the Core and Fuzziness sides:  

LFS.Ratio1 = (0.310), LFS.Ratio2 = (1) 

CoreL.Ratio1 = (1), CoreL.Ratio2 = (1) 

CoreR.Ratio1 = (1), CoreR.Ratio2 = (1) 

RFS.Ratio1 = (0), RFS.Ratio2 = (0) 

 

3. The following examples present with different core and fuzziness sides of the fuzzy sets to 

examine the CNF property of the Incircle-FRI. Table 39 - Table 42 describe the 

CNF_Notations that prove the preservation of the CNF property of the Incircle-FRI. 
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Table 39. The CNF_Notations of the Incircle-FRI Result Related to Example CNFIncircle(Diff1), Which is 
Preserving CNF 

Example CNFIncircle(Diff1) 

 In case (Ai) and (Bi) are Singlton, and (A*) is Triangular 

The values of the fuzzy sets: 

A1= [2 2 2 2] A2= [8 8 8 8] 

B1= [3 3 3 3] B2= [9 9 9 9] 
A*= [4 5 5 6]  B*= [5.07  5.77  5.77  6.93] 

The case of the Core, LFs and RFs conclusion: 

The length (LFs) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFs) is (NORMAL) 

The lengths of the Core and Fuzziness sides: 

LFS_length: LFS1 = (0), LFS2 = (0) 

CoreL: Core1= (-40.71), Core2= (593.66) 

CoreR: Core1= (-679), Core2= (656.18) 

RFS_length: RFS1= (0), RFS2= (0) 

Length ratios of the Core and Fuzziness sides:  

LFS.Ratio1 = (0), LFS.Ratio2 = (0) 

CoreL.Ratio1 = (1), CoreL.Ratio2 = (1) 

CoreR.Ratio1 = (1), CoreR.Ratio2 = (1) 

RFS.Ratio1 = (0), RFS.Ratio2 = (0) 

 

 

 
Table 40. The CNF_Notations of the Incircle-FRI Result Related to Example CNFIncircle(Diff2), Which is 

Preserving CNF 

Example CNFIncircle(Diff2) 

 In case (A i), (A
*), and (Bi) are Triangular fuzzy sets (A* is Compatible with Rule1) 

The values of the fuzzy sets: 

A1= [1 2 2 3] A2= [9 10 10 11] 

B1= [2 3 3 4] B2= [9 11 11 13] 

A*= [1 2 2 3] B*= [ 2.07  3.0  3.00  3.93] 

The case of the Core, LFs and RFs conclusion: 

The length (LFs) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFs) is (NORMAL) 

The lengths of the Core and Fuzziness sides: 

LFS_length: LFS1 = (0), LFS2 = (1.162) 

CoreL: Core1= (113.1), Core2= (515.56) 

CoreR: Core1= (142.9), Core2= (657.2) 

RFS_length: RFS1= (0), RFS2= (1.162) 

Length ratios of the Core and Fuzziness sides:  

LFS.Ratio1 = (0), LFS.Ratio2 = (0) 

CoreL.Ratio1 = (1), CoreL.Ratio2 = (1) 

CoreR.Ratio1 = (1), CoreR.Ratio2 = (1) 

RFS.Ratio1 = (0), RFS.Ratio2 = (0) 
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Table 41. The CNF_Notations of the Incircle-FRI Result Related to Example CNFIncircle(Diff3), Which is 
Preserving CNF 

Example CNFIncircle(Diff3) 

In case (A i), (A
*), and (Bi) are Trapezoidal fuzzy sets (when the left and right sides are equal zero) 

The values of the fuzzy sets: 

A1= [1 1 3 3] A2= [9 9 11 11] 

B1= [2 2 4 4] B2= [9 9 13 13] 

A* = [5 5 7 7] B*= [5.74  5.74  8.26  8.26] 

The case of the Core, LFs and RFs conclusion: 

The length (LFs) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFs) is (NORMAL) 

The lengths of the Core and Fuzziness sides: 

LFS_length: LFS1 = (0), LFS2 = (0) 

CoreL: Core1= (-112.4), Core2= (718.0) 

CoreR: Core1= (-143.5), Core2= (1.530) 

RFS_length: RFS1= (0), RFS2= (0) 

Length ratios of the Core and Fuzziness sides:  

LFS.Ratio1 = (0), LFS.Ratio2 = (0) 

CoreL.Ratio1 = (0.849), CoreL.Ratio2 = (1) 

CoreR.Ratio1 = (1), CoreR.Ratio2 = (1) 

RFS.Ratio1 = (0), RFS.Ratio2 = (0) 

 
 

Table 42. The CNF_Notations of the Incircle-FRI Result Related to Example CNFIncircle(Diff4), Which is 
Preserving CNF 

Example CNFIncircle(Diff4) 

In case (A i), (A
*), and (Bi) are different core and fuzziness sides fuzzy sets 

The values of the fuzzy sets: 

A1= [1 1 3 3] A2= [9 11 11 13] 

B1= [2 3 3 4] B2= [9 9 10 10] 

A*= [5 5 5 5]  B*= [ 5.13 5.13 5.13 5.13] 

The case of the Core, LFs and RFs conclusion: 

The length (LFs) is (NORMAL) 

The length (Core) is (NORMAL) 

The length (RFs) is (NORMAL) 

The lengths of the Core and Fuzziness sides: 

LFS_length: LFS1 = (0), LFS2 = (3.70) 

CoreL: Core1= (-75.57), Core2= (893.56) 

CoreR: Core1= (41.05), Core2= (991.12) 

RFS_length: RFS1= (0), RFS2= (3.702) 

Length ratios of the Core and Fuzziness sides:  

LFS.Ratio1 = (-0.437), LFS.Ratio2 = (1) 

CoreL.Ratio1 = (0.671), CoreL.Ratio2 = (1) 

CoreR.Ratio1 = (0.779), CoreR.Ratio2 = (1) 

RFS.Ratio1 = (-0.4370), RFS.Ratio2 = (1) 
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6.4.3. The CNF benchmark examples discussion 

The CNF conclusion property of the studied FRI methods (KH-FRI [3], [25], [39], 

KHstabilized-FRI [5], MACI-FRI [6], VKK-FRI [4], and CRF-FRI [7]) as shown in Fig. 86, 

Fig. 87, Fig. 88 and Fig. 89, concerning the CNF_Benchmark  Examples 

"CNF.KH_ABNOR.C4_1" – "CNF.KH_ABNOR.C4_4" can be summarized as follows:  
 

1. MACI-FRI and CRF-FRI methods are suitable approach to be implemented as an inference 

system because its conclusions succeeded with CNF property to CNF_Benchmark  

Examples.  

2. VKK-FRI method, the abnormal conclusion exceeded in CNF_Benchmark  Example 

"CNF.KH_ABNOR.C4_1" only. However, it failed with CNF property in CNF_Benchmark  

Examples "CNF.KH_ABNOR.C4_2", "CNF.KH_ABNOR.C4_3", and 

"CNF.KH_ABNOR.C4_4".  

3. KHstabilized-FRI method suffered from abnormality according to CNF_Benchmark  

Examples "CNF.KH_ABNOR.C4_1" – "CNF.KH_ABNOR.C4_4". 
 

Table 43 illustrates the results of the studied FRI methods, as shown by the values of the 

conclusions B*. 
 

Table 43. The Conclusions of the Selected Methods (KH, KHstabilized, MACI, VKK, and CRF) Related to 

Examples "CNF.KH_ABNOR.C4_1" – "CNF.KH_ABNOR.C4_4"  

Method 

Approximate Conclusion B* 

Example  

CNF.KH_ABNOR.C4_1 

Example  

CNF.KH_ABNOR.C4_2 

Example  

CNF.KH_ABNOR.C4_3 

Example  

CNF.KH_ABNOR.C4_4 

KH-FRI 

[3],[25],[39] 

Abnormal conclusion 

[4.7 5.7 4.7 6.6] 

Abnormal conclusion 

 [5.27 4.4 5.6 6.0] 

 Abnormal conclusion 

[4 4.4 5.6 4.94] 

Abnormal conclusion 

 [6.5 5.27 4.72 4.4] 

KHstabilized-

FRI 

[5] 

Abnormal conclusion 

 [4.7 5.7 4.7 6.6] 

Abnormal conclusion 

 [5.27 4.4 5.6 6.0] 

 Abnormal conclusion 

[4 4.4 5.6 4.94] 

Abnormal conclusion 

 [6.5 5.27 4.72 4.4] 

MACI-FRI 

[6] 

Normal conclusion  

 [4.2 5.2 5.2 6.6] 

Normal conclusion  

 [3.89 4.5 5 5 5.5 7] 

Normal conclusion  

 [3.5 4.5 5 5 5.5 6.1] 

Normal conclusion  

 [5 5 5 5] 

VKK-FRI 

[4] 

Normal conclusion  

 [4.6 5.2 5.2 6.66] 

Abnormal conclusion 

 [out range] 

Abnormal conclusion 

 [out range] 

Abnormal conclusion 

 [5.3 5 5 5.3] 

CRF-FRI 

[7] 

Normal conclusion  

 [3.9 5.25 5.25 6.75] 

Normal conclusion  

 [4.5 4.9 5.0 5.1] 

Normal conclusion  

 [4.8 4.9 5.0 5.4] 

Normal conclusion  

[5 5 5 5] 

 

According to CNF_Benchmark  Examples ("CNF.KH_ABNOR.C4_1" – 

"CNF.KH_ABNOR.C4_4") and different Examples ("CNFIncircle(TR1)" – 

"CNFIncircle(Diff4)") and their results as shown in Table 29 - Table 32, the Incircle-FRI 

conclusion is a suitable approach to be implemented as an inference system because its 

conclusions succeeded with CNF property with all examples. The validity of the Incircle-FRI 

method with CNF property, which is proved by values of the conclusions B* as shown in Table 

44 and Table 45. 
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Table 44. The Conclusions of the Incircle-FRI Method Related to Examples ("CNF.KH_ABNOR.C4_1" –

"CNF.KH_ABNOR.C4_4")  

Approximate Conclusion B
*
 of the Incircle-FRI method 

Example  

"CNF.KH_ABNOR.C4_1" 

Example  

"CNF.KH_ABNOR.C4_2" 

Example  

"CNF.KH_ABNOR.C4_3" 

Example  

"CNF.KH_ABNOR.C4_4" 

Normal 

[4.82 5.55 5.55 6.49] 

Normal 

[4.36 4.86 5.29 5.87] 

Normal 

[4.10  4.80 5.23  5.65] 

Normal 

[5.03  5.023  5.03  5.03] 

 

Table 45. The Conclusions of the Incircle-FRI Method Related to Examples CNFIncircle(TR1) – 

CNFIncircle(Diff4)  

Approximate Conclusion B
*
 of the Incircle-FRI method 

Example "CNFIncircle(TR1)" Example "CNFIncircle(TR2)" Example "CNFIncircle(TR3)" 

Normal 

[4.95  5.42  7.16] 

Normal 

[5.42 5.42 5.42] 

Normal 

[5.28  6.37   8.28] 

Example "CNFIncircle(TP1)" Example "CNFIncircle(TP2)" Example "CNFIncircle(TP3)" 

Normal 

[4.54  4.54  7.47  8.53] 

Normal 

[5.01 5.90 5.90  7.33] 

Normal 

[4.37  4.37  6.66  8.57] 

Example  

"CNFIncircle(Diff1)" 

Example  

"CNFIncircle(Diff2)" 

Example  

"CNFIncircle(Diff3)" 

Example  

"CNFIncircle(Diff4)" 

Normal 

[5.07  5.77  5.77  6.93] 

Normal 

[2.07  3.0  3.00  3.93] 

Normal 

[5.74  5.74  8.26  8.26] 

Normal 

[5.13 5.13 5.13 5.13] 

6.4.4. Testing FRI methods based on the PWL benchmark examples  

In the following, the FRI methods (KHstabilized-FRI [5], VKK-FRI [4], FRIPOC-FRI [10], 

and VEIN-FRI [63]) will be compared according to the PWL_Benchmark  Examples of the KH 

method. To offer a simple way of comparison, we focused on the cases where the KH-FRI 

method demonstrated the fails of preserving PWL, which was represented by Examples 

("PWL.NONLIN.C1" situations1, 2, 3, "PWL.NONLIN.C2", "PWL.NONLIN.C3" and 

"PWL.NONLIN.C4") as shown in Table 25 - Table 28. Therefore, this comparison shows the 

difference between the selected methods related to the PWL property for each example. 

Multiple α levels were computed to perform the comparisons. Fig. 90 introduces the 

antecedents and observation part of Examples. Fig. 91- Fig. 94 describe the conclusions of the 

FRI methods (KHstabilized-FRI [5], VKK-FRI [4], FRIPOC-FRI [10], and VEIN-FRI [63]) 

and illustrate the difference between the real conclusion (red line) and linearity approximated 

conclusion (black line). 
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The Antecedent and Observation Related to Example "PWL.NONLIN.C1" Situation1 

 
 
 
 
 

The Antecedent and Observation Related to Example "PWL.NONLIN.C1" Situation2 

 
The Antecedent and Observation Related to Example "PWL.NONLIN.C1" Situation3 

 
The Antecedent and Observation Related to Example " PWL.NONLIN.C2" 

 
The Antecedent and Observation Related to Example "PWL.NONLIN.C3" 

 
The Antecedent and Observation Related to Example "PWL.NONLIN.C4" 
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Fig. 90. The Antecedents and Observations Related to Examples ("PWL.NONLIN.C1" Situations1,2,3, 

"PWL.NONLIN.C2", "PWL.NONLIN.C3" and "PWL.NONLIN.C4") 

The Consequent and Conclusion by (KHstabilized-FRI) Related to Example "PWL.NONLIN.C1" Situation1

 
The Consequent and Conclusion by (KHstabilized-FRI) Related to Example "PWL.NONLIN.C1" Situation2 

 
The Consequent and Conclusion by (KHstabilized-FRI) Related to Example "PWL.NONLIN.C1" Situation3 

 
The Consequent and Conclusion by (KHstabilized-FRI) Related to Example "PWL.NONLIN.C2" 

 
The Consequent and Conclusion by (KHstabilized-FRI) Related to Example "PWL.NONLIN.C3" 

 
The Consequent and Conclusion by (KHstabilized-FRI) Related to Example "PWL.NONLIN.C4" 
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Fig. 91. The Approximated and Real Conclusions of the KHstabilized-FRI Method to Examples 

("PWL.NONLIN.C1" Situations1,2,3, "PWL.NONLIN.C2", "PWL.NONLIN.C3" and "PWL.NONLIN.C4") 

The Consequent and Conclusion by (VKK-FRI) Related to Example "PWL.NONLIN.C1" Situation1 

 
The Consequent and Conclusion by (VKK-FRI) Related to Example "PWL.NONLIN.C1" Situation2 

 
The Consequent and Conclusion by (VKK-FRI) Related to Example "PWL.NONLIN.C1" Situation3 

 
The Consequent and Conclusion by (VKK-FRI) Related to Example "PWL.NONLIN.C2" 
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The Consequent and Conclusion by (VKK-FRI) Related to Example "PWL.NONLIN.C3" 

 
The Consequent and Conclusion by (VKK-FRI) Related to Example "PWL.NONLIN.C4" 

 

Fig. 92. The Approximated and Real Conclusions of the VKK-FRI Method to Examples ("PWL.NONLIN.C1" 

Situations1,2,3, "PWL.NONLIN.C2", "PWL.NONLIN.C3" and "PWL.NONLIN.C4") 

The Consequent and Conclusion by (FRIPOC-FRI) Related to Example "PWL.NONLIN.C1" Situation1

 
The Consequent and Conclusion by (FRIPOC-FRI) Related to Example "PWL.NONLIN.C1" Situation2 

 
The Consequent and Conclusion by (FRIPOC-FRI) Related to Example "PWL.NONLIN.C1" Situation3 
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The Consequent and Conclusion by (FRIPOC-FRI) Related to Example "PWL.NONLIN.C2" 

 
The Consequent and Conclusion by (FRIPOC-FRI) Related to Example "PWL.NONLIN.C3" 

 
The Consequent and Conclusion by (FRIPOC-FRI) Related to Example "PWL.NONLIN.C4" 

 

Fig. 93. The Approximated and Real Conclusions of the FRIPOC-FRI Method to Examples ("PWL.NONLIN.C1" 

Situations1,2,3, "PWL.NONLIN.C2", "PWL.NONLIN.C3" and "PWL.NONLIN.C4") 

The Consequent and Conclusion by (VEIN-FRI) Related to Example PWL.NONLIN.C1 Situation1 

 
The Consequent and Conclusion by (VEIN-FRI) Related to Example "PWL.NONLIN.C1" Situation2 
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The Consequent and Conclusion by (VEIN-FRI) Related to Example "PWL.NONLIN.C1" Situation3 

 
The Consequent and Conclusion by (VEIN-FRI) Related to Example "PWL.NONLIN.C2" 

 
The Consequent and Conclusion by (VEIN-FRI) Related to Example "PWL.NONLIN.C3" 

 
The Consequent and Conclusion by (VEIN-FRI) Related to Example "PWL.NONLIN.C4" 

 

Fig. 94. The Approximated and Real Conclusions of the VEIN-FRI Method to Examples ("PWL.NONLIN.C1" 

Situations1,2,3, "PWL.NONLIN.C2", "PWL.NONLIN.C3" and "PWL.NONLIN.C4") 

6.4.5.  Testing the Incircle-FRI method based on the PWL benchmark examples 

The Incircle-FRI was constructed to preserve the PWL property and handle two α levels in 

triangular and trapezoidal fuzzy sets. Therefore, according to the PWL_Benchmark  Examples 

presented in subsection 6.3, which was constructed to test the PWL property, we examine the 

Incircle-FRI based on this PWL_Benchmark  using multi-levels of α-cuts. Fig. 95 introduces the 

difference between the real conclusion of the Incircle and linear approximation functions that 

prove the preservation of the PWL property of the Incircle-FRI.  
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The Consequent and Conclusion by (Incircle-FRI) Related to Example "PWL.NONLIN.C1" Situation1 

 
The Consequent and Conclusion by (Incircle-FRI) Related to Example "PWL.NONLIN.C1" Situation2 

 
The Consequent and Conclusion by (Incircle-FRI) Related to Example "PWL.NONLIN.C1" Situation3 

 
The Consequent and Conclusion by (Incircle-FRI) Related to Example "PWL.NONLIN.C2" 

 
The Consequent and Conclusion by (Incircle-FRI) Related to Example "PWL.NONLIN.C3" 
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The Consequent and Conclusion by (Incircle-FRI) Related to Example "PWL.NONLIN.C4" 

 

Fig. 95. The Approximated and Real Conclusions of the Incircle-FRI Method to Examples ("PWL.NONLIN.C1" 

situations1,2,3, "PWL.NONLIN.C2", "PWL.NONLIN.C3" and "PWL.NONLIN.C4") 

6.4.6.  The PWL benchmark examples discussion 

According to the results of the FRI methods (KHstabilized-FRI [5], VKK-FRI [4], FRIPOC-

FRI [10], VEIN-FRI [63], and Incircle-FRI) (Fig. 91- Fig. 95) based on PWL_Benchmark  

Examples ("PWL.NONLIN.C1" situations1,2,3, "PWL.NONLIN.C2", "PWL.NONLIN.C3" and 

"PWL.NONLIN.C4"), we conclude the following: 
 

• KHstabilized-FRI and FRIPOC-FRI methods are not preserving the PWL property to 

PWL_Benchmark  Examples ("PWL.NONLIN.C1" situations1,2,3, "PWL.NONLIN.C2", 

"PWL.NONLIN.C3" and "PWL.NONLIN.C4"). 

• VKK-FRI method succeeded with preserving PWL property in PWL_Benchmark  

Examples, except Example "PWL.NONLIN.C4", which appeared with a little bit 

deviation on the right side. 

• VEIN-FRI method succeeded with PWL property on PWL_Benchmark  Examples 

("PWL.NONLIN.C1" situations1,2, "PWL.NONLIN.C2" and "PWL.NONLIN.C3"), in 

contrast, the Examples ("PWL.NONLIN.C1" situation3 and "PWL.NONLIN.C4") 

appeared with a little bit deviation in the bottom boundary. 

• Incircle-FRI method is preserving the PWL property on PWL_Benchmark  Examples 

("PWL.NONLIN.C1" situations1,2,3, "PWL.NONLIN.C2", "PWL.NONLIN.C3" and 

"PWL.NONLIN.C4"). 
 

Table 46 presents a summary of the results for the selected FRI methods according to the 

PWL_Benchmark  Examples ("PWL.NONLIN.C1" situations1,2,3, "PWL.NONLIN.C2", 

"PWL.NONLIN.C3" and "PWL.NONLIN.C4") to PWL property, where the plus sign (+) 

indicates that the technique is satisfied with PWL property, while a minus sign (-) shows the 

method has a little bit deviation in some cases. The cross sign (x) indicates that the method did 

not preserve the PWL property. 
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Table 46. Summary of the FRI Methods and Their Conformity to PWL_Benchmark Examples 
("PWL.NONLIN.C1" situations1,2,3, "PWL.NONLIN.C2", "PWL.NONLIN.C3" and "PWL.NONLIN.C4"). 

Examples 

Methods 

KH 

 FRI 

[3],[25],[39] 

KHStabilized 

FRI 

 [5] 

VKK 

FRI  

[4] 

FRIPOC  

FRI 

[10] 

VEIN 

FRI 

 [63] 

Incircle 

FRI 

 

"PWL.NONLIN.C1" 

situation1 

x x + x - + 

"PWL.NONLIN.C1" 

situation2 

x x + x - + 

"PWL.NONLIN.C1" 

situation3 

x x + x + + 

"PWL.NONLIN.C2" x x + x - + 

"PWL.NONLIN.C3" x x + x - + 

"PWL.NONLIN.C4" x x - x + + 
 

SUMMARY  

Regarding the general conditions and criteria that have been suggested for unifying the 

common requirements, FRI methods have to be satisfied. One of the most common conditions 

is the demand for a Convex and Normal Fuzzy (CNF) conclusion in case all the rule antecedents 

and consequents are CNF sets, and another condition is the fuzzy set of the conclusion must 

preserve a Piecewise Linearity (PWL), in case all antecedents and consequents of the fuzzy 

rules are preserving PWL sets at α-cut levels. The KH-FRI is the one, which cannot fulfill these 

conditions. The main goals of this chapter were: 

Introduced different arbitrary examples to compare FRI techniques based on the various 

features: No. of Dimensions, Type of Membership Functions, and No. of Membership 

Functions for the antecedent and consequent, as presented in Table 13. These arbitrary 

examples used to classify and compare FRI methods based on the criteria of the normality and 

linearity properties. The results of the arbitrary examples were described as follows: KH, KH 

Stabilized, LESFRI, and VKK methods suffered from the abnormality, in case of having multi-

dimension antecedents and different type of membership functions which was described in 

Examples (FRI_EX6 and FRI_EX7). The VKK method suffered from the abnormality, in case 

of having single-dimension, as shown in Example (FRI_EX3). The FRIPOC method suffered 

from non-preserve piecewise linearity in case of multi-dimension antecedents and different 

types of membership functions, as shown in Example (FRI_EX6). In contrast, MACI, IMUL, 

CRF, GM, and SCALE MOVE methods did not suffer from abnormality and piecewise 

linearity for all arbitrary examples.  

 Investigate equations and notations related to CNF and PWL properties, which aim to 

highlight the problematic properties of the KH-FRI method to prove its efficiency with CNF 

and PWL properties. This chapter was focusing on constructing benchmark examples to be a 

baseline for testing other FRI methods against situations that are not satisfied with the normality 

and linearity properties for KH-FRI. The CNF_Benchmark  Examples were created based on 
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different examples ("CNF.KH_ABNOR.C4_1" – "CNF.KH_ABNOR.C4_4") and their cases 

that based on (the core and boundary of the rule-bases and observation fuzzy sets), it proved 

the conclusion of the KH-FRI is always abnormal. While the PWL_Benchmark  Examples that 

were constructed based on different examples ("PWL.NONLIN.C1" situations1,2,3, 

"PWL.NONLIN.C2", "PWL.NONLIN.C3" and "PWL.NONLIN.C4") and their cases that 

based on (the left and right slopes of the rule-bases and observation fuzzy sets), which 

determine the conclusion of the KH-FRI is not preserving on the linearity. Moreover, this 

chapter proved the efficiency of the benchmark CNF and PWL properties to examine some FRI 

methods. Concerning the proposed Incircle-FRI method, it proved that it is a suitable approach 

to be implemented as an inference system because its conclusions succeeded with CNF and 

PWL properties on all CNF and PWL benchmark examples. 

 

 

Thesis related to Chapter 6: 

Thesis. IV: 

I introduced the initial benchmark system (set of benchmark examples) for the most 

important properties of the FRI concept (CNF and PWL properties), constructing benchmarks 

are based on analyzing all cases of the core, boundary, and slopes conditions of the 

antecedents, consequents, and observation fuzzy sets. The KH-FRI CNF and PWL Benchmark 

are suitable for highlighting some problematic points of the KH-FRI and other FRI methods 

that originated from the KH-FRI. Therefore, CNF and PWL Benchmark s are suitable for 

evaluating and comparing FRI methods, where the KH-FRI is not satisfied with CNF and PWL 

properties. 

 

The results introduced in this chapter are supporting the statement of Thesis IV and [32], [35], [94]  
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CHAPTER -7-                                                                                                          Contribution  

The dissertation’s main contribution is the proposal of a new fuzzy interpolative reasoning 

method based on the properties of the Incircle triangular fuzzy number. The suggested method 

is based on the center point of the incircle triangular fuzzy number as a reference point of the 

fuzzy set. The main sides of the triangular are indicated SD1, SD2, and SD3 (see Fig. 96 for 

Incircle_Notations). The tangents length and vertices of the triangle with its Incircle, which 

denotes PS1, PS2, and PS3, referred to as "fuzziness sides". The proposed Incircle-FRI is always 

producing triangular CNF fuzzy conclusion by holding the same rate of the weights among the 

observation and the two rule antecedents, and the conclusion and the two corresponding rule 

consequents with the reference points, and with the "fuzziness sides" (see Fig. 97). 

 

 

Fig. 96. Triangular Fuzzy Number Incircle_Notations. 

 
 

Fig. 97. Fuzzy Interpolative Reasoning using Triangular Membership Functions 
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The proposed Incircle-FRI can also be extended to handle singleton, trapezoidal (see Fig. 

98), and hexagonal (see Fig. 99) membership functions. The proposed Incircle-FRI method can 

also extend to be able to handle fuzzy interpolative reasoning with multiple antecedent 

variables and multiple fuzzy rules. Extending the Incircle-FRI with general weight calculation 

and a shift process, the suggested FRI method can also perform extrapolation. (see Chapter 4, 

5 for the details and the related Thesis I, II, and III.) 

 

 

Fig. 98. Fuzzy Interpolative Reasoning using Trapezoidal Membership Functions 

 

Fig. 99. Fuzzy Interpolative Reasoning using Hexagonal Membership Functions 
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Another important contribution of the dissertation is the proposal of a novel FRI benchmark 

system. The suggested benchmark is far not ready. The CNF (Convex and Normal Fuzzy) and 

PWL (Piecewise Linearity) benchmark examples are just the first step and a methodology to 

construct a comprehensive FRI (Fuzzy Rule Interpolation) benchmark system, which is built 

upon the weaknesses of the existing FRI methods, and can also highlight the strengths of the 

newcomer ones. (See Chapter 4, 6 for the details and the related Thesis IV.) 
 

The main scientific results of the research presented in this work are summarized in the 

following Theses: 
 

Thesis. I: 

I introduced a new method for the fuzzy rule interpolation concept called " Incircle-FRI", which 

is based on the Incircle of a triangular fuzzy number, the Gergonne Point as a “reference point” 

of the inside circle of triangular fuzzy set, and the fuzziness sides of the triangular. The Incircle-

FRI conclusion is calculated by holding the same rate of the weights among the observation 

and the two rule antecedents, and the conclusion and the two corresponding rule consequents 

with the Gergonne Points (for the reference point of the conclusion), and with the "fuzziness 

sides" (for left and right fuzziness the shape of the conclusion). The " Incircle-FRI" is always 

generating a triangular CNF conclusion, if the antecedents and the consequents are triangular 

CNF sets, even if the fuzzy rule-base is sparse. I conclude that the proposed method is a suitable 

approach to be implemented as an inference system. 

 

Thesis. II: 

I introduced an extension of the "Incircle-FRI" to be able to handle trapezoidal and hexagonal 

fuzzy sets, which is by decomposing their membership function shapes into multiple triangulars, 

and multiple Incircle triangular fuzzy numbers with the Gergonne Points as reference points. I 

conclude that the extended “Incircle-FRI" can generate a trapezoidal, or hexagonal CNF 

conclusion if the antecedents and the consequents are all trapezoidal, or all hexagonal CNF 

sets, even if the fuzzy rule-base is sparse. Therefore, the Incircle-FRI method is a suitable 

approach to be implemented as an inference system with trapezoidal and hexagonal fuzzy sets. 

 

Thesis. III: 

I introduced an extension of the "Incircle-FRI" to be able to handle multiple fuzzy rules having 

multiple fuzzy antecedents. I used a modification weight estimate and included a shift technique 

to ensure to interpolate the consequent fuzzy result to be more logical and also to enable the 

capability for extrapolation. I conclude that the extensions of the “Incircle-FRI" always 

produce CNF conclusion, for all the handled antecedents and consequents configuration of the 

original method even if the fuzzy rule-base is sparse. Therefore, the Incircle-FRI method is a 

suitable approach to be implemented as an inference system with these extensions.  
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Thesis. IV: 

I introduced the initial benchmark system (set of benchmark examples) for the most 

important properties of the FRI concept (CNF and PWL properties), constructing benchmarks 

are based on analyzing all cases of the core, boundary, and slopes conditions of the 

antecedents, consequents, and observation fuzzy sets. The KH-FRI CNF and PWL Benchmark 

are suitable for highlighting some problematic points of the KH-FRI and other FRI methods 

that originated from the KH-FRI. Therefore, CNF and PWL Benchmarks are suitable for 

evaluating and comparing FRI methods, where the KH-FRI is not satisfied with CNF and PWL 

properties. 
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APPENDIX A 

Appendix A.1 

 

 

 

 

 
 

Fig. 100. A Comparison of Fuzzy Interpolative Reasoning Results of Example TR1 for Several FRI Methods. 

 



172 | P a g e  

 

 

Appendix A.2 

 

 

 

 

 

 
 

Fig. 101. A Comparison of Fuzzy Interpolative Reasoning Results of Example TR2 for Several FRI Methods. 
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Appendix A.3 
 

 

 

 

 

 
 

 

Fig. 102. A Comparison of Fuzzy Interpolative Reasoning Results of Example TR3 for Several FRI Methods. 
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Appendix A.4 

 

 

 

 

 
 

 

Fig. 103. A Comparison of Fuzzy Interpolative Reasoning Results of Example TP1 for Several FRI Methods. 
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Appendix A.5 

 

 

 

 

 
 

 

Fig. 104. A Comparison of Fuzzy Interpolative Reasoning Results of Example TP2 for Several FRI Methods. 
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Appendix A.6 
 

 

 

 

 

 
 

Fig. 105. A Comparison of Fuzzy Interpolative Reasoning Results of Example TP3 for Several FRI Methods. 
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Appendix A.7 
 

 

 

 

 

 
 

Fig. 106. A Comparison of Fuzzy Interpolative Reasoning Results of Example HEX1 for Several FRI Methods. 
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Appendix A.8 
 

 

 

 

Fig. 107. A Comparison of Fuzzy Interpolative Reasoning Results of Example MultiA1 for Several FRI 

Methods. 
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Appendix A.9 
 

 

 

 

Fig. 108. A Comparison of Fuzzy Interpolative Reasoning Results of Example MultiA2 for Several FRI 

Methods. 
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Appendix A.10 

 

 

 

 

Fig. 109. A Comparison of Fuzzy Interpolative Reasoning Results of Example Ext1 for Several FRI Methods. 

 

Appendix A.11 

 

 

 

 

Fig. 110. A Comparison of Fuzzy Interpolative Reasoning Results of Example Ext2 for Several FRI Methods. 
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APPENDIX B 

 

A Publications Arising from the Dissertation 
 

A few publications have been generated from the research carried out within the PhD 

project. Below list the resultant publications that are in close relevance to the dissertation, 

including all the papers already published. 

 

[32]. M. Alzubi, Z. C. Johanyak, and S. Kovacs, “Fuzzy Rule Interpolation Methods and FRI 

Toolbox”, Journal Scopus Indexed [Q3]. 

 

[35].M. Alzubi and S. Kovacs, “Investigating the piecewise linearity and  

benchmark related to KOCZY-HIROTA fuzzy linear interpolation”, Journal Scopus Indexed 

[Q3]. 

 

[94]. M. Alzubi and S. Kovacs, “Some Considerations and a Benchmark Related to the CNF Property 

of the Koczy-Hirota Fuzzy Rule Interpolation”, Journal Scopus Indexed [Q2]. 

 

[98]. Maen Alzubi, Mohammad Almseidin, Szilveszter Kovacs, and Mohd Aaqib Lone, “Fuzzy Rule 

Interpolation Toolbox for the GNU Open-Source OCTAVE”, Conference [IEEE]. 

 

[99]. M. Alzubi and S. Kovacs, “Interpolative Fuzzy Reasoning Method Based on the Incircle of a 

Generalized Triangular Fuzzy Number”, Journal Scopus Indexed [Q1]. 
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